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Root Neighborhoods of a Polynomial 

By Ronald G. Mosier 

Abstract. The root neighborhoods of p (z), a polynomial over the complex field, are the sets of 
complex numbers that are the roots of polynomials which are near to p(z). The term 'near' 
means that the coefficients of the polynomials are within some fixed magnitude of the 
coefficients of p(z). A necessary and sufficient condition for a complex number to be in the 
root neighborhoods is given and it is proved that each root neighborhood contains at least one 
root of p ( Z) and the same number of roots of each near polynomial. Finally, a necessary and 
sufficient condition is given for a root neighborhood to contain more than one root of p(z), 
and consequently more than one root of any of the near polynomials. 

1. Introduction. In solving polynomial equations, by computer or otherwise, the 
values of the coefficients are usually rounded off. Much has been done to derive 
ways to estimate what influence this rounding has on the calculated roots. 

The most modern approach is to derive a condition number, a kind of derivative, 
to estimate the magnitudes of the changes of the roots which correspond to changes 
in the coefficients. This approach has been very fruitful; the reader is referred to 
Gautschi [1]-[4] and, of course, the classic works of Wilkinson [9], [10] for further 
details. 

Another approach is to consider the round-off of the coefficients as a continuity 
problem and to use the geometry of the complex plane. The results obtained are 
more general and usually weaker than those obtained with the first approach, but 
provide insight and point out directions of research. The reader is advised to read 
Ostrowski [71 as an example of this second approach. 

This paper is of the second kind and treats polynomial round-off effects as a 
continuity question. It presents theorems which, though modest, do provide some 
insight. In addition, the discussion is of an elementary nature and accessible to a 
wide audience of mathematicians. Finally, the results are useful in the practical work 
of polynomial root-finding, especially backward error analysis. 

2. Preliminaries. Denote by Pn the set of polynomials with complex coefficients 
and degree at most n. Let p(z), q(z) E Pn, where 

p(z) = ao + alz + *-+anz , 

and 
q(z) = bo + blz + *- +bnzn. 

For a fixed set of positive real numbers, mj, j = 0, 1, .. ., n, define the metric 

d(p,q) = max aj - b /1mj. 
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The mi are weights which determine the relative importance of the variations in 
each coefficient. If mj = 1.0 for all j, then we are considering absolute differences in 
the coefficients. If we have some fixed p(z) in mind, then by setting mj = JajJ for 
each j, we can consider relative differences with respect to the coefficients of p(z). 
For round-off analysis on a computer, the weights are usually powers of two. 

In the practical work of solving polynomial equations, every-coefficient is subject 
to possible round-off, but in the literature it is common to study cases where only a 
subset of the coefficients, or even just one coefficient, is allowed to be perturbed. In 
these cases, the metric must be redefined to allow the weights to be nonnegative with 
the convention that u/0 = oo for u > 0, and 0/0 = 0. In other words, for m1 = 0, 
d(p, q) = oo, unless aj = bj. In order to simplify notation and to avoid the tedium 
of mentioning the special case of the origin, zero-valued weights will be used in none 
of the theorems and in only one example, Wilkinson's polynomial. The proofs will 
assume that m1> 0, j = 0,1, .. ., n, but the theorems are still true in the case of the 
extended metric. 

With the metric, we can now define neighborhoods of polynomials. For E 0 0 and 
p(z) E Pn, denote by N(p, E) the polynomials that form a closed ball around p(z) 
of radius E: 

N(pE) = {q E Pn: d(p ,q) < E}. 

Define the set of all roots of the polynomials in N( p, E) to be the set Z( p, E), 

Z(p, E) = {z: q(z) = 0 for some q(z) E N(p, E)}. 
The connected components of Z(p, E) are the root neighborhoods mentioned in 

the title of this paper. 

3. The Set Z(p, E). For a given p(z) E Pn, denote by g(z) the function 

g(z) = P (Z)/( MO + Mel IZ |+ 
___ 

+ Mnln|)- 

Occasionally, in order to indicate what polynomial, p(z), was used in forming 
g(z), we shall write g(p; z) for g(z). 

For any complex value, u = reiG # 0, denote by pu(z) the polynomial 
n 

PU(Z) 
= P (Z) - g(u) E mieiJ'z, 

j=O 

with the special case 

Po(z) = p(z) - mog(O) = p(z) - ao. 

LEMMA. Using the definitions and the notation above, we have that 

(i) Pu(u) = 0, 
(ii) pu(z) E N(p, Jg(u)J), and 
(iii) if q(z) E Pn and q(u) = 0, then d(p, q) > d(p, pu). 

Proof. Both (i) and (ii) are obvious. For (iii) note that 
n 

df pq q 
) 

E mJ1 zj I p(z) - q(z) 
j=0 

So, since q(u) = 0, we have that 
n 

d(p~q q) E Mil Ul I AU) 
j=o 
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Dividing by the summation term gives 

d(p, q) >_ Ig(u)= d(p, pu), 

which completes the proof. 
The first theorem identifies the set Z( p, E). 

THEOREM 1. Given p (z) E P, E then 

Z(P, e) = {U: Ig(P; u) E}. 

Proof. If lg(u)l< e, then from the Lemma, pu(z) E N(p, E) and has u as a root, 
So U E Z(p, e). 

On the other hand, if q(z) E N(p, E) and q(u) = 0, then also from the Lemma, 

I g(u) I= d(p, pu) < d(p, q) < E 

which proves the theorem. 
Figure 1 shows Z(p,O.O1), Z(p,0.008), and Z(p,0.004) for p(z) = z2- 

(10.5 + ilO.2)z + (1.5 + i53.5), which has roots at 5 + i5 and 5.5 + i5.2. The 
weights used were mo = 4, ml = 0.5, and m2 = 0.01. 

A second example is Figure 2, which shows a part of Z(w, 2-23) for what we shall 
call Wilkinson's polynomial 

w(z) = (z-1)(z-2) .*. (z-20). 

The weights used were the ones Wilkinson [9] used, mi9 = 1 and mi1= 0 for 
j # 19. The reader is referred to the remark following the definition of the metric in 
Section 2. 

FGR 10 ,X8 
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\S~~~~0 X X 

FIGURE 1 
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FIGURE 2 

The roots of w(z) which are visible in this piece of the complex plane are marked 
in Figure 2, as are the roots of the perturbed polynomial w(z) - 2-23Z19. Notice that 
for the chosen weight configuration, the perturbed polynomial is in fact wj(z), 
where u is one of its real roots. 

To show these facts and to show how useful Theorem 1 is for backward error 
analysis, observe Table 1, which shows the roots of the perturbed polynomial to nine 
decimal places and log2 g(w; u) I to four decimal places for each computed root. The 
roots not listed in the table agree up to nine decimal places to the exact roots of 
w(z). 

TABLE 1 

Backward error analysis for Wilkinson 's polynomial w( z) 

Computed root u log2Ig(w; U) | 

20.846908101 -23.0000 
19. 502439400 + i 1.940330347 -23.0000 
16.730737466 + i 2.812624894 -23.0000 
13.992358137 + i 2.518830070 -23.0000 
11.793633881 + i 1.652329728 -23.0000 
10.095266145 + i 0.643500904 -23.0000 

8.917250249 -23.0000 
8.007267603 -23.0000 
6.999697234 -23.0000 
6.000006944 -23.0000 
4.999999928 -23.0090 
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From Theorem 1, we may conclude that for any u E Z(p, E) there is at least one 
root, say v, of p(z) so that 

(3.1) Iv - ul< E(e/lanl) E mjUIj, 

and also there is at least one root, say y, so that 

(3.2) 11 - y/ul /<(E/lanl) E m./jUiuJ. 

Because of the 1/n exponent, these bounds are very weak for small E, especially 
compared to bounds found using the condition number approach, but they are also 
very general and are intended to illustrate how the magnitudes of the roots 
determine the absolute and relative errors possible. Wilkinson first pointed out that 
large roots are subject to larger displacements by perturbations of the coefficients 
and that smaller roots have larger relative errors. Formulas (3.1) and (3.2) suggest 
this observation. See Wilkinson [9]. 

4. Root Neighborhoods of p. As - increases, the set Z(p, E) increases; for E large 
enough Z(p, E) is no longer bounded. As an example, p(z) = Emiz1 has g(p; r) = 
1 for every nonnegative real number r. For the remainder of this paper we will 
consider only E < lanI/Mn. This is no great restriction, since in the sense of 
round-off, it implies that we are sure of at least the degree of the polynomial. It is a 
great advantage, however, because it allows us to conclude that Z( p, E) is bounded. 

THEOREM 2. For any 0 < E < IanI/Mn, if q(z) E N(p, E), then q(z) and p(z) have 
the same number of roots, counting multiplicities, in each connected component of 
Z(pE). Furthermore, there is at least one root of p (z) in each connected component of 
Z(p E)- 

Proof. Since lanI/Mn > 0, p(z) has n roots, counting multiplicities. Since lanI/Mn 

> E, q(z) has n roots, counting multiplicities, as does every member of the family of 
polynomials, 

fx(z) = Xp(z) +(1 - X)q(z), 0 < X < 1. 

Furthermore, since 

d(fx, p) = (1 - X)d(q, p) < E, 0 < A < 1, 

we have that all the roots of f(z), 0 < X < 1, lie in Z(p, E) by definition. 
The coefficients of fx(z) are linear functions of X, and it is well known that the 

roots of a polynomial are continuous functions of the coefficients. Hence, as X varies 
from 0 to 1 the roots of fx(z) trace continuous paths from the roots of fo(z) to the 
roots of f1(z). 

Let fo(z) have k roots in some connected component of Z(p, E), the remaining 
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n - k roots being isolated in the other connected components. It follows that this 
will hold true for the roots of all fx(z) for X up to and including 1. Since 

fo(z) = q(z), and f1(z) = p(z), the first assertion is proved. 
The second assertion follows immediately from the first and the definition of 

Z(p, E). 
The fact that each connected component of Z(p, E) contains at least one root of 

p(z) and a corresponding root of q(z) for any q(z) E N(p, E), justifies our calling 
the connected components of the set Z( p, E), the root neighborhoods of p. 

The paths which are traced by the roots of the polynomials 

Xp(z) +(1 - X)p.(z), 0 < A, 

are easy to follow. They are the curves 

n 

arg p(z)/ E mke -ikzk = argg(u), 
k =0 

where 0 is the argument of u. 
As an example, we have drawn the root paths for the polynomial family 

w(z) - X2-23z19, 0 < A 

in Figure 3. The roots trace the curves arg(w(z)/z19) = 0; they pass through the 
roots of Wilkinson's perturbed polynomial and continue through to the roots of 
w(z). The perturbed roots are marked by asterisks, as they were in Figure 2, and the 
roots of w(z) are labeled. The real axis has not been drawn; what appears to be the 
real axis are parts of the root paths. The paths beginning at complex pairs collide on 
the real axis at the points marked by the diamond-shaped symbols and then split 
apart and follow the real axis to the roots of w(z). These singularities on the root 
paths are called collision points in the literature (see Gautschi [4]). 

FIGURE 3 
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Figure 3 also shows the root paths of the family of polynomials, 

w(z) + X2-23Z19, 0 < X, 

which are the curves arg(w(z)/z'9) = yr. These are the paths in Figure 3 which pass 
through the unmarked points of the boundary of the root neighborhood. Again, note 
the collision points on the real axis. 

The next theorem establishes the importance of the collision points and clarifies 
what they are. 

THEOREM 3. A root neighborhood of p contains two roots of p(z) if and only if it 
contains a u such that pu(z) has a double root at u. 

Proof. Clearly, from Theorem 2, if pu(z) has a double root at u then p(z) must 
have two roots in the root neighborhood containing u. 

To prove the converse, let z1 and z2 be two distinct roots of p(z) and suppose 
that both lie in the same root neighborhood of Z( p, E). 

Define 

8 = inf{X: z1 and Z2 lie in the same root nbd of Z(p, A)}. 

From this definition, we can say that z1 and Z2 lie in the same root neighborhood 
of Z( p, 8), that neighborhood being the limit of a decreasing family of compact and 
connected sets. 

It is straightforward to show, using the continuity of the roots of a polynomial 
with respect to the coefficients and the definition of 8, that the root neighborhood of 
Z( p, 8) which contains both z1 and Z2 is composed of two sets, one containing z1 
and the other containing Z2. Further, these sets have disjoint interiors and intersect- 
ing boundaries. This says that the curve enclosing the root neighborhood either 
crosses itself or is tangent to itself at some point u. 

Considering the boundary of the root neighborhood as a function of two varia- 
bles, Ig(r, O)j = 8, where z = re i, we know that if u # 0 we have at u, 

algl/8r= O and algl/a8 0O. 

An exercise in differentiation shows that 

AI g lr = Re(ag/ar k/I g 1) 

and that 

aI g 1/80 = -Im(rag/ar g-/ g / ). 

Therefore, at the nonzero point u, 

aglar = 0. 

However, from the definition of pu(z), one can easily prove that ag/8r = 0 at u 
when and only when u is a double root of pu(z), proving the theorem for u 0 0. 

Assume u = 0 is a simple root of po(z) and the only point where the boundary 
lg(r, 6)I = 8 crosses itself. We argue as follows: 
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Let F1 and F2 be the sets making up the root neighborhood with z1 E F1 and 
with z2 E F2, and suppose that in addition to zero, po(z) has k, roots in F1 and k2 
roots in F2. 

Choose some x in the interior of F1, but with d(px, po) small enough so that by 
the continuity of the roots of a polynomial with respect to the coefficients, p,(z) has 
k1 roots in F1 near the roots of po(z) and k2 roots in F2 near the roots of po(z) 
which are there. Of course, it has one more root in F1, x, which is close to zero. 

Do the same thing for some y in the interior of F2, so that p,(z) has k, roots in 
F1 and k2 + 1 roots in F2, including y. 

Then p,(z) and p,(z) do not have the same number of roots in two root 
neighborhoods of Z( p, max{ I g(x) j, I g(y) I}), contradicting Theorem 2. 

We conclude that the assumption is wrong; either po(z) does have other roots 
common to both boundaries, or zero is a double root of po(z). In either case the 
theorem is proved. 

As an illustration of the Z( p, 8) of Theorem 3, Figure 4 shows, for the polynomial 
of Figure 1, two small root neighborhoods which separate the roots, a large root 
neighborhood which contains both roots, and the root neighborhood whose boundary 
contains a point u such that pu(z) has a double root at u. This root neighborhood 
just manages to contain both roots. The point u is obvious in the center of the 
drawing. 

According to the proof of Theorem 3, the collision points of Figure 2, occur when 
aglar = 0. As an application, we state an easy consequence for polynomials with 
real roots. 

Let p(x) have only simple real roots; then on the real axis jg(x)j takes on n - 1 
local maxima. Suppose that the local maxima that are < E are k in number and are in j 
root neighborhoods. Then any q(x) E N(p, E) with real coefficients has at most 
(k + j)/2 complex pairs as roots. 

FIGURE 4 
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Table 2 shows the local maxima for w(z). The perturbed polynomial has exactly 
five complex pairs which agrees exactly with the table. Figure 3 also agrees with the 
table. 

TABLE 2 

Maxima of Ig(x) I for Wilkinson 's polynomial 

location of maximum log21 g 1 

1.045893 50.8425 
2.084519 28.4906 
3.119416 14.7239 
4.151980 4.7060 
5.182987 -3.1165 
6.212943 -9.4502 
7.242221 -14.677 
8.271119 -19.029 
9.299900 -22.652 

10.328817 -25.646 
11.358132 -28.077 
12.388138 -29.988 
13.419191 -31.406 
14.451759 -32.340 
15.486500 -32.785 
16.524440 -32.712 
17.567379 -32.060 
18.619104 -30.706 
19.690939 -28.342 
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