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A Modification of the Weeks Method for 
Numerical Inversion of the Laplace Transform* 

By J. N. Lyness and G. Giunta* * 

Abstract. The Weeks method for calculating numerical values of f(t) from its Laplace 
transform F(s) involves the numerical evaluation of a set of contour integrals. In this paper, 
we describe a powerful modification, by means of which results of comparable accuracy can 
be obtained using approximately half the number of complex function values. This and other 
possible minor modifications are discussed. 

1. Introduction. There is a vast literature relating to the numerical inversion of the 
Laplace transform. Many authors treat this well-known problem in the following 
context. We can evaluate the numerical value of the Laplace transform function 

P00 
(1.1) F(s) = f f(t)e-stdt, Res > ao, 

at any values of s we like. We wish to construct an algorithm which obtains or uses 
this information to evaluate f(t) at a given selection of values of t (real) to a 
specified accuracy. One may assume that f(t) is real, in which case F(s) = F(&). In 
almost all methods, one needs to know (or one has to find out first) the numerical 
value of the Laplace convergence abscissa ao. This may be defined as the limit of the 
set of values of Re s for which this integral converges, or alternatively as the 
maximum of the real parts of the singular points sj of F(s). 

A good brief description of the formulas on which the Weeks method [2] is based 
is given in Piessens and Branders [1]. In order to provide a proper background, we 
repeat some of these here. Briefly, we expand f(t) in terms of Laguerre functions. 
Thus, we assume that 

00 a > a 
(1.2) f (t) = ear A ase- t/2Ls(bt) 0O 

s=O b >O. 

It can be shown that such an expansion exists. The major difficulty in exploiting this 
numerically is to assign values to b and a. 
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Following Piessens and Branders, using elementary analysis one finds from (1.1), 
(1.2) and standard properties of the Laguerre polynomials, that 

(1.3) +(Z)= 1_F(b 
b 

is regular within a circle IzI < R with Rconv 1, and that the coefficients as in 
(1.2) coincide with the Taylor expansion coefficients of +(z), viz., 

00 

(1.4) (z) =E aszs. 
s=O 

The Weeks method comprises an algorithm for the numerical evaluation of the 
coefficients as in terms of function values of +(z). On the basis of M function 
values of ?(z), approximations as, s = 0,1, ... ., A, are obtained. The corresponding 
approximation to f(t) given by (1.2) is 

(1.5) 7(t) = ea E a- b,2Ls(bt)g 
s=O 

and the approximation error is 

(1.6) (t -ft ( = s - as) e-t/2Ls(bt) - 0a0 -btl2L (bt e~~t s=O S~L I5b/L5b) 

Naturally, besides the choices for b and a, the success or failure of such an 
algorithm depends on the accuracy of the approximations a s, and on how many 
(p + 1) of these are calculated. In Section 2, we describe both the standard methods 
(Weeks [2], Piessens and Branders [1]) and our modification. In subsequent sections 
we provide estimates for the error (1.6), which reveal that our modification produces 
results of comparable accuracy with approximately half the number of complex 
function values. 

2. Approximations for as. Both Weeks' method and the present modification may 
be developed by considering the Cauchy integral representation of the derivative. 
This is 

1~~~~~~~s (0) IS 

(2.1) as S! 2ri c 2s+1 dz, s >0, 

where C is any contour which includes the origin and does not include any 
singularity of +(z). For various reasons we take C to be a circular contour centered 
at the origin of radius r. Thus, 

(2.2) as 2a4iIr Zs +1 dz= f ek (reO)e sdO, s > 0. 

This integral may be approximated using the m-panel trapezoidal rule. For 
notational convenience we shall take m to be even. We define 

(2.3) a m '1(r) =- 1 0(re2wijm)exp(-2,gisj/m). 
j-1 
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In our case, +(z) is real when z is real and O(Z) = +(z). Thus, the sum in (2.3) 
requires only m/2 independent evaluations of (both the real and imaginary parts of) 
0k(z). We find 

2 m/2 
alm l](r) =- Re(4,(re27Tii/m))cos(27Tsj/m) 

(2.4) Sr m/ 
2m/2 

+ rSm Im (re2wij/m ))sin(2TsjI/m). 
J-1 

Our modification of Weeks' algorithm uses this approximation to as for s= 

0,1,...gm - 1. 
The standard approximation used by Weeks and by Piessens and Branders is 

different from this. We give a brief derivation. Since 4(z) has no singularities within 
the circle IzI = r, we have, from Cauchy's theorem, 

1 =z_1 rs2f a,, (s = 0), 
(2.5) 2 i 

z = 
2,gs- reie)eisidO = 

Y zi=r ()d f2ri)e 0 (S >O). 

We now combine this result (divided by r2,) with (2.2) by taking the sum and the 
difference. We find 

_ _ _ __ 1 Z 2 r2,f 

'A - ~~y +2) dz = p(re'o)cossA dO 
5 2?Ti Iz=r Z (zs +r25)s 2-7rrs| (e)osd 

(2.6) 2as (s = 0), 

an (s>0), 

and 

= A i +(Z) (1zS) dz= 2rf2 f(reie)sinsAd6 

(2.6a) 0 (s 0), 

ias (S > 0). 

Note that because of the symmetry, the final integral in (2.6a) is purely imaginary. 
When s > 0, clearly As, -iBs and as define the same quantity. In all cases, 

(2.7) 2as = As - iBs. 

Piessens and Branders set out this minor transformation from as to As using slightly 
different notation. The approximation used by Weeks consists of approximating the 
integral representation (2.6) for s = 0,1,...,m/2 using the m-panel midpoint 
approximation 

2 
Alm ?I(r) =-E + 0(re fi(2j-l)/m)cos(7v(2j - 1)s/m) 

(2.8) 4 -/ 
4m/2 

= rs Re(k(re- i(2il)/m))cos(i7(2j - 1)s/m). 

The second equality is justified by the fact that 4(z) is an analytic function, real for 
real z. Thus ?(z) = ?(z), so the real and imaginary parts of 4(re'6) are symmetric 
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and antisymmetric about 6 = g. Since the cosine factor is symmetric, the second 
equality follows. We note that this approximation requires m/2 function evaluations 
of Re(4(z)). Since +(z) = b(1 - z)-1F(b(l - z)-1 + a - b/2), it requires m/2 
function evaluations of both the real and the imaginary parts of F(s). A similar 
approximation, based on the endpoint trapezoidal rule is 

m 
Alm,1](r) = 2 0k(re2Xij/m)cos2rsi1/m S r m _ 

(2.9) m/2 

r m E Re(o (re2 ij/m))cos2 rsj/m. j=1 

Precisely similar remarks apply to this approximation. Weeks uses the midpoint 
approximation (2.8) with r = 1. Piessens and Branders suggest both, with r = 1. By 
reexpressing +(z) in the form 

ef) ib 6 b \ ifib 
(e ) =(2cot - + 2 F 2cot +?) 

both authors mask to some extent the simplicity of this approximation. 
Specifically, then, the original Weeks method uses approximation (1.5) with 

r = 1, i = m/2 and 

as-Alm,01(r), 

(2.10) a =Alm?]1(r), S = 1 29 .. . , m12- 1 

am/2 = 2Am/2(r). 

Piessens and Branders discuss both this rule and the corresponding endpoint rule; 
(we refer to this as the adjusted Weeks method; it is precisely as above but with 
[m, 1] replacing [m, 0]). 

Our modification uses (1.5) with r = 1, tL = m - 1 and 

(2.11) as = a"mj ](r), s = 0,1,2 ..., m-1. 

Other modifications (not discussed in the literature) would be to use Bs in place of 
As in (2.10) above, or asmo?](r) in place of asmj1](r) in (2.11) above. (In Section 6 we 
discuss another much less significant modification.) In spite of the fact that 
y = m/2 in (2.10) and jL = m - 1 in (2.11), it is the case that all these possibilities 
require both the real and imaginary parts of m/2 function values of F(z). 

3. Expressions for Error Components as - as. An expression for alm l] - as in 
terms of higher-order coefficients is derived in this section. This turns out to be a 
finite form of the Poisson Summation Formula ((3.3) below). We also derive the 
corresponding expression for Alml] - as ((3.5) below). 

To obtain the Poisson Summation Formula, one may simply substitute the Taylor 
series 

00 

(3.1) (p(re2rij/m) = Eakr ke 2rikj/m 
k=O 
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into the definition 
1 rn 

(3.2) rsalmll]= - - a(re2, i /i)exp(-2rrisj/m) 0 6 s < m-1. 

The coefficient of rk is clearly 

a ak E 21i(k-s)jlm1 
m = 

This sum is zero unless (k - s)/m is an integer, in which case the coefficient is 
simply ak. Thus the Poisson Summation Formula 

(3.3) rsatnlml = rsa + rs+maiam + rs+ 2ma2+ 0 < S < m-1, 

is obtained. This may be considered to be an expression for the discretization error 
rS(amn, 1] - as) in a series whose most significant term is rs+mas+m 

We proceed in a similar way to treat 

(3.4) J-1 
1 n 

=-- * (Are 21Tij/m )(e 27Tisj/l + e - 2sis/j) 

j=1 

Substituting the Taylor series (3.1) here, we find that the coefficient of rk is 

a (e2iri(k-s/'m + e21ri(k+s)j/m). 

J=1 

This sum is zero unless either (k - s)/m is an integer or (k + s)/m is an integer. 
We find, in particular, that 

Alm,']= 2a + 2rma + 

rsAlmi1] = rsa + rs+na + 

+rrnSa 2m -sa-s + S... S= 1,2 ... ,m/2-1, 

rml2A[m l]= 2r m/2a /2 + 2r 3m/2a3m/2 + 

Comparison of (3.3) and (3.5) shows immediately that almilI is generally likely to 
be a much better approximation. If we suppose that rsas is a decreasing sequence, 
and consider a value of s between 1 and m/2 - 1, we see that the most significant 
term in rsA["1'] - rsa is rm-sa m-S while the most significant term in rsamil] - rsas 
is r S a+ma , which is generally much smaller. Moreover, rSacm-lI is a reasonable 
approximation to rsa5 for s = 0, ,...., m - 1. On the other hand, since rsAlm I] - 

r m A-n' 11, only the first m/2 values of Ai Il] are relevant. 
The comparison given above provides the underlying reason why one approach is 

so much better than the other. The theory given below provides a more quantitative 
comparison. 

4. Bounds for f(t) - f(t) when Rconv > 1. In this section we employ the Poisson 
Summation Formula to provide error bounds for f(t). Up to this point, our analysis 
has allowed Rconvq the radius of convergence of the Taylor Series of J(z), to be 
arbitrary, though, in fact, it satisfies R,0nv > 1. From this point on, we impose the 
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restriction R > 1. Thus, a class of problems (those for which R = 1) is 
excluded from the subsequent error analysis. This class is, in fact, one for which 
these methods are quite unsuitable, involving f(t) with singular behavior at t = 0. 

The error expressions are in terms of parameters K and R which arise in the 
following way. 

THEOREM 4.1. CAUCHY INEQUALITY. For all positive R < Rconv, there exists K 

(depending on R) such that 

(4.1) as|I < K/Rs for alls. 

It is a simple matter to place bounds on many relevant quantities in terms of the 
given R chosen, so that 
(4.2) r < R < Rconv 
and the unknown K. Thus, using (3.3), we have 

1? s?Iram K 0o 
rs+lm 

l a [ l]_as I - E r+ naS / < rS E sl 

(4.3) r 11 = 
K r Am r )Im K r Am 

Rs RJ =oR Rs RJ 1 -(r1R) 
m 

On the other hand, using the three relations in (3.5) successively, we find 

(4.4) |Al~m,'] -ao2 < K(r/R)m/(1-( r/R) m), 

2 0~~~~~~~~~~~~~ 
1 K~ rs~ /r\3M/ 

(4.6) | 1 A[mlIj - as( I- /(1 -(r/R)m). 

(4.7) M(X) = maxe x/2Ls(x)| 

satisfies 
(4.8) MA(X) < 1; M0(x) = 1; MA(O) = 1. 

From (1.6), we have 

(4.9) |"te~ ) M0(bt) sI, |a- as + M,,+1(bt) E jaj. 
e s~~~~~~~o 5~~~=!L+1 

For our modification, defined in (2.11), we need (4.1) and (4.3). We find 

| eat S < MO(bt) E R;(j)l(1 (/R)m + 1m E 2 . 

(4.10) = (b M ) bK- /1 -( -1R /m) 
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In the subsequent discussion, we shall refer to the pair of terms on the right-hand 
side of (4.10) as the discretization error bound and the truncation error bound, 
respectively. We note that the truncation error does not depend on r, and contains a 
t-dependent factor Mm(bt). 

The expressions corresponding to (4.10) for the Weeks method and for the 
Piessens and Branders variant are more cumbersome. For the variant (defined by 
(2.10) but with [im, 1] replacing [im, 0]) we use (4.1) and (4.4), (4.5), (4.6) to find 

1(t) -1(t) 
eat 

(4.11) < MO(bt)K [ r2 1 -(r2/R) m/2 + r I-(1/R) m/2+1] 
1 -(r/R)m [Rm/2+1 1- r2/R R 1- 1/R 

+ Mm72+?(bt) 
K I 

R m72+1 1 - (1/R)~ 

We are primarily interested in these bounds when r = 1 and R > 1. In this case 
both (4.10) and (4.11) simplify significantly. For our modification, we find 

(4.12) At) -f(t) < MO(bt)K + Mm(bt)K 
* i e~~eat (I 

- 
(1-(lR)) Rm (I1- (1R)) RM 

For the adjusted Weeks algorithm, we find 

(4.13) I(t)- f(t) | MO(bt)K + Mm72+1(bt)K 
| ea (I - (1-(R)) R /2 +1 (I1- (I R)) Rm/2+1 

In interpreting these results, we must remember that we have chosen R arbitrarily 
between 1 and Rconv but that K depends on R and increases, often indefinitely, as 
R approaches Rconv. The bounds for the modified algorithm for a particular value of 
m correspond almost precisely to those on the adjusted Weeks algorithm when m is 
doubled. It appears then from these bounds that the effect of replacing the Weeks 
algorithm by our modification is to obtain results of the same caliber based on 
approximately half the number of function values. 

5. The Conditioning Error. All the methods mentioned above involve the numeri- 
cal approximation of the Taylor coefficients as of the function 4(z). This is 
equivalent to numerical differentiation. It is only prudent to verify that such a 
method is numerically stable. 

We shall employ an elementary but realistic model to the true state of affairs. We 
shall assume that the calculation is based on rounded or truncated approximations 
Oj to the true function values Oj = 4(zj). These approximations satisfy 

(5 .1) kj = Oj + 4JEN, ||< 1, 

where EN is the noise level and the values of Aj are unknown. We shall assume 
further that the rest of the calculation is carried out exactly. We define alm 1](r) as 
the same function of Oj as at 1](r) is of 0>, and f(t) as the resulting approximation 
to f(t), and calculate expressions for the differences between the calculated and 
exact quantities. The details of these calculations are elementary. We find, using 
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(2.3), that 

j1 (5.2) rnm l](r) -a ]r = rSm E~ (+-f) 

and using (5.1) this gives 

(5.3) asm i](r) - asm](r) = 

with 4As satisfying 

X7 ~~~~j1 (5 .4) 1+si l m | 
d*je ~ 2fts m E | Jji l 

Finally, using (1.6) we have 

1(t)-7(t) = r-a[ (r)-a[mj](r))e-bi/2Ls(bt) 

(5 5) e 
= - 

(&rnel L.) - E N -bt /2L~ 

S 
e 

Sot) s=O r 

We shall be interested in values of r equal to or marginally less than 1. To this end, 
we set 

(5.6) r = e-I 1-8 

To obtain a "worst possible" effect, we replace 4s and the Laguerre functions in 
(5.5) by 1 to obtain 

(5.7) (t -7(t) |< rn E r= _ -) 
atN rs =6EN rMm1ernari1Ms KN e ~~s=Orr (1 ) 

This bound is too pessimistic. A more optimistic impression of the actual state of 
affairs may be obtained by assuming (incorrectly) that each 4s is an independent 
variate, symmetrically distributed, satisfying 

(5.8) E(s5) =0, E(4i2) = a2. 

Here, E stands for the expected value, and a is the standard deviation (for a 
uniform distribution d2 = 1/3). A simple calculation yields 

A(t)-7(t )2 6 - i 22 2 2 m( e28r ) 
(5.9) El _____ _EN __2_2__ eat s=O r k 2m0 

We now look at (5.3), (5.7) and (5.9). When r = 1, the conditioning errors are all 
what one might expect in a normal calculation. The buildup of statistical error is 
minimal; the standard deviation in the final result exceeds the original noise level by 
a factor of less than Fm. 

However, when r < 1, the appearance of terms like r in (5.3) and r- (t1) in 
(5.7) shows immediately that the noise level may be significantly amplified. When 
r = 1/2, (5.3) indicates that three decimal digits are lost when s = 10, six when 
s = 20, and so on, which is often an intolerable situation. However, values of r only 
marginally less than 1 can be handled, so long as the effect of this source of error is 
monitored. 
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6. Choice of the Parameter r. The authors are involved in the construction of 
numerical software. In a subsequent more technical publication we plan to discuss 
the choice of the parameters a, b, m and r required to define the method. However, 
the choice of r is a direct consequence of the foregoing formulas and it seems 
pertinent to discuss it here. 

First, we note that the error bound (4.12) implies that when r = 1 the truncation 
and discretization errors are approximately equal. Reducing r has no effect on the 
truncation error but, in view of (4.10), does reduce the discretization error. Thus, in 
general, the advantages of using r < 1 are not great. One reduces only one of two 
equally large components of the overall error, but introduces a possible numerical 
instability. 

However, one of the function values required using the trapezoidal rule is c(r). 
When r = 1, reference to (1.3) shows that a limit calculation is required. We have 

Lim4 (z) = Lim sF(s) =f (0). 
z &1 s - O 

In general, when Rconv > 1, there is no actual singularity at z = 1. It is simply 
inconvenient to be obliged to provide special programming for this single function 
value. 

One simple way around this difficulty is to use the equally accurate midpoint rule 
[m, 0] which does not need this function value. In a one-shot calculation, this is the 
obvious solution. In an automatic algorithm where the value of m is increased by 
stages until sufficient accuracy has been obtained, this choice introduces another 
difficulty, related to reuse of function values. Effectively, we need a symmetric rule 
[m, 1] or [ m, 0] to ensure that only m/2 complex function values are required. Using 
[m, 1], we can proceed by doubling the value of m at each stage. Using [im, 0], we 
have to triple the value of m at each stage. The latter choice is ultimately even more 
wasteful than the earlier choice, as the margin by which we exceed the value of m 
that is actually required is significantly increased. 

To avoid this problem, in our software we have used r = 1 - 8 with 8 chosen so 
that the value of Ami < 2 where m- is the largest value of m allowed by the program. 

7. Concluding Remarks. In Sections 1 and 2 we have described the standard Weeks 
method and our modification. The results of Sections 3 and 4 establish theoretically 
that our modification, by providing approximations to twice as many expansion 
coefficients is much more cost effective. Sections 5 and 6 discuss the conditioning 
error and some of the effects of altering the parameter r. 

That our modification is in practice as efficient as is indicated by the theory has 
been confirmed by many numerical experiments. In fact, the importance of the 
modification was discovered by numerical experiment. Previously, the authors had 
believed that both methods were equivalent. 

In practice, many further decisions are required. These include the choice of b, a 
and r and the construction of stopping criteria. The present authors are in the 
process of constructing numerical software for this problem and will present 
somewhat heuristic recommendations in a future publication devoted to practical 
matters. The scope of the present paper has been limited to the theoretical aspects of 
this problem. 
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