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experience be able to handle the exercises on convergence in Chapter 8 or have a 
chance of understanding the difficult and more advanced notion of Frechet differ- 
entiation in Chapter 16? Even with good backgrounds in advanced calculus, most 
students must struggle to absorb the concepts of functional analysis. 

In addition, a more extensive knowledge of applied mathematics is necessary 
before a student can appreciate the powerful methods of functional analysis and 
how they aid in the understanding and solution of applied problems. Undergraduate 
courses in differential equations usually do not include applications of sufficient 
complexity to require functional-analytic techniques in their solutions. A complex 
real-world problem, such as the fluid-flow problem discussed in Chapter 20, is 
probably beyond the grasp of a student whose applied mathematical experience 
consists of a single course in differential equations. 

I am always attracted by analysis textbooks, and especially by those which 
purport to explore the rich and fruitful relationships between analysis and the 
applications. My on-going search will not end with this book. 

JAMES P. FINK 

Institute for Computational Mathematics and Applications 
University of Pittsburgh 
Pittsburgh, Pennsylvania 15260 

23165BO5, 65JO51.-K. BOHMER & H. J. STETTER, Editors, Defect Correction Meth- 
ods- Theory and Applications, Springer-Verlag, Wien, New York, 1984, vi + 242 
pp., 244 cm. Price $20.00. 

Numerical analysis is rich in iterative methods of diverse types, for example, 
Newton-Raphson, Gauss-Seidel, multigrid, iterative refinement, and deferred correc- 
tion. A talk given at the 1973 Dundee Conference by P. E. Zadunaisky, which 
proposed estimating errors in the numerical solution of ODEs by determining the 
errors in the numerical solution of a neighboring problem with a known analytical 
(piecewise polynomial) solution, stimulated H. J. Stetter to propose yet another 
iterative method. It became apparent that this new method shared with so many 
other iterative methods the idea of computing a correction based on the computation 
of a relatively accurate residual, and hence Stetter formulated the "defect correction 
principle" in a paper which appeared in 1978. The use of the distinctive term 
"defect" for "residual" had been introduced by R. Frank and C. W. Ueberhuber 
and was probably helpful in attracting interest to this novel approach to iterative 
processes. Indicative of its rapid acceptance is the inclusion of a section entitled 
"Splitting methods and defect corrections" in the 1984 report of the NRC Commit- 
tee on Applications of Mathematics. 

This book is the proceedings of a 1983 Oberwolfach working conference on 
"Error Asymptotics and Defect Corrections." It is not an attempt to compile a book 
on defect correction. Rather it is a heterogeneous collection of papers tied together 
by the common thread of defect correction. Authors and titles follow: 

Bbhmer, Hemker, Stetter: Introduction: the defect correction approach. 
Frank, Hertling, Lehner: Defect correction algorithms for stiff ODEs. 
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Reinhardt: On a principle of direct defect correction based on a posteriori error 
estimates. 

Chatelin: Simultaneous Newton's iteration for the eigenproblem. 
Mandel: On some two-level iterative methods. 
Hackbusch: Local defect correction method and domain decomposition tech- 

niques. 
McCormick: Fast adaptive composite grid methods. 
Hemker: Mixed defect correction iteration for the solution of a singular perturba- 

tion problem. 
Rump: Solution of linear and nonlinear algebraic problems with sharp, guaran- 

teed bounds. 
Kaucher, Miranker: Residual correction and validation in functoids. 
Bbhmer, Gross, Schmitt, Schwarz: Defect corrections and Hartree-Fock method. 
Pereyra: Deferred corrections software and its application to seismic ray tracing. 
Schdnauer, Schnepf, Raith: Numerical engineering: experiences in designing PDE 

software with selfadaptive variable stepsize/variable order difference methods. 

A number of these papers are condensations or revisions of earlier work. Some of 
them are very difficult to penetrate; others are highly readable, for example, the 
paper by Hemker, which brings together interesting results from previous papers on 
the use of alternating defect correction to create hybrid difference schemes for 
convection-dominated flow problems. Among the more novel papers were those of 
Hackbusch and McCormick on the construction of discretizations for composite 
grids. (Equation (3.10a) of the Hackbusch paper seems to have the inequality 
backwards.) 

The introductory paper, written especially for the book, describes defect correc- 
tion. It is not a popularized treatment of the subject useful to the nonspecialist, but 
rather a fairly precise and complete technical discussion. Unfortunately, the basic 
idea is to some extent obscured because of the several versions and extensions that 
are presented. Because these various manifestations of defect correction are so 
loosely related, it is better to regard it not as a method but as a pattern (a word twice 
used by the authors) for iterative methods for solving equations in vector and 
function spaces. The sole unifying theoretical concept is that of a contraction 
mapping, and even this idea must be modified in certain applications where a strictly 
limited number of iterations are performed. Such is sometimes the case for deferred 
correction, where one has at best a "pseudo-contraction" involving a sequence of 
progressively weaker, but more relevant, norms. (In this connection the reviewer 
would like to remark that the "crucial role" attributed to asymptotic expansions of 
the global error is an overstatement. They are useful but not necessary.) In defect 
correction a correction is computed from a residual, using a cheap approximation to 
the inverse of the operator. This may mean replacing a matrix by a "nearby" matrix 
which is easier to factor, or a high-order discretization by a low-order discretization, 
or a fine-grid discretization by a coarse-grid discretization, or an exact inverse by a 
finite-precision inverse. This simplified inverse may be linear or nonlinear. If it is 
linear, then defect correction amounts to nothing more than simplified Newton- 
Raphson, which is a pattern well established in numerical analysis. It is the 
possibility of doing nonlinear simplification that makes the defect correction princi- 
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ple interesting and worthwhile. Significant examples that come to mind are deferred 
correction and A. Brandt's FAS extension of the multigrid idea to nonlinear 
problems. 

Simplified Newton iteration (including iterative refinement) is of especial impor- 
tance in interval analysis because of the considerable pessimism of interval exten- 
sions of direct methods such as Gaussian elimination. It is better to do the initial 
computation using point values and to use intervals to compute corrections. Of 
crucial importance is the very accurate calculation of residuals. Often these residuals 
are inner products and in most other cases they can be so expressed by rewriting the 
problem. For this reason, U. Kulisch, W. Miranker, and others have advocated that 
in addition to the four arithmetic operations, there ought to be a built-in (micropro- 
grammed) operation that delivers an inner product to the full precision of the 
computer. The paper by Rump describes algorithms for the solution of linear and 
nonlinear systems of equations based on this Kulisch/Miranker arithmetic, and 
these are implemented in the IBM program product ACRITH, on the market since 
March 1984. The paper of Kaucher and Miranker goes beyond this and considers 
the solution of equations in function space. The development in their paper is guided 
by an analogy between the digit-by-digit decimal expansion of a number and the 
term-by-term Chebyshev series expansion (for example) of a function. Both papers 
provide impressive examples, and together they seem to form a definitive condensa- 
tion of the Kulisch/Miranker approach. However, the unfamiliar notation and 
terminology and the excessive formalisms are likely to deter any reader other than 
an interval analysis enthusiast. (This is typical of work in interval analysis and may 
be partly responsible for its unfortunate isolation from mainstream numerical 
analysis.) In addition, the substance of the Kulisch/Miranker approach has been 
criticized. The calculation of an inner product to full precision can be quite 
time-consuming because of the need for a Super-Accumulator in order to store the 
intermediate results to whatever precision is necessary. Also, examples have been 
given by W. Kahan/E. LeBlanc showing the ill effects of having to rewrite the 
problem so that the residuals are expressible as inner products; one such example is 
the rewriting of a continued fraction as the ratio of polynomials. Finally, it remains 
to be demonstrated that the goals of reliability and high accuracy could not be 
achieved instead with the use of double-precision interval arithmetic for selected 
intermediate results. 

ROBERT D. SKEEL 

Department of Computer Science 
University of Illinois at Urbana-Champaign 
240 D.C.L., 1304 W. Springfield 
Urbana, Illinois 61801 

24165-02.- GENE H. GOLUB & CHARLES F. VAN LOAN, Matrix Computations, The 
Johns Hopkins University Press, Baltimore, Md., 1983, xvi + 476 pp., 23' cm. 
Price $49.50 hardcover, $24.95 paperback. 

The authors admit to having taken 6 years to write this book. Those who have 
experienced the energy and enthusiasm which Professor Golub brings to everything 


