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traced Conway's discovery of three new simple groups [2] from Leech's work on 
sphere packings [4]. Leech's work was related to Golay's (23, 12) 3-error correcting 
code [3]. Thompson uses a hands-on approach, and assumes that the reader has had 
advanced calculus and a first course in algebra. The book is also unusually clear, 
because one of Thompson's main goals is to give the evolution of the mathematics. 

It would be a lively choice for an upper level topics course. There are several 
interesting historical observations. Here are two facts that the reviewer did not 
know. It was Cocke [1], not Hamming or Golay, who found the infinite family of 
1-error correcting codes over a general finite field GF(q) (the so-called Hamming 
1-codes). Bell Labs was able to patent (in 1951) Hamming's original (7, 4) 1-error 
correcting code. This led to a delay in its publication which caused a priority 
dispute. 
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27165-01, 65-041.-WEBB MILLER, The Engineering of Numerical Software, Pren- 
tice-Hall Series in Computational Mathematics, Prentice-Hall, Englewood Cliffs, 
N. J., 1984, viii + 167 pp., 232 cm. Price $27.95. 

This book is primarily a textbook suitable for the senior undergraduate or 
first-year graduate level. It ought to appeal to a greater audience, however: anyone 
likely to develop or use computer programs for serious scientific computation. Thus, 
it should interest engineers, mathematicians, and scientists, as well as computer 
scientists. 

The author presents material related to the production and testing of numerical 
software that has never before been gathered together. In the Preface he states, "My 
goal is to present principles for writing numerical software. The ideal textbook about 
the production of numerical software remains to be written, but I hope that I have 
verified its worth and feasibility and hastened its arrival." I believe that the author 
has succeeded admirably in verifying worth and feasibility. While still not the ideal 
textbook, this book is a valuable first effort to organize and codify principles and 
concepts that have hitherto only been found scattered through the literature. The 
text is supplemented with exercises and programming assignments, some quite 
challenging, designed to enhance the reader's understanding of fundamental issues. 

The book contains six chapters. Chapter 1 introduces terminology and illustrates 
concepts that will be used throughout the book. The distinction between similar 
terms, particularly those related to programming "mistakes" of various kinds, is 
sometimes subtle. Fortunately, examples in later chapters make the distinctions, and 
the reasons for them, understandable. 
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Chapter 2 is an introduction to those details of floating-point arithmetic necessary 
for understanding the design and testing of numerical software. Without introducing 
unnecessary complications, the author outlines the important differences between 
floating-point arithmetic systems and the mathematical real number system. He 
introduces and briefly discusses parameters that characterize the former, and surveys 
various schemes for making these parameters available. The chapter concludes with 
a lucid discussion of uncertainty diagrams and their use in approximate error 
analysis. 

Chapters 3 through 6 proceed in an orderly way from discussions of software 
whose behavior can be completely analyzed, and is therefore well understood, to 
discussions of software whose behavior can only be discovered empirically. Chapter 
3 discusses the design and testing of software for the sine function, drawing heavily 
from material in [1]. The author takes time to explore the nuances and numerics of 
critical algorithmic details, using the material to illustrate broad principles of 
software design and implementation. 

In Chapter 4, software for the solution of linear equations forms the necessary 
backdrop for an escalated discussion of testing procedures. Early sections of the 
chapter concentrate on general implementation issues for linear algebra software, 
using material from [2], and describe three well-known algorithms that provide 
fodder for the subsequent discussion of testing methodology. The main topic is the 
reliability of testing as a means for determining whether or not a program meets 
design specifications. The chapter concludes with the important point that an 
algorithm may be a practical success even though theoretically it is unreliable. Only 
extremely sophisticated tests will detect the unreliability in such cases. 

Chapter 5, dealing with software for the solution of a nonlinear equation, 
concentrates on the principles of measuring the performance of, as opposed to 
merely testing, numerical software. Loosely speaking, the distinction is that testing 
determines compliance with a specification, while performance measurements are 
descriptive. It is shown, however, that the results of carefully selected performance 
measurements can suggest improvements to an algorithm. The discussion revolves 
around methods for root determination based on bisection and linear interpolation. 
Curiously, nowhere in the discussion of bisection is a continuity condition imposed. 
Thus, the bisection scheme described can converge on a binary machine to consecu- 
tive floating-point arguments that bracket a singularity of the function. It is not clear 
whether this omission is deliberate or an oversight. 

Chapter 6 discusses performance measurement in greater detail in the context of 
software for automatic quadrature. The algorithm discussed is a simple automatic 
scheme using Simpson's rule. This chapter is the least satisfying of those in the book, 
because it contains little that is definitive. In that sense, it faithfully reflects its 
subject. Good algorithms and good software for automatic quadrature exist, but all 
are demonstrably fallible. Software that sparkles on one integrand will fail with a 
slightly perturbed integrand. Because acceptable performance specifications do not 
exist, it is not possible to conduct meaningful tests of such software. Thus, we are 
reduced to amassing data from experiments in an attempt to determine performance 
characteristics. The proper design of such experiments, and proper data reduction 
techniques are research areas. The author presents a clear picture of how little we 
know about these matters. 
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In summary, this book is a useful, understandable introduction to the engineering 
and testing of numerical software that faithfully and fairly reflects the present status 
of the field. While it necessarily includes some numerical analysis, it is not a 
numerical analysis text. I recommend it to anyone either interested in working on 
numerical software or simply curious about what is going on. 
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Let { N(t), t > 0) denote an ordinary renewal process with inter-renewal distribu- 
tion function F. In many applications of renewal theory, knowledge of the renewal 
function 
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(1) H(t) = E[N(t)] = E n)(t), 
,, = 1 

the variance function 

(2) V(t) = var[N(t)] = 2H(2)(t) + H(t) - [H(t)12, 

and JO H(u) du, where p(n) denotes the n-fold recursive Stieltjes convolution of P, 
are required. With the exception of the Poisson process, exact expressions do not 
usually exist and numerical evaluation is quite difficult [2] so, other than the partial 
tabulations of Soland [6] and White [7], numerical values are not readily available. 

The Cleroux-McConalogue cubic spline algorithm [3], [4] partially resolves the 
numerical problems; this algorithm generates very accurate piecewise polynomial 
approximations to convolutions of the form F(n)(t) where F E C2[0, 0o) is a 
distribution function whose density is bounded. McConalogue [5] (see also [1]) 
generalized this algorithm, permitting its application to a subclass of those distribu- 
tion functions F for which F' exhibits a singularity at the origin. 

The generalized algorithm was used to compute H(t), V(t) and JfoH(u)du for 
t = 0(.05)20 for the five probability distributions most commonly encountered in 
applications of renewal theory: the Weibull, gamma, lognormal, inverse Gaussian, 
and truncated normal distributions. Each of these was tabulated to 4 decimal places 


