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Difference Schemes for Degenerate 
Parabolic Equations 

By E. A. Socolovsky* 

Abstract. Diagonal dominant implicit-difference schemes approximating a porous media type 
class of multidimensional nonlinear equations are shown to generate semigroups in an 
approximate Ll-space, and the rate of convergence to the semigroup solution in L1 is given. 
The numerical schemes proposed by Berger et al. in [4] are described and a proof of 
convergence for the fully discrete algorithms is outlined. Numerical experiments are discussed. 

1. Introduction. In this paper we consider difference schemes for the problem 

u,- Af(u) + g(u)-au = O, t > O, x E , 

(P) u(t,x) = 0, x 

u(O, x) = uO(x), x E s2. 

Here, f is continuous monotone increasing, g is monotone nondecreasing, a > 0, 

and f (0) = g(O) = 0. We also assume that f l and g are Holder continuous with 
exponents a and /B, respectively. (P) is a parabolic problem that degenerates when 
u = 0. It is found, for instance, in the diffusion through a porous medium and in 
some population models [17]. In the porous medium case, g(u) = a = 0 with 
f(u) = ur, m > 1, and for Lotka's population model, g(u) = Ku2, a > 0, with 
f(u) = ut, m > 2. 

Our difference schemes are patterned on the nonlinear semigroup theory for (P) 
[1], [10]. We carry the analysis for one particular scheme and sketch its extension to 
schemes obtained from other diagonal dominant discretizations of the Laplacian. 
We concentrate on the case a = 0, which involves the essential techniques, and 
outline the case a > 0. The details of the case a > 0 and the nonhomogeneous 
equation are considered in [25, Chapter I]. We discretize in space and prove that the 
resulting operator generates a nonlinear semigroup Sh(t) in a discrete Ll-space. 
Sh(t) is a discrete analog of S(t), the semigroup of operators in L1(72) generated by 
the space operator in (P) and, in a sense to be made precise, we show that for any 

uo E L1(Q2), ,Sh(t)uo -+ S(t)uo as h -* 0". 

There are a number of papers discussing difference schemes for problems like (P) 
when g 0 and a = 0, e.g., [4], [11], [13], [18], [21]. In Section 5 we consider the 
schemes proposed in [4], which also arise from a semigroup approach to (P). The 
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analytical algorithm consists of discretizing in time and approximating the generator 
equation. Its convergence was established in [4]. Here we outline a proof based on 
our results, for the fully discrete schemes. 

An important manifestation of the degeneracy of (P) is that if u0 is positive of 
compact support, so is the solution u of (P) for all t > 0 [12]. Our method also has 
finite speed of propagation, and in Section 6 we discuss numerical experiments 
conducted with both methods for a known exact solution of compact support [2], 
[23]. In this case, our chosen scheme was more accurate, especially in determining 
the interface, but not as accurate as the one-dimensional schemes in [18], [21] which 
are specifically designed to track the interface. 

The scheme in [11] is essentially the same as our sample scheme. It is proven there 
that the limit of the difference solutions yields a weak solution of (P). As indicated 
in [11], those proofs hold for 02 one-dimensional or a rectangle. In contrast, our 
proofs are valid for more general regions and grids. We also show that the rate of 
convergence to the semigroup solution of (P) for smooth initial data is O(Atl/2) + 

O(h a#/(3 + 2a)). The computed rates were O(?At). 
Finite element discretizations can be found in [24] for a problem similar to (P), 

and in [19], [25] for a Lagrangian formulation of the porous media problem. 

2. Preliminary Results. Let 02 c Rd be a bounded domain with c2,a boundary, 
and llvll denote the LP(Q2)-norm of v. An operator A with domain D(A) belongs 
to the class sV(a) for a > 0 if for each 0 < X < a-l and any x, y E D(A): 

|I(x + XAx) -(y + XAy) II> (1 - Xa)IIx -yII. 
Let us now define the operator A by Au:= - Af(u) + g(u) - au with domain 
D(A) = {u E L1(Q2): f(u) E W'1(Q), g(u) E L1(Q2) and -Af(u) E L1(Q2) in weak 
sense}. Let yx be defined by yx(x):= f 1(x) + Xg o f 1(x); then the assumptions 
made on f and g imply that for any X > 0, yx has a maximal monotone graph. It 
follows that A has the following properties: 

LEMMA 2.1. (i) A e s/(a) in L1(Q), and Range(I + XA) = L1(Q), i.e., for 
O < X < a-' the resolvent operator Jx:= (I + XA)-1 is Lipschitz continuous with 
constant (1 - Xa)-1 and D(Jx) = L1(72 ). 

(ii) D(A) is dense in L1(72). 
(iii) A generates a nonlinear semigroup S(t) on L1(Q2) and u(t):= S(t)uo is a 

solution of (P) in the semigroup sense. 
(iv) Let v E LP(Q7), 1 < p < x; then IlJvllp < (1 - Xa)-llvllp. 
(v) Let v,v5 E L1(S2); also let u:= J (v) and Tu:= Jxv; then ll[u - Ft]+II1 < 

I[v - ei+II1. Consequently, if v < v a.e., then u < u and f (u) < f(uF) a.e. 

Proof. First consider the case where g 0 and a = 0. Brezis and Strauss 
established statements (i), (iv), and (v) in [7, Theorem 1, Propositions 4 and 5]. 
Benilan also established (i) in [3, Chap. II, Theoreme 2.1]. Assertion (ii) is a known 
result and can be found for instance in [15, Proposition 1]. Statement (iii) follows 
from the Generation Theorem of Crandall and Liggett [8] and the general theory of 
nonlinear semigroups, see [1]. Statement (i) can also be found in [10, Theorem 4.12]. 

Most of these statements were established by considering the problem y(w) - 

XAw = v for w E D(- A):= {u E Wol'(Q): -Au E L1(Q2) in weak sense} and 
defining .Jv := y(w). In the case g 0 and a = 0, .J- is defined as - J v : fl(w), 
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and the statements easily follow from the monotonicity of g and g(O) = 0. Finally, 
the case a > 0 is established by a simple fixed-point argument (see [25]). 

3. Approximate Ll-Spaces and Difference Schemes. We construct either a full or a 
uniform degree-zero grid approximation and denote the gridpoints by xi, i being 
their corresponding index. We recall that in a full grid the nodes are given by the 
intersection of lines parallel to the axis with themselves or the boundary. In a 
degree-zero grid the boundary nodes are the interior intersection points closest to the 
boundary. Grid functions are indicated with a subscript h, and vi denotes the value 
of Vh at xi. 

In one dimension we let hi:= xi- xi,1 and h:= max,hi. Qi is the interval 
around x, given by 

Qi= {x: - 'hi < x - xi < 'hi+,) 

with volume w, = 2(hi + hi+,). In the Rd case, i and hi are vectors, Q, i x 
x x Q, with wi = w,Iw,2 W.,. 

We denote by l1 the space of grid functions defined over the interior points of the 
grid normed by llvhllh:= Ewilv,l. A restriction operator rh: C(2) -* l1 is defined by 
(rhv),:= v(x,), and a prolongation operator Ph: -h L1('2) by phVh:= , ViXQ, 
where XQ, denotes the characteristic function of Qi. It is clear that for any Riemann 
integrable v, lIv - phrhvlll -* 0 as h -> 0; also as {Qi} are disjoint, 

f ViXQ = E vi IQ, n D|X< wil v, I or I|PhVhlIl < IlVhih. 

Our finite-difference analog of (P) is 

(u;1 - )/t - Ahf(u) ? g(uI ) -au, = 0 

(ph) 
for x, an interior point of the grid, 

h U^0 =GrhU0 VoE CO'a(Q) approximates uo. 

Here the superscript n denotes the discrete time level and Ah is a diagonally 
dominant scheme approximating the Laplacian. We describe this family of schemes 
below. 

Let Lh be a scheme consistent with the linear differential operator L, and let I 
denote the family of indices of gridpoints at which we apply Lh. Also let vh be a grid 
function satisfying vi = 0 for i t I. We have 

E WiLhV, =? aivi, ai = ? Wkbik, 
iel iel kel 

where bik is the coefficient of ui in the term LhVk. We say that Lh is diagonally 
dominant if 

wibii > ? Wkibik I 
k*i 

For simplicity we shall consider the case when Ah is the usual difference approxima- 
tion of the Laplacian, which in one space dimension is given by 

-^hVj = 2 (/ 1 + - 1 - 1v 
2. h hV,h1 
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where, whenever i - 1 or i + 1 indicate boundary nodes, we substitute vi -1 or vi+ ? 

by the boundary value at the node, which in this case is zero. In Rd, Ah:= Eid 1 h,j' 

where Ah,j is the above discrete Laplacian taken in the jth direction. 
Let k = At. We can rewrite (Ph) as 

(3.1) (I + kAh)u = Uh , U h rhVlO, 

with the operator Ah c l) x l) defined by 

(Ahvh)i:= -Ahf(V) + g(vi) - avi. 

THEOREM 3.1. Ah E s5/(a) and Range(I + XAh) = lh, i.e., for 0 < X < a-1 
the resolvent operator JXh:= (I + XAh)-1 is Lipschitz continuous with constant 
(1 - Xa1, and its domain is all of l. 

Proof. First consider the case a = 0, i.e., we show that Ah is m-accretive. Let 
Uh, Vh E- 11 and define the sets of indices I+ and I- by h' Vh {t 

I- := { i: ui > vi and xi an interior point of the grid) 
{ i: u , < v1 and x 1 an interior point of the grid) 

Let X > 0; then as g is monotone nondecreasing, 

II( + XAh) Uh -(I + XAh)VhlIh 

Wil Ui -Vi -XAh [ f(U)-f ( )] +g( Ui)U-g(Vi) I 
ieI+UI- 

(3.2) >1 1 Wi(Ui - Vi - XAh [f (UJ f (Vi)] 
i I+ 

+ E wi(Vi- Ui- XAh[f(vI) -f(ui)]). 

As f is monotone increasing, [f(ui) -f(vi)] > 0 when i E I+, and [f(vi) -f(ui)] 
> 0 when i E I-. Hence, in one space dimension with a uniform grid we obtain 

E Wi(-Ah)[A(UJ) -f(v)] + E Wi(-Ah)[1(V) -f(uI)] 

-= E h{2[f(ui) -f(vi)] - [f(ui-) -f(v.J)] - [f(ui+?) -f(vi+1)M 

+ E {2[f(v) -f(uJ)] - [f (vi-1) - f(uji-)] - [f (vi+l) - f(u,+ l)] I 

- E h [2 + 1 + ll]f(ui) -f(v,) 1> . 
iei+ui-h 

For a nonuniform grid the coefficient above is replaced by 

h; + + h > 0. 

In the Rd case, for each Ah,j we sum over the jth index first to obtain the same 
expression multiplied by (FH, 1jW,) and summed over all other indices. In general, 
for any diagonal dominant scheme the coefficient of lf(ui) -f(vi)l is not less than 
wi bi-EkiWkIbikI > 0. Finally, substituting the above in (3.2) yields accretiveness; 
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m-accretiveness follows from the fact that for fixed h, Ah is continuous [1], [20]. The 
case a > 0 is established by a simple fixed-point argument (see [25]). 

Remark 3.2. From (3.1) it follows that the solution of (Ph) is given by 

(3.3) U^n = (Jkh)rhvO, 

and Theorem 3.1 shows that (3.3) has a unique solution and is stable. O 
The next lemma is a maximum principle type result for (Ph) when Ah satisfies: 

For vio =min vi, Ahvio > ? and 
(L) i 

for vio = max vi, Ahvio < 0 

This property holds for all schemes such that bii = -k,ilbkil and bki < 0, since 

AhVi = >k bkiVk = Ek : ilbkii(vi - Vk). In particular, for the usual one-dimensional 
discrete Laplacian, 

bii-1 = -2/(hi + hj+l)hj, bjj+1 = -2/(hi + hi+?)hi+1 and 

bi= -bj,1j -bji+ 

LEMMA 3.2. Let { Un }n >1 be the solution of (rh)' where Ah satisfies property (L). 
Also let b = (1- ak)-1, -Um = max um and um = mini um. Then 

(a) ForUn-1 > 0, 0 , Un 

(b) For yfll < 0, bun- < un < u 0; 
(c) For - < 0 andul > 0, bun- 

n u n b -n1. 

Proof. Let u = U n; then as f is monotone nondecreasing, f(Un) > f(Un), hence 

Ah f(un) < 0, and it follows that 

(1 - ak)uio + kg(u,'o) = uiO + kAhf(uio) 
i n-1 

Similarly, letting io be such that un = Un, we obtain Un-1 (1 - ak)Un + kg(un). 

As g is monotone with g(O) = 0, we have sign g(x) = sign(x); hence (a), (b), and (c) 
follow by considering the different cases. O 

4. Convergence Results. Our main convergence result is for smooth initial data u0. 
The density of D(A) and the fact that the operators Jx, Jh, and S(t) are Lipschitz 
continuous immediately yield convergence for any u0 E Ll(R). 

THEOREM 4.1. Let uo E Coafl(K) r, D(A), f(uo) E C2(K), and A\t = t/m, t 
fixed. Then for un computed with scheme (Ph), 

(4.1) j1S(t) Uo -phUhn l = O(z\tl/2) + O(h afi/(3 '2a)). 

Remark. As will be apparent from the proof, we can eliminate the assumption 
f(u0) E C2(n) and improve the constants in (4.1) by taking lAt = h2af/(3+2a). Here, 

h is any diagonal dominant scheme consistent with the Laplacian in the sense that 
for v E C2^a(n) and x in , lA^hv(x) - Av(x)l < const- IIVIIC2.a(n)h'8. 

Proof of Theorem 4.1. Assume a = 0. We recall that if B E d (a) and R(I + XB) 
D D(B) for any 0 < A < a-', then for any x E D(B) (cf. (1.10) in [8]), 

jIS(t)X - jJnx -2t1/2e4atiB , ||S( t )X-JtnX || < 2tn ee4a/ 1/ Bx7|B, 

tIm 'tm-JnnX || < 2te4' 1/m-1/ | /|Bx || 
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From the above, and the fact that S(t), Jx, and Ph are contractions, we obtain 

S(t )uo -PUhn Ill 

< IIS(t)Uo - JnnUO ||1 + LIJn/mnUO -jn 

(4.2) + tJt7nUOP((/f)rhuO 1 + In(J )trln t(lh/m)mrhuo 

< 2t((1/m )1/2 + i1/m -1/nin )1II Auo II + 2tll/n - 1/M ii' I AhrhUO IIh 

+ - 
PhrhJrhlnUO 

K 
+ t|rhJ,/nUO- rtuO |h 

For notational convenience we drop the t/n subscript. Repeatedly using that jh 

is a contraction, for the last term in (4.2) we obtain 

IrhJnUo (Jh)nrhUO ||h 

(4.3) < 1rhJ(J uO) - Jhr(Jnu) h + IIrhJ uo0 (Jh) rhU 

< n max ||rhJ(J'uO) _ Jhrh(JsUO) lh. 
O<s<n-1 

By definition, v:= J(Jsuo) and Vh := Jhrh(Jsuo) satisfy 

Vh +(t/n) [-Lhf(vh) + g(vh)] = 
rhJsUO, 

(4.4) rhv + (t/n) [-/\hf (rhV) + g(rhV)] 

= rhJsuo +(t/n)[rhA/f(v) - Ahf(rhV)I. 

Here we used that since rh is a pointwise evaluation, rhf(v) = f(rhv) and rhg(v) = 

g(rhv). Given that Ah is accretive, from (4.4) we obtain 

(4.5) |1rhJ(JsUO) 
_ Jhrh(J UO) ||h < (t/ln)IlAhrhf(V) - rhAf(v) ||h 

To complete our estimates, we need some regularity results. Given any s, 0 < s < 
n - 1, let ws be the solution of 

-y(ws)-(t/n) Aws = 
Jsuo ws E D(-1). 

By Lemma 2.1, we have IIy(ws)IIq < IIJsu oIIq < IIuoIIq for 1 < q < o. First let q > d 
and put E = 1 - d/q (> 0). Since ws is a solution of the equation - Aws = 

(n/t)(Jsuo - y(ws)) and Avws E Lq(Q), it follows that w0 e W2 (Q) n l 
But W2q(Q) is embedded in Cle(0), and so there is a positive number K= 
K(Q, d, q), such that 

11 wsII ci e(r) < KiL Aws liq = K(n/t)IIJsuo - y(ws) llq 

< K -(n/t) - 2|| uO liq = const(n/t). 

Thus, in particular, Jjwsjjc,(r2) < const * (n/t). Next, we show that IIWSjjC2ai( 2) < 

const (fn/t)l a. Since ws E C1(n) for s with 0 < s < n - 1, we have 

JSUo =f(ws-1) E CO'a(K!) for 1 < s < n 

and 

y(ws) f l(ws) + (t/n)g(f1l(ws)) E CO?a(Q) for 1 < s < n. 

Hence, 

-lws = (n/t)(Jsuo - y(ws)) E C?aI-(Q). 
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Noting that A is considered in the bounded domain Q under the Dirichlet condition, 
we apply the usual Holder estimates to obtain 

W| w1 ||C2.a(r2) < const || AwI I coa,(ni) 

< const (nl/t)[IIJSuoIIco,ai(r2) + 1 y(w8) I1coaf(n)]. 
We then demonstrate that both IJJvoIj and IIy(w5)II are bounded by const ((n/t)a. 
Since 

f f1(w.- (x)) j < const I w5_-(x) | < const -||1 ws|L(s2) 

< const || w_ ||c(2 const -(nlt) a 
and 

|f-1(w i(x)) -f-1(w (Y)) I llf 1jjCO'(& * Iwi-(x) - w (Y) a 

< 11jf || co -(n)( ||ws-1 || ci(n) * |X -y |)o < const * (n/t ) * |x -y | 

we have 

|IJSVO IICo,() = |f`(w,- ) I1co a(n) < const || f-l(wj) lco.a(2) < const (nlt) 
Similarly, we obtain 

117Y( ws) 11 co aom) < || f 1 (W 5) 1C?-,(02) + (t/n )I11g (f1 ( Wj) 11o) n 

< const ( n/t ) a + const ( t/n ) ( nl/t ) a. 
Noting that t is a fixed positive number and n is sufficiently large, we conclude that 
n/t > 1 and IIy(wS)jcIoao(f2) < const- (n/t)a. Consequently, it follows that 

(4.6) IWS11 C2.af() < const (nlt)l 
holds for n sufficiently large. 

In (4.2) and (4.5) we have u f-1(wn-1) and f(v) ws; consequently from 
(4.6), taking (t/n) = h', we obtain 

II LhrhwS - rhLAWJIIh < const || WWII C2 a(r2h 
8 < const h fi(?) 

IIJnuo - phrhJnuoII1 < const ||f-1(wn-1) I|cO a?)h < const ha 
Substituting back in (4.5), (4.3), and (4.2), since 

hr/2 - ( t/n)t 2 _ ( t/m )1/2 + I(t/n) -(t/m) K'/2 < Atl/2 + h r/2 

it is easy to see that the best choice of r is r = 2a13/(3 + 2a), thus yielding (4.1). 
For the case a > 0, only some t-dependent coefficients would have to be included in 
the inequalities (see [25]). 

5. Berger et al. Algorithms. Let R(t) denote the semigroup generated by - A in 
L1(Q). Berger et al. [4] approximate (P) for g(u) 0 and a = 0 by 

- n+1-un)/k+ (I-R(a))f(Un) = 0, u0= u0, 

where a is a positive function of k satisfying limk, -= 0. From it we obtain the 
"analytical" form of the algorithm, 

un+1 = un +k [R(a)f(Un) -f(Un)], u0 = u0, 



418 E. A. SOCOLOVSKY 

which involves no spatial discretization. For k = t/n, t fixed, convergence of un to 
S(t)uo was established in [4], using approximation results in [6], under the assump- 
tions that u0 E L?(Q), f is locally Lipschitz continuous with constant M on 

[-Ilu0110, lu0ll00], and Mk < a. 
The numerical schemes are obtained by discretizing the linear heat problem 

R(a )f(Un ), and are given by 

(5.1) unj1 = T(k) Un, u0 = 

where T( k) is defined by 

(5.2) T(k)vh:= vh + 
k 

[Khf(vh) f(v)], 

and Kh is one of the usual implicit finite-difference operators for the heat equation, 
i.e., 

= (I - 
OUah) 

(I + (1 - 
0) A^h) 

for some 0 < 0 < 1. 
Our convergence results allow us to prove convergence of the fully discretized 

(5.1)-(5.2) schemes under the above or other similar conditions. It is enough to 
consider the fully implicit scheme, and the proof consists of (a) establishing that 
(I - T(k))/k is m-accretive in l', (b) showing that T(k) is Lipschitz continuous, (c) 
using arguments like those in Section 4, and (d) applying Lemma 4' in [22] together 
with (4.1). See [25] for details. 

6. Numerical Experiments. We consider the one-dimensional problem with f(u) 
u2 and g 0. Barenblatt [2] and Pattle [23] established the exact weak solution when 
f ( u) um and the initial data is the Dirac delta; in this case it is given by 

u(x, t) = /(I _ [x/(9t)1/3] 2)/(9t)1/3 for Ix I (9t)1/3, 
0 elsewhere, 

which shows that the interfaces are at x = + (9t)1/3. 
The initial data for the numerical computations were taken to be the values at 

gridpoints of u0(x), the above solution at t = 1. The grids were uniform with 
Ax = L/N, where L = (9)1/3, and N + 1 is the number of points in [0, L], since we 
exploited the problem's symmetry. We took k = Ax, to be able to neglect the 
effect of the space discretization, and consider the error E in l' as E = ckP. 

From the algorithms of [4] we chose the totally implicit one with k/a= 
max{f'(z): z E [-IluolK1 , IIuoIj1 0} = (3/8)1/3 and computed over the fixed inter- 
val [0, 2L]; we shall refer to it as BBR. 

The nonlinear equations of (Ph) were solved with Newton's method, taking the 
solution in the previous time step as initial guess; we shall refer to this algorithm as 
NLN. Since the support of the numerical solution advances one gridpoint per 
Newton iteration, our initial set of equations corresponded to the gridpoints in [0, L] 
and we added one equation per iteration. Also, we only iterated over those equations 
for which the relative error in the previous iteration m was greater than 
[.O1(Ax)2/max u$m)]. For the following time step, only the new gridpoints at which 
the solution was greater than 10-25 were added to the support, thus determining the 
location of the numerical interface. With the above implementation, NLN was 
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slightly faster than BBR, offsetting its advantage of only solving a linear system. 
Table 1 contains the errors and numerical rates of convergence to the exact solution 
at t = 4.2250. 

TABLE 1 

BBR NLN 
N Ax k E RATE E RATE 

20 .1040 .3225 .1574 .00880 
.5160 1.0697 

80 .0260 .1612 .1100 .00419 
.6492 1.0136 

320 .0065 .0806 .07018 .00207 
.7579 1.0031 

1280 .00162 .0403 .04150 .00103 

For this example, NLN was more accurate than BBR, particularly around the 
interface which at t = 4.225 is at 3.3627. Table 2 contains, for both algorithms, the 
location of the smallest value greater than 10-20, and for NLN the first point at 
which the solution is less than 0.00005, which computationally might be considered 
as zero, since the values at the flat part of the solution are close to 0.2. 

TABLE 2 

BBR NLN 
N x VALUE x VALUE x VALUE 

20 4.160 1.30(- 3) 3.7441 3.07(- 11) 3.6401 1.25(- 6) 
80 4.160 4.52(- 4) 3.5101 4.80(- 11) 3.4581 4.60(- 5) 

320 4.160 1.18(- 4) 3.4321 1.40(- 14) 3.4126 4.39(- 5) 
1280 4.160 2.39(-5) 3.3899 6.07(-5) 3.3899 6.07(-5) 
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