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Absorbing Boundary Conditions 
for Difference Approximations to the 
Multi-Dimensional Wave Equation 

By Robert L. Higdon 

Abstract. We consider the problem of constructing absorbing boundary conditions for the 
multi-dimensional wave equation. Here we work directly with a difference approximation to 
the equation, rather than first finding analytical boundary conditions and then discretizing the 
analytical conditions. This approach yields some simple and effective discrete conditions. 

These discrete conditions are consistent with analytical conditions that are perfectly 
absorbing at certain nonzero angles of incidence. This fact leads to a simple and general 
canonical form for analytical absorbing boundary conditions. The use of this form has 
theoretical and practical advantages. 

1. Introduction. Consider the wave equation 

(1.1) utt = Uxx + u y 

for x > 0, y E R, t > 0. Here u is a function of x, y, and t. The units have been 
normalized so that the wave speed is 1. Let Q denote the spatial domain {(x, y): 
x > 0, y E R}. 

Our goal is to find boundary conditions that cause wave motions from the interior 
of Q to pass through the boundary without being reflected. In general, it is not 
possible to find practical boundary conditions that do this perfectly (see, e.g., [3], 
[7]). Instead, one wishes to find conditions that reduce the amount of reflection as 
much as possible. 

Boundary conditions of this type are desirable in a number of physical problems 
(see, e.g., [1], [4], and references cited therein). In such situations, an open, artificial 
boundary has been introduced in order to limit a large or unbounded domain so that 
a numerical computation of the solution can be made feasible. One wants the 
solution to behave as though the computational boundary were not present. In 
particular, outgoing wave motions should pass through the boundary without being 
reflected. 

Substantial work has been performed on problems of this type. See, e.g., Bayliss 
and Turkel [1] and Engquist and Majda [3], [4]. By and large, prior work has 
concentrated on finding analytical boundary conditions for differential equations 
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rather than discrete boundary conditions for difference approximations. Some 
exceptions are the analyses of the one-dimensional wave equation by Halpern [7] 
and by Engquist and Majda in Section 5 of [4]. 

In the present paper we work directly with a difference approximation to (1.1), 
rather than first finding analytical boundary conditions and then discretizing the 
analytical conditions. This approach yields some simple and effective discrete 
conditions. 

These conditions turn out to be discretizations of some analytical boundary 
conditions that are perfectly absorbing for waves traveling at certain nonzero angles 
of incidence. This contrasts with the boundary conditions in [3] and [4], which work 
best at normal incidence. We present some numerical tests that indicate the value of 
the present approach. 

We also describe a process by which the above conditions can be generalized to 
arbitrary angles of incidence. This procedure leads to a simple and fairly general 
characterization of analytical absorbing boundary conditions. This characterization 
includes those in [3], [4] and is related to those in [1]. 

The outline of the paper is as follows. In Section 2 we make some preliminary 
comments about dispersion relations and group velocity. In Section 3 we define 
some notation, make a precise formulation of the problem, and make some com- 
ments about stability. In Sections 4 and 5 we present the discrete boundary 
conditions mentioned above. In Section 6 we present the results of the numerical 
computations. In Section 7 we describe the generalization to arbitrary angles of 
incidence. In Section 8 we discuss some practical aspects of the generalization. In 
Section 9 we describe a factorization of absorbing boundary conditions that yields 
the general characterization mentioned above. 

2. Dispersion Relations and Group Velocity. Here we state some facts about 
dispersion relations and group velocity that will be used in later sections. 

When a wave form 

(2.1) eiUX+W.Y+itt 

is inserted into (1.1), the result is the "dispersion relation" 
(2.2) 2+ w 2 

( (dual to t) 

outgoing 

incoming 

j 0 // o (dual to y) 

/ % //1\ \a (dual to x) 

(a) Space-time domain / ic\ outgoing -qn domaincoming 

(b) Frequency domain 

FIGURE~ 2.1 
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The graph of (2.2) is given in Figure 2.1(b). For general wave motions, one can show 
that wave packets of neighboring frequencies travel at the group velocity 

(2.3) - a' - a) 
(see, e.g., Whitham [16], Trefethen [13]). In the present case the group velocity 
coincides with the phase velocity (-a/a, -X/(). The gradient (2.3) enables one to 
associate various portions of the cone in Figure 2.1(b) with motion into or out of the 
spatial domain 2. 

Next, consider difference approximations. Introduce a rectangular grid with mesh 
spacings Ax, Ay, At in the x, y, t directions, respectively, and let U;nm denote the 
approximation to u(jAx, mAy, nAt). Throughout this paper we will consider the 
standard second-order centered approximation 

(2.4) j,n;+l - 2aSm ,m+ j _m Uj+1m j2, m j-1+ m 

(At)2 (AX)2 

+U2m+- 2U2m +U27m-l + 
~( AY)2 

When (2.1) is inserted into (2.4), the result is 

_t_ 
2 At \2/ aAX 2 At \2* . A 2 

(2.5) (sin 2 ) ( )( si 
2 \Ax)' 2 AXy 2 

This is the dispersion relation for the difference scheme (2.4). The graph of (2.5) is 
given in Figure 2.2. 

The wave form (2.1) can be written as 

(2.6) (ei?x )j(eiwAv)m(eitAt)n 

for points (jAx, mAy, nAt) on the grid. This means that the quantities o/zx, wly, 
(At can be confined to the interval [-n, 4 If each of these quantities is small, then 
the wave (2.6) is resolved well by the grid, and (2.5) approximates (2.2). However, for 
larger frequencies the group velocities and phase velocities differ, and substantial 
dispersion occurs. For example, the group velocity is zero if a/x - + Z and X = 0 
(see (2.3) and Figure 2.2). An extensive discussion of dispersive effects in finite- 
difference schemes is given by Trefethen [12]. 

(A~t 

incoming outgoing 

~ _- -- incoming outgoing I 1 

FIGURE 2.2 
Graph of the dispersion relation for the difference approxima- 
tion. (Cross sections for fixed .) 
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The "incoming" and "outgoing" portions of the solution are indicated in Figure 
2.2 (cf. (2.3)). 

3. General Formulation of the Problem. Here we define some notation and 
describe some general properties of the boundary conditions that are desired here. 

The wave form (2.6) can be written as 

(3.1) KjeiwyZn 

where 

(3.2) K = eioAX and z = eit. 

If OAx = 0, then K = 1 and the wave is constant in x. If aAx = +,r, then K = -1 

and the wave is a sawtooth in x. Analogous comments hold for z. 
Let K and Z denote the shift operators with respect to x and t, respectively, 

defined by 

(3.3) Kujm = UJ+1im ZU]rm =Uj+M 

We will consider boundary conditions of the form 

(3.4) B(K, Z-1)Un+l = 0, 

where B is a polynomial in two variables having a nonzero constant term. The 
boundary condition (3.4) expresses the boundary value un+j1 in terms of values at 
earlier times and/or in the interior of the spatial domain. The boundary conditions 
used later do not involve shifts in the y-direction. 

In order to study the reflection properties of (3.4), consider a linear combination 

(3.5) Ujm = ciKj(eiwY) Kj + c2K(ei'wY) zn. 

Here K1 = exp(ia1Ax) and K2 = exp(ia2Ax) are chosen so as to correspond to 
incoming and outgoing group velocity, respectively (see Figure 2.2). (Strictly speak- 
ing, one would consider wave packets formed by integrating with respect to w and t. 
But the analysis amounts to studying single frequency pairs (w, a).) When (3.5) is 
inserted into (3.4), the result is 

ClB(Kl, Z1) + C2B(K2, Z1) = 0, 

or 

(3.6) C= B(K2= Z) C2 = R(, z)c2, 

where R(w, z) is the reflection coefficient. The notation (w, z) is used here because 
K1 and K2 are functions of X and z. 

Our goals are the following: 
(1) Choose the boundary operator B so that IRI is as small as possible. The ideal 

situation would be to have 

B(K2, Z-1) = 0 

for all possible z and corresponding K2. This means that the outgoing waves would 
satisfy the boundary condition exactly, so that the boundary condition could be 
regarded as a compatibility condition for outgoing radiation. However, this ideal 
cannot be attained exactly in practice. 
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(2) Maintain stability. Roughly speaking, we will use the criterion 
(3.7) B(K,Z-1)0 wheneverIzI>1,IKI 1, 
and KJe'ISz" is a solution of the interior difference equation. (Here K and z are 
complex numbers, and we are extending the definition of K and z given in (3.2).) 
This criterion needs to be made more precise. 

(a) Suppose that lzl > 1, IKI < 1, and Kielwyzf is a solution of the difference 
equation. If this mode also satisfies the boundary condition, then one has a solution 
to the given problem that grows exponentially in the number of time steps. This 
constitutes an obvious instability, and condition (3.7) is therefore essential. 

(b) Now let lzl -> 1, and suppose that IKI -> 1 also. (These limits are taken from 
the domains IzI > 1, IKI < 1.) One then has a purely oscillatory mode like those 
discussed earlier. It can be shown that a mode obtained by this limiting process must 
have a group velocity that points into the spatial domain. Thus K = Kl. See, e.g., [8] 
or [12]. In this case the criterion (3.7) says that incoming waves must not be allowed 
to satisfy the boundary condition by themselves. If this criterion were not satisfied, 
then waves could radiate inward from the boundary without any stimulation from 
outgoing waves or forcing functions in the boundary condition. This would be a 
form of instability. 

Case (b) above does not cover the case of evanescent modes for which IzJ = 1 and 
IKI < 1. For such modes, the exponential decay in x means that any undesirable 
effects would be confined to a neighborhood of the boundary x = 0. 

Extensive discussions of the above issues have been given by Trefethen [13]. 
Criteria like (3.7) have been used to prove stability results for first-order hyper- 

bolic systems. See Gustafsson, Kreiss, and Sundstrom [5] and Michelson [11]. In the 
present case, we will regard (3.7) as a useful guideline for constructing and analyzing 
boundary conditions. 

It is important to note that goals (1) and (2) above are partly contradictory. The 
trouble occurs at the zero frequency aAx = (At = tlvy = 0, i.e., K = z = 1 and 
X = 0. This is the point where the two branches of the dispersion relation cross (see 
Figure 2.2). The case K = z = 1 thus corresponds both to incoming and outgoing 
waves. If the boundary condition annihilates the outgoing mode at K = z = 1 (i.e., 
B(1, 1) = 0), then it also annihilates the incoming mode, and condition (3.7) is 
violated. On the other hand, if (3.7) is satisfied for K = Z = 1, then at that point the 
reflection coefficient satisfies IRI = 1. Thus, there is total reflection at the zero 
frequency and substantial reflection for low frequencies. 

The label "generalized eigenvalue" is sometimes associated with situations where a 
boundary condition allows incoming waves for lzl = 1, as in the present case (see, 
e.g., [8] or [13]). Trefethen [13] has shown that mild instabilities can be present in 
such situations. These take the form of waves radiating spontaneously into the 
spatial domain from the boundary. In Section 6 we present some numerical tests 
with low-frequency data which suggest that these effects can be substantial when the 
order of the zero in B(K1, Z-') exceeds two. However, for methods of order two or 
less, these effects are outweighed by the advantages of small reflection coefficients. 
Another test suggests that there is less of a problem with high-frequency data. The 
generalized eigenvalues thus do not prevent one from finding effective absorbing 
boundary conditions, and we seek B(1, 1) = 0. 
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4. An Averaging Method. We now develop the first class of absorbing boundary 
conditions to be discussed in this paper. These conditions are defined by 

(4.1) I ) 2 
K 

un m = 0. 

Here p can be any positive integer, and K and Z are the shift operators defined in 
(3.3). These boundary conditions have one-dimensional stencils but have strong 
multi-dimensional effects. The first-order version (p = 1) simplifies to 

[I_- (K+ Z-' + Z-'K)]Iunm1 = 0 

or 

Un1m = n( + Un + Un m), 

which suggests that the condition is approximately compatible with outgoing waves. 
Here we derive and analyze (4.1) by working directly with properties of the 

difference scheme (2.4). The analysis will be based on the form given in (4.1) rather 
than any simplified forms. 

A motivation for this form is given by the following. We seek a boundary 
condition, 

A(K, Z-1)Un+1 = 0, 

that satisfies constraints (1) and (2) mentioned in Section 3. (The notation A(K, Z-1) 
is used here to avoid conflict with the general discussion given in Section 3.) We also 
seek A(K, Z-') = 1 whenever K = -1 or z = -1. This would mean that the operator 
A(K, Z-1) is the identity operator for "parasitic" modes that are sawtooth in x 
and/or t. This requirement is introduced in order to have an operator that can be 
applied to certain other hyperbolic problems where parasitic waves can be an issue. 
Roughly speaking, we will guarantee that the parasitic modes cannot accidentally 
satisfy the homogeneous boundary conditions and thereby generate instabilities. 

The desired values of A(K, Z-1) are suggested by the labelling of various points in 
Figure 4.1(b). The other quadrants can be labelled similarly. The axes correspond to 
cross sections of the dispersion relation for fixed w. The center of the picture 
corresponds to K = Z = 1, since K = exp(ial\x) and z = exp(itlt). The edges 
correspond to K = -1 and/or z = -1. 

First consider 

(4.2) P(K, Z') (+ + 
K) 

Various values of P(K, Z-1) are suggested by Figure 4.1(a). If we then let 

(4.3) A(K, Z ') = 1 - P(K, Z'), 

we get the desired values indicated in Figure 4.1(b). The corresponding difference 
operator A(K, Z-1) yields (4.1) for p = 1. The higher-order method in (4.1) is 
obtained by using the operator A(K, Z-')P. 

It may appear that one could use z in place of z -1 and/or K-1 in place of K. 

However, the goal here is to produce practical boundary conditions. Relative to any 
given boundary point, we need to have shifts backward in time and forward in 
space, so that the boundary condition uses values of the solution that already have 
been computed. 
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FIGURE 4.1 

PROPOSITION 4.1. The method (4.1) satisfies the stability criterion (3.7), 

A(K, z') 0 O for Izl > 1, IKI < 1, 

with the exception that A (1, 1) = 0. 

Proof. The z-factor in P(K, z -) in (4.2) satisfies 

II+ Z- 1< 1 2 

for lzl > 1, except when z = 1. (Consider vectors in the complex plane extending 
from -1 to z l.) A similar argument holds for the K-factor. Thus IP(K, Z-')I < 1 for 

IZi > 1, IKI < 1 except when z = K = 1. A comparison with (4.3) completes the 
proof. a 

The exceptional case A(1, 1) =0 means that there is a generalized eigenvalue 
corresponding to the zero frequency (see Section 3). 

Next consider the reflection coefficients for (4.1). According to (3.6) and 
(4.1)-(4.3), these are given by 

(4.4) Rp(w, z) = A(K2, Z') = -(-R1(c z))P 
A(K,, Z-') = (R1&, ) 

PROPOSITION 4.2. If IZI = IKII 1IK21 = 1 and z # 1, then the reflection coefficient 
for the case p = 1 satisfies IR1( , z)I < 1, except when K1 = K2 = 1 or K1 = K2 = -1. 

This proposition applies to all oscillatory waves admitted by the interior dif- 
ference scheme, not just those that are resolved well by the grid. 

The exceptional case is of little consequence, since the x-component of the group 
velocity is zero for such modes (see Figure 2.2, and note that the hypothesis z # 1 
implies X # 0). These modes do not propagate into the interior. 

For all other cases, the proposition and (4.4) imply RP(X, z) -- 0 as p -x cc. 
However, the generalized eigenvalue corresponding to z = K = 1 places a limit on 
the value of p that can be used in practice (see Section 6). 

Proof of Proposition 4.2. The factors in the product P(K, Z 1) in (4.2) have the 
geometric representations given in Figure 4.2 (consider z - - (-1), etc.). We will use 
these to compare P(K1, Z-') (incoming) and P(K2, Z-') (outgoing) and then use (4.3) 
Lk compare A(K1, Z-') and A(K2, Z-1). 
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K- 

K1 

.-plane K1 (incoming) K2 (outgoing) 

Representation of (1 + z-')/2 Representation of (1 + K1)/2 Representation of (1 + K2)/2 

FIGuRE 4.2 

Here, z = exp(it4t) and Kj = exp(iajyx). Figure 2.2 implies that (4t and al\x 
have opposite signs for incoming modes and the same sign for outgoing modes. 
Thus, arg z1 and argK1 have the same sign, and arg z1 and argK2 have opposite 
signs (see Figure 4.2). Furthermore, the symmetry of the dispersion relation (2.5) 
implies arg K2 = -arg K1. It follows that the products 

I 1) ( 1 + 2 )( + K1. ) ( -9 + Z )( + K2) 

have the same moduli. However, in the second case, there is partial cancellation of 
arguments whenever K1 # K2, but not in the first. Thus, P(K2, Z-') is closer to 1 than 
iS P(K1, Z-1), whenever K1 # K2. A comparison with (4.3) yields the desired conclu- 
sion. E 

The next proposition applies only to those oscillatory waves that are resolved well 
by the grid. 

PROPOSITION 4.3. The reflection coefficient Rp(w, z) for (4.1) satisfies 

(4.) RpW' Z) (X + COSo ) Oqt )- 

Here, X = At/Ax, and 0 is the angle of incidence measured relative to normal 
incidence. 

The Courant-Friedrichs-Lewy condition for the interior difference scheme (2.4) 
requires X < 2-1/2 when l\x = I\y. If X has the maximum permissible value, then 
the angle of best absorption is 45 degrees. 

Proof of Proposition 4.3. The reflection coefficient is 

Rp(, z ) = -[ 2 i '(1 + z 2)?(1 + K 2) 

L (1+ Z')(1+ K1)] 
(See (4.3), (4.4).) Apply Taylor expansions to z = exp(itlt) and K. = exp(iajux) to 
get 

(4.6) R- ( z)-( z)2X (At\) 
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(l (dual to v) 

GI G2 (dual to x) 

FIGuRE 4.3 

Cross section of Figure 2.1(b) for fixed t > 0. 

The dispersion relation (2.5) and the formula (2.3) for group velocity imply that, 
to leading order, a2/J =cos 0 and a1/t = -cos 0. Thus (4.6) implies (4.5). 

An alternate approach to the last step is to observe that (2.5) implies Q2 U2 + co2 

for waves that are resolved well by the grid. Thus, for leading-order effects, we may 
think in terms of the dispersion relation for the differential equation and its graph in 
Figure 2.1(b). Figure 4.3 shows a cross section of Figure 2.1(b) for fixed ( > 0. A 
comparison of (2.3) with the cross section yields the conclusions given above. The 
case { < 0 is treated in a similar manner. a 

Proposition 4.3 implies that the reflection is essentially zero when cos 0 = X and 
jl\tj is small. This can be described in the following way. If 

(4.7) arg( 2 ) = argt 2 ) 
then P(K2, Z-1) is real (see Figure 4.2). If, in addition, z and K2 are close to 1, then 
P(K2, Z-1) is much closer to 1 than is P(K1, z-1), and the reflection is essentially 
zero. But (4.7) is equivalent to argz1 = argK2' or OL\t = a21x. Thus, in this case, 
cos O = X. 

PROPOSITION 4.4. The method (4.1) is consistent with the analytical boundary 
condition 

(4.8) u =- 0. 

Proof. For example, (4.1) can be written as 

[At (I-Z I) I + Z1 (K- I P un+1= 0 

Let Ax - 0 with the ratio X = At/?Ax fixed. O 
The coefficient of a/at in (4.8) is the cosine of the angle of best absorption. This 

suggests a generalization that will be discussed in Sections 7, 8, and 9. 
We conclude by outlining another feature of the operator A(K, Z-') defined in 

(4.3). Simple modifications of this operator could be composed with boundary 
conditions in other hyperbolic problems in order to suppress undesirable parasitic 
waves. For example, to suppress a parasite corresponding to K = -1, z = 1, use the 
operator defined by 

1 1 z Z )( - K) 
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This function is zero for K = -1, z = 1. However, the function is equal to 1 for 
K = 1 and for K = Z = -1, so that the operator is turned off away from the mode in 
question. Similar variations can be used for parasitic modes at K = 1 and z = -1 or 
K = Z = -1. 

5. Space-Time Extrapolation. In this section we consider the "space-time extrapo- 
lation" boundary conditions 
(5.1) (I - Z-lK)Pun+jl = 0. 

Here, p is a positive integer. Some examples are the following: 
p = 1: UO,m = Un,m' 

p = 2: Unm1 = 2U m - Un 

The stencils are diagonal patterns in the (x, t)-plane. 
Some properties of difference operators and polynomial interpolation imply that 

these boundary conditions are true polynomial extrapolations. For example, when 
p = 2, the boundary condition has the effect of fitting a linear function to the values 
U{ m and un-1 and extrapolating to the boundary. The case p = 2 can thus be 
regarded as a "linear" space-time extrapolation, but we will refer to it as "second 
order" in order to be consistent with other terminology used in this paper. 

Space-time extrapolation has been shown to be a stable outflow boundary 
condition for certain common difference approximations to first-order hyperbolic 
systems. See, e.g., Gustafsson, Kreiss, and Sundstrom [5], Beam, Warming, and Yee 
[2], and Gustafsson and Oliger [6]. Here we consider its application to the wave 
equation. 

First, consider stability. Let Sp(K, Z-1) denote the operator (I - Z-1K)P used in 
(5.1). 

PROPOSITION 5.1. Space-time extrapolation of order p satisfies the stability criterion 
(3.7), with the exception that Sp(1, 1) = 0. 

Proof. First suppose IzI > 1 and IKI < 1. Then IZ-1KI < 1, and 1 - Z1K 0 0. 

Next, consider the limit IzI -* 1. If in this limit IKI < 1, then Iz 1KI < 1 as before. 
Otherwise, we have IKI = 1 in the limit. According to remarks made after (3.7), this 
limiting K must be K1 (incoming) instead of K2 (outgoing). Thus we need to show 
1 - Z-1K1 * 0, or 4At 0 a1ZAx. But for incoming modes, 4?t and aAx have opposite 
signs except when 4?t = a?x = wAy = 0 (see Figures 2.2 and 5.1). Also see Figures 
4.2 and 5.2. a 

Next, consider the reflection coefficients for the boundary conditions (5.1). These 
are given by 

ST 3) sr ( - z1K2)P I - 
( Z - K2 p 

(5.3) R7(w,z) = (1 z- z1KX) Z - K1 

PROPOSITION 5.2. Suppose IZI = IK = 1K21 = 1 and z A 1. Then 

RST (A), Z) I < 1 

except when K1 = K2 = 1 or K1 = K2 =1. 

As in Proposition 4.2, the exceptional case is of little significance. For all other 
cases, RsT(,z)0aspoo. 
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FIGURE 5.1 FIGuRE 5.2 

Proof of Proposition 5.2. Figure 5.1 shows a cross section of the dispersion relation 
for fixed w. A typical positioning of z, K1, K2 on the unit circle is indicated in Figure 
5.2. It is clear that Iz - K21 < Iz - Kll except when K1 and K2 coincide, i.e., when 
K1= K2 = 1 or K1 = K2 = -1. A comparison with (5.3) gives the desired conclusion. 

The next proposition applies to waves that are resolved well by the grid. The proof 
is similar to that of Proposition 4.3 (but simpler) and is omitted. 

PROPOSITION 5.3. The reflection coefficient for space-time extrapolation of order p 
satisfies 

IX- cosO\ P 

R ST( ) ( A cosa )P+ O(At), 

where 0 is the angle of incidence and X = At/Ax. 

The reflection is essentially zero when cos 0 = X. This can be described as follows. 
The reflection coefficient (5.3) is exactly zero if z = K2; when IZ I = IK21 = 1, this 
means 4?t = a2ZAx, or 2/{ = At/Ax = X. This includes certain waves whose 
frequencies are quite high (see Figure 5.1). For waves that are resolved well by the 
grid, U2/4 = COS 0. 

An alternate approach is to consider surfaces of constant phase (in x, y, t) for 
outgoing plane waves. The points on the stencil of (5.1) lie on the same surface when 
the angle of incidence is + cos-1X. In this case, (5.1) is satisfied exactly, and there is 
perfect absorption. 

PROPOSITION 5.4. Space-time extrapolation of order p is consistent with the analyti- 
cal boundary condition 

X> a Pu =o0 
Proof. For example, use the "forward Euler" operator 

X(I Z l) 
- z1(K- I) 

or the "box scheme" operator 
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6. Numerical Computations. In this section we present the results of some 
numerical computations involving the boundary conditions that were discussed in 
the preceding two sections. We obtain solutions of the wave equation on the 
half-space x > 0 corresponding to various choices of initial data and boundary 
conditions. The results are then compared with the solutions that would be obtained 
if the boundary x = 0 were not present. 

The half-space solutions are obtained by computations on the spatial domain, 

Q1 = { (x, y): O < x < 2, -2 < y < 2}. 

The solutions are analyzed only on the smaller domain, 

22 = { (x, y): 0 < x < 1, -1.5 < y < 1.5} 

(see Figure 6.1). The initial data used here have compact support in t22. The 
boundaries of Q1 are chosen so that reflections from the top, bottom, and right 
boundaries of 01 are not able to reach &22 during the time interval on which 
solutions are computed. The solutions on &22 thus coincide with true "half-space" 
solutions. 

2 

1.5 

Q1 1 1 

imposed here 1 

-1,5__ I I 

-2 

FIGURE 6.1 

For each choice of initial data we also perform a computation on the larger 
domain {(x, y): -1 < x < 2, -2 < y < 2). The restriction of this solution to Q2 
then gives the "free-space" solution corresponding to zero reflection. This will be 
used to compute reflected errors. 

In the first set of tests we compare the following second-order methods. Each of 
these gives a smaller reflection than its first-order counterpart. 

(a) Second-order averaging. This is the method (4.1) for p = 2, and it can be 
written as 

(6.1) u+1 = 9[(6K - K2) + Z-1(6 + 4K - 2K2) - Z-2(I + 2K+ K2)] n+1 

Here K and Z are the shift operators defined in (3.3). Proposition 4.4 implies that 
(6.1) is consistent with 
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(b) Second-order space-time extrapolation. Here we have 

(6.3) u m = 2U m - un-1 

(see (5.1), (5.2)). This method is consistent with (6.2) (see Proposition 5.4). 

(c) The second-order condition of Engquist and Majda. Here we have 

(6.4) ux -ut + 2u ? 

(see [3]). We use the discretization 

(6.5) DtDxu - 
n Dt DDt (U m + Un m) + 4DYDY (Un-m1 + un+1) = 0 

given in [3]. Here DO, D+, and D_ are the usual centered-, forward-, and backward- 
difference operators. Superscripts denote the variables in which the differences are 
taken. 

(d) The boundary condition (7.4) for p = 2. 

(6.6) u = 2 0. 

In Proposition 7.2 this boundary condition is shown to be equivalent to (6.4). Here 
we approximate a/at - a/ax by 

(6.7) I _- Z _I + Z- )K - I 

This operator is squared to give an approximation to (6.6). The formula (6.7) is an 
analogue of the discretization used in Proposition 4.4. The boundary condition (6.6), 
(6.7) is included here mainly because its third-order analogue will be used in Tests 4 
and 5. 

For later reference, we note the angles of incidence for which the above boundary 
conditions do their best absorption. The analytical condition of Engquist and Majda 
((c) and (d)) is perfectly absorbing at normal incidence. This can be determined from 
their analysis in [3] and [4] or from Propositions 7.1 and 7.2 in the present paper. 
The averaging and space-time extrapolation methods are consistent with analytical 
conditions that are perfectly absorbing at angle cos-1 X, where X is the mesh ratio 
(see (6.2) and Section 7). In the present tests, X = .625 and cos 1 X = 51.32 degrees. 

The computations were performed on a uniform grid for which Avx = AXy = 1/25. 
In each test of each boundary condition we compare the L2-norm of the reflected 
error in Q2 (at various times) to the L2-norm of the initial data. These ratios are 
expressed as percentages in the tables appearing below. 

In Test 1 we use the initial conditions 

(a) u(xy,O) e- -30r2 r < .45, 
(6.8) (G) ( ,) 09 r> .45, 

(b) ut (x,y, 0) = 0, 

where r2 = (x _ .5)2 + y2. The Fourier transform of the Gaussian is a Gaussian 
centered about the zero frequency. The wave motion thus consists of Fourier modes 
associated with all possible directions of propagation (see Figure 2.1(b)), so a wide 
range of angles of incidence is present. 
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The results of the computations are given in Table 6.1. At the earlier times, the 
Engquist-Majda condition (c) gives a smaller reflected error than do the averaging 
and space-time extrapolation methods. However, at later times, the averaging 
method gives a smaller reflected error. For the larger times, the space-time extrapola- 
tion is almost as good as condition (c). 

The above behavior makes intuitive sense. The Engquist-Majda condition works 
better than the others for waves travelling near normal incidence. These waves reach 
the boundary earlier than other waves, and their reflections propagate back into the 
interior most rapidly. Therefore, for short times, the normally incident waves should 
matter most, and for such times boundary condition (c) should work better than 
conditions (a) and (b). However, as t increases, the larger angles of incidence begin 
to matter. For these, the boundary conditions (a) and (b) should be more effective. 
The effects on the accumulated errors are evident in Table 6.1. Analogous compari- 
sons can be made with boundary condition (d). 

The space-time extrapolation method gives the largest reflected error in this 
particular test. However, this boundary condition may be of practical value because 
of its simplicity; compare (6.3) with (6.1) and (6.5). 

The next two tests illustrate the behavior of the various boundary conditions at 
specific angles of incidence. In Test 2 we use initial conditions that produce a wave 
travelling at normal incidence. This is accomplished by multiplying (6.8)(a) by the 
wave form 

(6.9) cos[j(aAx) + m(GAy) + n(4At)], 

where, in this case, a?1x = 0.8, ,lAy = 0, and 4?it > 0. The dispersion relation (2.5) 
admits two values of 4?it for each pair (azAx, coAy), and here we use the positive 
value of 4At. The Fourier transform of the initial data is a Gaussian centered about 
the frequencies associated with (6.9). The corresponding group velocity is normal to 
the boundary and points out of the spatial domain (see Figure 2.2). The values of the 
wave packet at times t = 0 and t = At are used as initial values for the difference 
equation. 

The results of the computations are given in Table 6.2. The boundary conditions 
(c) and (d) perform better than the others, as expected. 

Test 3 involves a wave packet travelling at approximately 45 degrees incidence. 
Here we multiply a Gaussian centered at (.5, -.5) by a cosine wave for which 
aAx = 0.8, wAy = -0.8, and 4it > 0. This produces a wave packet that travels 
toward (0, 0) (see Figure 2.2). In this case, boundary conditions (a) and (b) are more 
effective than the others; see Table 6.3. 

Tests 2 and 3 suggest that if one has a priori information about the directions 
from which the waves are approaching the boundary, then one should adjust the 
boundary condition to the appropriate angle of incidence. This issue will be 
discussed in Sections 7 and 8. 

We conclude with two tests that illustrate the effects of the generalized eigenvalue 
corresponding to the zero frequency. Here we use the third-order analogues of 
boundary conditions (a), (b), and (d). The last of these is discretized by forming the 
third power of (6.7). We do not use the third-order analogue of (6.4) given in [3]. 
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This boundary condition is equivalent to (7.4) for p = 3. However, it includes a term 

uv,t which appears to require an implicit difference approximation. The third-order 
methods (a), (b) have smaller reflection coefficients than their second-order counter- 
parts. A similar statement holds for the analytical condition in (d) (see Proposition 
7.1). 

TABLE 6.1 

Test 1 (Wide range of angles of incidence). Percent reflection 
for the following second-order methods: (a) averaging; (b) S-T 
extrapolation; (c) Engquist-Majda; (d) (a/at - a/ax)2u = 0. 

Time Boundary condition 

(a) (b) (c) (d) 
.50 2.1 2.9 0.16 0.36 
.75 2.0 3.2 0.88 0.80 

1.00 2.2 3.6 1.9 1.3 
1.25 2.5 4.1 3.0 2.3 
1.50 2.5 4.2 3.8 3.1 
1.75 2.0 4.1 3.8 3.3 

TABLE 6.2 

Test 2 (Normal incidence). Same boundary conditions as in 
Test 1. 

Time Boundary condition 

(a) (b) (c) (d) 
.50 7.3 4.7 1.8 3.0 
.75 8.4 5.9 2.7 4.7 

1.00 8.4 5.9 2.9 4.9 
1.25 8.4 5.9 2.9 4.9 
1.50 7.5 5.0 2.8 4.7 
1.75 2.8 1.6 1.8 2.9 

TABLE 6.3 

Test 3 (45 degrees incidence). Same boundary conditions as in 
Test 1. 

Time Boundary condition 

(a) (b) (c) (d) 
.50 2.7 1.4 3.5 1.5 
.75 4.7 2.1 9.5 5.2 

1.00 5.3 2.3 13.6 8.7 
1.25 5.6 2.5 14.9 10.0 
1.50 5.7 2.6 15.4 10.5 
1.75 5.5 2.5 15.6 10.7 
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TABLE 6.4 
Test 4 (Effects of generalized eigenvalue. Same initial data as 
in Test 1). Percent reflection for: (a) 3rd order averaging; (b) 
3rd order S-T; (d) (a/at - a/ax)3u = 0. 

Time Boundary condition 

(a) (b) (d) 
.50 8.9 8.5 7.5 
.75 19.0 18.5 16.6 

1.00 32.9 32.2 29.1 
1.25 50.5 49.7 44.9 
1.50 71.8 70.7 64.0 
1.75 96.4 95.1 86.1 

TABLE 6.5 
Test 5 (Effects of generalized eigenvalue. Same initial data as 
in Test 2). Same boundary conditions as in Test 4. 

Time Boundary condition 

(a) (b) (d) 
.50 2.3 8.3 0.95 
.75 2.6 17.8 1.3 

1.00 2.6 30.6 1.4 
1.25 2.7 46.9 1.7 
1.50 2.2 66.3 2.1 
1.75 1.6 88.8 2.4 

In the first of these tests (Test 4) we use the same initial data as in Test 1. The 
Fourier transform of the initial data is essentially a Gaussian centered about the zero 
frequency. The results of the computations are given in Table 6.4. Each method 
produces a reflected error which is substantially larger than that produced by its 
second-order counterpart in Test 1. Additional tests with space-time extrapolation 
show that the amount of reflection for this method increases as the order increases. 
Similar effects have appeared in some computations involving a simple first-order 
hyperbolic system with similar initial data. 

In the next test (Test 5) we use the same initial data as in Test 2. In this case the 
data consist mostly of higher frequencies. The results are given in Table 6.5. 
Boundary conditions (a) and (d) give smaller reflections than their second-order 
counterparts in Test 2, but space-time extrapolation shows a behavior like that in 
Test 4. An additional test with fourth-order space-time extrapolation yields an even 
higher reflection. 

As noted in Section 3, the generalized eigenvalue can cause mild instabilities 
consisting of waves radiating spontaneously into the interior from the boundary. In 
Test 4 the data in the problem are concentrated about the troublesome frequency, 
and the instability is triggered in all of the methods. In Test 5 the data are 
concentrated away from the troublesome frequency, and an instability is stimulated 
only in method (b). 
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Complete stability analyses of the discrete conditions (a) and (b) are given in 
Sections 4 and 5, respectively. The only flaws in these boundary conditions corre- 
spond to the zero frequency. Similar statements hold for the corresponding analyti- 
cal conditions and the analytical condition in (d) (see Proposition 7.3). 

7. Generalization to Arbitrary Angles of Incidence. The discrete boundary condi- 
tions discussed in Sections 4 and 5 are consistent with analytical boundary condi- 
tions of the form 

a 
.- 

a 
Pu =o0 at ax)=O 

The mesh ratio X is the cosine of the angle of best absorption. This suggests that one 
might use 

(7.1) (cosa) at u-) = O 

to annihilate waves moving at angle of incidence + a, and that the higher-order 
version 

(7.2) (J1((cosaj) - u = 0 

might be perfectly absorbing at angles + ?,, . . . , ? ap. (Here I1ajI < 7T/2 for all j.) In 
this section we begin to analyze boundary conditions of the form (7.1), (7.2). From 
now on, we mainly consider the analytical problem rather than discrete approxima- 
tions. 

In the present section we discuss reflection coefficients and stability properties of 
(7.1) and (7.2), and we describe connections between these boundary conditions and 
those of Engquist and Majda [3], [4] and Bayliss and Turkel [1]. In Section 8 we 
discuss some practical matters relating to the implementation of (7.1), (7.2). In 
Section 9 we describe a useful factorization of various absorbing boundary condi- 
tions into the form (7.2). 

The boundary conditions (7.1) and (7.2) have the following interpretation. Con- 
sider a plane wave of the form 

u(x,t) =f(xcosa +ysina + t), 

where f is some function. This wave moves out of the spatial region x > 0 at angle 
of incidence a. It also satisfies (7.1). The boundary condition (7.1) can thus be 
regarded as a compatibility condition for waves of the above form. In particular, the 
boundary condition (a/at - a/ax)u = 0 is compatible with outgoing wav,s moving 
at normal incidence (see Proposition 7.2). Similarly, a linear combination of plane 
waves moving outward at angles + a1,..., ? ap would satisfy exactly the higher-order 
version (7.2). 

PROPOSITION 7.1. The reflection coefficientfor (7.2) is 

P cos a.j-cos O 
(7.3) v-11 IOCt + IO whr cosa c t Cos n 

where 0 is the angle of incidence. 
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Proof. Insert into condition (7.2) a linear combination of an incoming wave 
exp(ialx + iwy + itt) and an outgoing wave exp(ia2x + iwy + itt) to get 

p 
(co (Oaj) '-i2)j 

j=l (COS aj) it-a 

Now use 2A = COS 6, a1/ = -COS 6 (see Figure 4.3). a 

The absolute value of each factor in (7.3) is less than 1, except when 0 = 'g/2. 
This exception is of no consequence, since this case corresponds to tangential 
incidence. The corresponding modes do not propagate into the interior. 

We next relate the general formulation (7.2) to the boundary conditions derived 
by Engquist and Majda [3], [4] for the wave equation. Their derivation is quite 
different from that implied by the next proposition (cf. Section 9). 

PROPOSITION 7.2. The pth-order boundary condition of Engquist and Majda is 
equivalent to 

(7.4) u = O, 

i.e., a,= 0 for alij. 

Proof. When p = 1, Eq. (7.4) is identical to their first-order boundary condition. 
When p = 2, (7.4) is 

ut -2uxt + uxx =0. 

But (1.1) says ux = utt - u,., so the boundary condition can be written in the form 

2t u -2 - uv = O. 

This is equivalent to Eq. (2) in [3]. A similar treatment of the case p = 3 yields Eq. 

(3) in [3]. 
For the general case, use the recursion relation 

Bp?1u=-tBpu-- Bat 4u 

given in Eq. (1.5) in their second paper [4]. Here Bp is the operator used in the 
boundary condition of order p. In [4] the spatial domain is defined by x < a = 
constant, so the signs of the x-derivatives should be reversed when that paper is 
compared with this one. An induction shows 

I a +a hP B= 2P - + 8) 

The interior equation ut, = uxx + uvv is used during this induction. When the 
necessary notational change is made, we get (7.4). C 

The reflection coefficient for (7.4) is 

(1 -coOSp 

(cf. (7.3)). This has a zero of multiplicity 2p at 6 = 0, whereas the coefficient for 
(7.2) has zeros at +a,, ... . ?aP. The general form (7.2) thus enables one to spread 
out the zeros and thereby broaden the range of angles where the reflection coeffi- 
cient is small. The results in Test 1 in Section 6 suggest the value of this approach. 
Also see Section 8. 
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Proposition 7.2 suggests a connection between the boundary conditions in [3], [4] 
and those of Bayliss and Turkel [1]. The latter conditions are designed for computa- 
tions on exterior domains and use compositions of operators of the form a/at + 
a/ar + constant/r, where r is a radial distance. The coefficients of 1/r are chosen 
so that the boundary condition annihilates as many terms as possible in asymptotic 
expansions of outgoing solutions. The expansions are valid as r -x 0. 

We next discuss stability properties of the boundary conditions (7.1) and (7.2). A 
standard energy argument shows that when the first-order condition (7.1) is used, 
the energy seminorm 

2 + Vu2 ) dxdy 

is nonincreasing in time. We omit the details. 
For the more general case (7.2) we use a stability criterion which is essentially that 

used in the "normal mode analysis" developed by Kreiss and others (e.g., [10]) for 
studying well-posedness of initial-boundary value problems for first-order hyper- 
bolic systems (also see [8]). This criterion is an analogue of the criterion (3.7) used 
earlier for difference approximations. 

The criterion can be described as follows. Denote a homogeneous boundary 
condition involving x, t derivatives by 

(7.5) B(a/ax,8/at)u = 0, 

where B is a polynomial in two variables. Here the symbol "B" has a different 
meaning than it did in Section 3. Consider solutions of (1.1) that have the form 

(7.6) eyx+?iy+st, 

where y and s are complex numbers, Res > 0, and Re y < 0. (The dual variables 
must satisfy S2 = y2 + (ih)2.) The stability criterion is 
(7.7) B(y,s) * 0 for Res > 0. 

The value of y for Re s = 0 is defined to be the limit of values of y corresponding to 
Res > 0. 

Consider two cases of (7.7): 
(1) Suppose that Res > 0, Re y < 0, and (7.6) satisfies the boundary condition 

(7.5). The related modes exp[c(yx + iwy + st)] are also solutions of the initial- 
boundary value problem, for any c. (This requires that the various terms in the 
boundary condition have the same total degree, as is the case for (7.2).) As c -x 0o 
these solutions grow exponentially in t at higher and higher rates, but they still 
retain finite norm in x. The initial-boundary value problem would then be strongly 
ill-posed (see [8] or [10]). The condition (7.7) guarantees that these modes are 
excluded. 

(2) Next consider the limit Res -* 0, i.e., s it. If Rey -* 0 also (i.e., y -*i) 

then the limiting value must be io1 (incoming) rather than ia2 (outgoing) (see [8]). 
As in Section 3, these modes must be prevented from satisfying the boundary 
condition by themselves. Equivalently, condition (7.7) enables one to solve for 
incoming modes in terms of outgoing modes, since B(ia1, it) is the denominator in 
the reflection coefficient. (Also see [8].) The condition (7.7) also excludes evanescent 
modes for which Re y < 0. 
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PROPOSITION 7.3. If la.1 < g/2 for allj, then the boundary conditions (7.2) satisfy 
the criterion (7.7), with the exception that B(O, 0) = 0. 

The exceptional case means that we again have a generalized eigenvalue corre- 
sponding to the zero frequency. In the notation used for the discrete problem, this 
was the case K = z = 1. 

Proof of Proposition 7.3. Let B(a/ax, a/at) u = 0 denote the boundary condition 
(7.2). Then, 

p 

(7.8) B(y, s) = HI ((cos aj)s-Y) 
j=l 

Here cos a1 > O for all j. 
If Re s > 0 and Re y < 0, then each of the factors is nonzero. 
Next consider the case Re s = 0. If Re y < 0, then again each factor is nonzero. If 

Re y = 0, then y = ia1 (incoming), and a typical factor can be written as (cos aj)it 
ia1. But ( and a1 have opposite signs (see Figure 2.1(b)), so each factor in (7.8) is 

nonzero except if ( = a1 = 0. This gives the desired conclusion. El 
The proof shows that if a boundary condition can be factored into a form like 

(7.2), then its stability analysis reduces to an analysis of one-dimensional first-order 
operators. 

8. Practical Considerations. Here we discuss various matters related to the imple- 
mentation of the boundary conditions (7.2) and the choice of suitable angles aC. 
Consider the second-order case 

1(cosa at - a )(cos ) )U = 0. 

One way to implement (8.1) would be to multiply the two operators in (8.1) and 
obtain a linear combination of utt, uxt, and uxx. If the boundary condition is used 
in this form, it would be necessary to approximate uXx with one-sided differences. It 
might be difficult to obtain a stable difference method by this approach, so one 
could use the interior equation uXx = utt- UYY to write the boundary condition in 
terms of utt, uxt' and uyy. This would be similar to a process outlined in the proof of 
Proposition 7.2. 

An alternate approach is to approximate each factor in (8.1) with a one-dimen- 
sional, first-order difference operator. Then use the composition of these operators 
to approximate (8.1). This was done for boundary condition (d) in Section 6. Such 
an approach would have the following advantages: 

(1) The stencil of the boundary condition would be one-dimensional, even for a 
higher-order boundary condition. This means that it would not be necessary to 
adopt any special boundary procedures near a corner (unlike in the case of a 
boundary condition that involves tangential derivatives). In fact, if the interior 
scheme (2.4) were used with a one-dimensional boundary condition, then the corner 
points would never be involved in the computation. 

(2) The analysis of stability would be simplified. In general, stability analyses can 
be quite complicated, but in the present case, the analysis would reduce to a study of 
first-order factors having one-dimensional stencils. The situation would resemble 
that in the proof of Proposition 7.3. This approach will be used in [9] to give a 
general stability analysis of approximations of (7.2). 
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Next, consider the choice of the angles a,, a2 appearing in (8.1). In general, the 
optimal a1, a2 would depend on the problem being considered. For example, 
suppose that a computation is performed on a rectangular domain and that the 
initial data have compact support in the domain. The closer the support is to any 
given boundary segment, then the broader the range of possible angles of incidence, 
and the broader the range from which the optimal al, a2 are to be chosen. In any 
given situation, it may be necessary to determine these angles experimentally. 

The boundary condition can also be adjusted to take advantage of a priori 
information about the solution. For example, if the wave motion arises from a 
localized source, then the angle of incidence at each boundary point is fairly 
well-defined, and at each point, a1 and a2 can be chosen accordingly. 

9. A Factorization Theorem. In this section we describe a factorization process that 
provides a fairly general characterization of absorbing boundary conditions. 

We first outline a procedure that has been used by other authors to derive such 
conditions. Figure 2.1(b) and the dispersion relation (2.2) imply that outgoing waves 
are characterized by 

(9.1) a2(),I) = 1- w2/2)1/2 

(The negative square root would describe incoming waves.) If r(w/l) is a rational 
approximation to the square root in (9.1), then 

(9.2) G2(WI(r) = (r(wt) 
Now, clear denominators in (9.2) and move everything to one side. The resulting 
polynomial is the symbol of a differential operator that approximately annihilates 
outgoing waves and thus yields an absorbing boundary condition. The form (9.2) 
implies that all terms in the operator have the same total degree. 

This procedure was introduced by Engquist and Majda ([3], [4]), who used Pade 
approximations. Wagatha [15] later used least-squares approximations. Trefethen 
and Halpern [14] have made a general study of rational approximations, with 
applications to absorbing boundary conditions and to one-way wave equations. 

The square root in (9.1) is an even function. If r(l/t) is also even, and if the 
numerator and denominator do not have any factors in common, then all powers of 
X must have even order. This means that all of the y-derivatives in the boundary 
condition have even order, and the interior equation (1.1), utt = uxx + uyy, can be 
used to eliminate these derivatives. From now on we will assume that this is the case. 
(However, the theory in [14] includes the possibility of nonsymmetric approxima- 
tions, and in applications to one-way wave equations it is not possible to use (1.1) to 
perform the last step.) 

Under the above assumption, the boundary condition has the form 

(9.3) P(3/ax,a/at)u = 0, 
where P is a real polynomial in which the terms have the same total degree. The 
homogeneity means that P can be factored into the form 

(9.4) H QJ(a/ax,a/at), 

where each Qj is either linear or real irreducible quadratic. Our aim is to char- 
acterize the factors Qj. 
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The factorization of the Engquist-Majda conditions is given in Proposition 7.2. 
The second-order condition of Wagatha [15] is 

21ST 157T 
64 tt64 Uyy =, 

which factors into the form (7.2), with a,1 22.14 and a2 - 64.42 degrees. 

PROPOSITION 9.1. The boundary condition (9.3), (9.4) either 
(1) factors into the form (7.2), or 
(2) violates the stability criterion (7.7), or 
(3) is not optimal, in the sense that it is possible to modify the coefficients in at least 

one of the Qj so as to reduce the magnitude of the reflection coefficient. 

The factored form (7.2) does a great deal to simplify stability analyses (see 
Proposition 7.3) and numerical implementation (see Section 8). 

Proof of Proposition 9.1. The stability criterion (7.7) is equivalent to Qj(y, s) $ 0 
for all j, and the reflection coefficient is 

-H Qj(io2, it) 

(cf. Proposition 7.1). We can thus analyze the factors individually. A factor Q must 
have the form 

(I) b a/at - a/ax, where b is real, or 
(II) irreducible real quadratic. 
First consider case (I). 
If 0 < b < 1, then Q has the form of a factor in (7.2), with cos a = b. 
If -1 < b < 0, then Q allows incoming waves at angle cos'1 b. This is a form of 

instability. 
The case b < -1 corresponds to exponential instability; use s = ll/(b2 - 1)1/2 

and y = sb. 
If b > 1 there is no instability. However, the corresponding contribution to the 

reflection coefficient is 

R 
b -(a2/() 

Q b -(a1/t) 

Here a2/ -= o0/1 > O. See Figure 9.1, and compare with Figure 2.1(b). A small 
decrease in b yields a decrease in I R Q, whenever a1 * a2. Thus, Q can be modified 

b - (a/() 

-1 1 / 

a, a2 

FIGURE 9.1 

Case (I) forb>l1. 
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to give less reflection, and it cannot be part of an optimal boundary condition. The 
case b = 0 is also not optimal. 

In case (II) the quadratic polynomial Q(a/l, 1) is never zero. Without loss of 
generality, assume that it is positive. If the vertex of the parabola is centered or to 
the left of the origin, then IQ(02/, 1)/Q(a1/t, 1)1 >- 1. Otherwise, this ratio is less 
than 1. However, it can be reduced further by bringing the parabola closer to the 
horizontal axis. Since this case cannot be optimal, we will not bother to analyze 
stability. C] 

The factorization can be described in terms of points where the rational approxi- 
mation r in (9.2) equals the square root in (9.1). At any such point, a2(w, () = 

(r(wlt). This means that the outgoing mode exp[ia2(, ()x + 'Wy + itt] satisfies 
exactly the boundary condition derived from (9.2), and perfect absorption occurs. 
But this case also gives a root of P(a/l, 1), which yields a factor of P(a/ax, a/at). 

Acknowledgment. I thank L. N. Trefethen for useful comments on various matters 
related to the subject of this paper. 

Department of Mathematics 
Oregon State University 
Corvallis, Oregon 97331 

1. A. BAYLISS & E. TURKEL, "Radiation boundary conditions for wave-like equations," Comm. Pure 
Appl. Math., v. 33, 1980, pp. 707-725. 

2. R. M. BEAM, R. F. WARMING & H. C. YEE, "Stability analysis of numerical boundary conditions 
and implicit difference approximations for hyperbolic equations," J. Comput. PhVs., v. 48, 1982, pp. 
200-222. 

3. B. ENGQUIST & A. MAJDA, "Absorbing boundary conditions for the numerical simulation of 
waves," Math. Comp., v. 31, 1977, pp. 629-651. 

4. B. ENGQUIST & A. MAJDA, "Radiation boundary conditions for acoustic and elastic wave 
calculations," Comm. Pure Appi. Math., v. 32, 1979, pp. 313-357. 

5. B. GUSTAFSSON, H.- 0. KREiss & A. SUNDSTROM, "Stability theory of difference approximations for 
mixed initial boundary value problems. II," Math. Comp., v. 26, 1972, pp. 649-686. 

6. B. GUSTAFSSON & J. OLIGER, "Stable boundary approximations for implicit time discretizations for 
gas dynamics," SIAM J. Sci. Statist. Comput., v. 3, 1982, pp. 408-421. 

7. L. HALPERN, "Absorbing boundary conditions for the discretization schemes of the one-dimen- 
sional wave equation," Math. Comp., v. 38, 1982, pp. 415-429. 

8. R. L. HIGDON, "Initial-boundary value problems for linear hyperbolic systems," SIAM Rev., v. 28, 
1986, pp. 177-217. 

9. R. L. HIGDON, "Numerical absorbing boundary conditions for the wave equation." (To appear.) 
10. H.- 0. KuEIss, "Initial boundary value problems for hyperbolic systems," Contm. Pure Appl. 

Math., v. 23, 1970, pp. 277-298. 
1 1. D. MICHELSON, " Stability theory of difference approximations for multidimensional initial-boundary 

value problems," Math. Comp., v. 40, 1983, pp. 1-45. 
12. L. N. TREFETHEN, "Group velocity in finite difference schemes," SIA M Rev., v. 24, 1982, pp. 

113-136. 
13. L. N. TREFETHEN, "Instability of difference models for hyperbolic initial boundary value problems," 

Conmm. Pure Appl. Math., v. 37, 1984, pp. 329-367. 
14. L. N. TREFETHEN & L. HALPERN, "Well-posedness of one-way wave equations and absorbing 

boundary conditions." Math. Comp., v. 47, 1986, pp. 421-435. 
15. L. WAGATHA, "Approximation of pseudodifferential operators in absorbing boundary conditions 

for hyperbolic equations," Numer. Math., v. 42, 1983, pp. 51-64. 
16. (J. B. WHITHAM, Linear and Nonlinear Waves, Wiley-Interscience, New York, 1974. 


