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Supra-Convergent Schemes on Irregular Grids 

By H.-O. Kreiss,* T. A. Manteuffel, 

B. Swartz, B. Wendroff, and A. B. White, Jr. * * 

Abstract. As Tikhonov and Samarskil showed for k = 2, it is not essential that k th-order 
compact difference schemes be centered at the arithmetic mean of the stencil's points to yield 
second-order convergence (although it does suffice). For stable schemes and even k, the main 
point is seen when the k th difference quotient is set equal to the value of the k th derivative at 
the middle point of the stencil; the proof is particularly transparent for k = 2. For any k, in 
fact, there is a [ k/2J -parameter family of symmetric averages of the values of the k th 
derivative at the points of the stencil which, when similarly used, yield second-order 
convergence. The result extends to stable compact schemes for equations with lower-order 
terms under general boundary conditions. Although the extension of Numerov's tridiagonal 
scheme (approximating D2y = f with third-order truncation error) yields fourth-order con- 
vergence on meshes consisting of a bounded number of pieces in which the mesh size changes 
monotonically, it yields only third-order convergence to quintic polynomials on any three- 
periodic mesh with unequal adjacent mesh sizes and fixed adjacent mesh ratios. A result of 
some independent interest is appended (and applied): it characterizes, simply, those functions 
of k variables which possess the property that their average value, as one translates over one 
period of an arbitrary periodic sequence of arguments, is zero; i.e., those bounded functions 
whose average value, as one translates over arbitrary finite sequences of arguments, goes to 
zero as the length of the sequences increases. 

1. Some Supra-Convergent Schemes. The ordinary differential equation Dky = f 
with initial conditions DPy = b at x = 0, p = 0,1,..., k - 1, can be approxi- 
mated by the finite-difference equation Aky = F with appropriate initial conditions 
on Y, where Ak is the kth-order difference quotient, i.e., k! times the divided 
difference on k + 1 points. For even k and a uniform grid with spacing h, as long 
as F is within 0(h2) of f at the middle point of the stencil, the truncation error 
Aky - F is 0(h2), and so is the solution error AP(y - Y), p < k. For odd k or 
nonuniform grids with maximum interval h, the truncation error may or may not be 
0(h2). Nevertheless, we will show that for a class of F's the solution error remains 
O( h 2). We call such enhancement of truncation error supra-convergence. 
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An easy special case occurs when we set F = f( (k)) + 0(h2), where we define 
-(p) .x, 

i-(k). Iti Xi+P/2 = (XI + + 1), and we henceforth shall write x- for x-. It is 
sufficient to take y(x) = xk+1, whence f(x) = (k + 1)!x. Let q(x) be the poly- 
nomial of degree k interpolating x k+1 at xi,..., xi+k* By definition, 

(Aky)i+k/2 := Dkq. But q(x) = Xk?1 - nlklO(x - xi+j); therefore, (AkY)i+k/2 = 

(k + 1)!x-i+kl/2 so that in this case the truncation error is 0(h2) where, with 
hi:= (x+1- xi), h:= maxi hi. The truncation error in the k initial difference 
quotients (APY)p72 will be 0(h2) if we set them equal to DPy(54(P)) + 0(h2), e.g., 
to DPy(O) + 5-(P)DP+ y(O). So we shall use 

(APY)p/2 = bp + 5x(Pbp+, p < k - 1; 

and 

(APY)p/2 = bp + V(,2f(0), p = k - 1. 

For other F's, the truncation error is not 0(h2), for example, if k is even and 

Fi+kl2 
= f(Xi+k/2). Nevertheless, in this case also, the solution error is 0(h2). To 

see this, let 

Yi+k2 Dky(x,+k/2) and AkY 2 Dky(Xi+kl2) 

Given the previous result, it suffices to show that k1(y - Y) = 0(h 2) since then 
we can recur down to Y - Y = 0(h2). Indeed, using this recursion for the dif- 
ference quotients, we have 

Ak(y y) A-i?1/2 
- 

Aki172 k 
rky \ y)i (x?/2 Xi-k/2)k 

(Y- Y) = Dky(xi) -D y(x;) 
Xi+kl2 X-/ 

= (Xi-- i~)Dk+ly(x-i) + 0(h2). 

Noting next that the width of the stencil is 

Xi+k/2 - Xi-k/2 E (hi+c + hi-c-1), 
c< k/2 

while 
k/2 

(k + 1)(X-i- xi) = E [(Xi+m - Xi) - (xi - 
Xim)] 

m=1 

k/2 

= , E (hi+d- hi-d-1) 
m=1 d<m 

we must show that finite sums of the form 

S := E(hi+c + hi-c-l)(hi+d- hi-d-1)9(xi)' 

c and d integers, Ei hi bounded, are 0(h2) for smooth g(x). For this, recall that the 
shift operator (Tf )i:= fi+I is unitary on the space H of real doubly infinite 
sequences whose norm is finite under the usual inner product: 

00 

(f, T'g) = (Tf, g) = (f, T*g) := E fi(T*g)i). 
i= -00 

For finite sums [f, g]:= E2If1igi, however, we have only T* - T', where, if A 
and B are linear operators on H, 

A =B means I[f,Ag]- [f,Bg] <constll f llool gil-o 
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independent of f, g, and the limits of the sum. We can write 

S = (Ch)i(Dh)1g(Xj) = [Ch, (Dh)gj, 

where 

C:= TC + Tc1, D:= Td - T-d-l gi := g(x-) 

The operators C and D satisfy 

C* z TC, D* - -TD, CD DC. 
Finally, let 

r = s mean r - s = 0(h2). 

Now, [Tah, (Tbh)g] is 

h+ahj+b9g(XJ) = [Tah, Tb(hg)] + -h,+ah,+b(9(xJ -(xi+b)) 
i I 

[Tah, Tb(h-)], 

since g(x-,) - g(x+b) = O(Lx-i+b - x-1 ) and Ej h, is finite. Therefore, 

S = [Ch, (Dh)g] = [Ch, D(hg)] -[TDCh, hg] 
-[TCDh, hg] = -[Dh, C(hg)] = -[Dh, (Ch)g] =-S; 

so S = 0(h2). 
It is easily seen that second-order convergence will obtain also (for k even or odd) 

if 

Fi+k/2 =f (?i+k2) + 0(h 2), 

where, with [ m j "the greatest integer in m ", the symmetric average x is defined 
by 

[k/2J 

JXi+kl2 E OJ(Xl+ + X,+_) 
j=O 

with the constraint 
[k/2J 

E oj=l 
j=o 

and the 0j are presumed essentially independent of i; i.e., they change at most a 
finite number of times fixed independent of the mesh. 

We illustrate for odd k - 2m - 1. Hence, we consider 

Aky-Y)i1/2 = - Y) (Y - Y) = D y(-~1?172) - D x+12 
Xi+m - Xi-m+l)/k 

= (x,+1/2 - xi+112)Dk+ly(xi+1/2) + 0(h2). 

Now, the width of the stencil can be expressed as a symmetric sum: 

(Xi+m -Xi-m+) = [ c (hi+c + hi-c)]- h, 

And, since 

2(i+1/2 
- 

Xi+1/2) = j(x+M-j + Xi,m+j+i - 2xi+1/2) ( j = 

j<m j<m 
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it suffices, in order to exhibit a corresponding antisymmetric sum, to consider 

Xi+112 -(Xi+a + xia+) = (X+j + xi-j+l)/m (Xi+a + Xi-a+i) 

with 1 < a < m. Multiplying by m, we note 
m 
E [(Xi+- X+a) - (Xi-a+?- Xi-j+J) 

j=1 

= E YE2(hi+d- h1.d) (hi+d- hi-d) 
a<jS<m a<d<j 1<j<a j<d<a 

Thus, it remains only to show that finite sums of the form 
S -?(hi+c + hi-C)(hi+d -h-d)g(xi+l/2) 

i 

are 0(h2) for smooth g(x). But this follows as before, now using C:= Tc + T -I 
C* and D:= Td-Td -D* 

Finally, we note that if f (2)is bounded, 

f(*) =f+ 0(h2) (i+k/2 [= 2 Oj[f(x,+?) +f(Xi+k-j)]/2 
j=0 

since symmetric averaging is a particular instance of local averaging. 
Appendix 3 proves that symmetric averaging of the source term is the only 

mesh-independent averaging allowable to supra-convergent compact difference 
schemes involving Yk. 

2. More General Equations. The effect of lower-order terms in the differential 
operator can be reduced to considerations of more ordinary stability by means of a 
standard device. Let 

L:= ,apDP, L:= - ap AP, (Dk + L)y=f, (Ak+L)Y=f 
p<k p<k 

with truncation error 
t := Aky + Ly - f. 

Second-order accurate initial difference quotients are specified as before, except that 
Dky(O) is now calculated as (f - Ly)(O). 

Now, we could simply suppose that each (apP U)i?k/2 is centered, along with , 
at X?,+k2 (this can easily be done with 0(h2) truncation error and, for p < k - 1, 
can be done in many ways, e.g., by evaluating derivatives of local polynomial 
interpolants there). Then t would already be 0(h2). 

But, more generally, we suppose that each (aP AU)i+k/2 is some uniformly 
bounded combination of (APU)i+p?2,-...,(APU)i+k-p_2 such that its principal 
truncation error is similar in form to that already analyzed: 

M(p) 

(apAy) -(apDPy)(5-) 
- 

E (V(P'm) - m(X) 
m=1 

where each V(P,m) is some symmetric average and the gp m(x) are smooth functions, 
while, similarly, f(x-) -f M(k)(X(k'm) - Then, 

M(p) 
? (Dky)(-) +A L-f (PM) )gp'M(5). 

pfk m=l 
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Now, define W by kW= t, W= = )/2 = 0. As in the first section, 
AvPW= 0(h2), p < k. Then, since (Ak + L)[W - (y - Y)] = LW = 0(h2), the 
solution error AP(Y - y), p < k, is 0(h2), because the operator Ak + L is stable for 
the ordinary difference quotient initial value problem in the usual sense: for h small 
enough, 

max IjU APU l + L ) + max l(APU)p/2 
p<k cos1iAp<k 

(see Appendix 1). 
Perhaps the simplest, most compact difference schemes in this family are, with 

a, = a(x,), 

eve: A f(aAPY)1 p even; 
I 

a[ [(APY)i+112 + (APY),-1/2]/2, p odd; 

od 'A ' fk [(aAPY)1?1 + (aAPY)j]/2, p even; 
k odd: (aA aPY ) i +1,2 = (a( a + 

ai)(APY)i,+1l2/2, 
p odd. 

These schemes are a special instance of those defined by 

(aAPY), [aI?c(APY)i+d + ai(LAPY)i-d]/2, 

[r/2J 

gi+r72 E 01[g(x1+j) + g(xi+r-)]j/2 
j=I 

(i, c, d appropriately integral or half-integral), whose truncation error is within 
second order of that of 

[a(_j+j( APY) i+d + a(Xi-J(APY)i-d1]2- 

To analyze the latter we use the Leibniz-like identity 

f+g+- 2fogo + f_g_= (f+- 2fo + f4)go + (g+- 2go + g4)fo 

+ (f+- fo)(g+- go) + (fo - f-)(go - g-) 

Then, with f := a(_~jc), g := (APy)_ d, fo = a(x-j), and go = DPy(x-,), we 
conclude that the truncation error has the right form: 

[a(_X1+j(APy)i+? + a(_ij )(APy)i-d]/2 - (aDP)y(Xj) 

(x(l) - x-)Da(x-,)DPy(xj) + (iu(2), -x-ja(x-jDP+1y(x-j, 

where 
x(l)= (xij+c + xij_c)12, x(2) := (X(P) + X-(P) )/2 

are symmetric averages as required. 
All this can be extended to boundary value problems (b.v.p.'s) using the following 

argument. Let the boundary conditions be expressed as BXy = b, where B is a k by 
2k matrix, and Xg (g(a),..., Dk-lg(a), g(b),..., Dkl-g(b))T. We suppose both 

the initial-value problem and the b.v.p. are nonsingular. Hence, on the null-space of 
Dk + L, the boundary values can in principle be obtained linearly and invertibly 
from the initial values. That is to say, there is some nonsingular matrix A such that 
BX = [A 1O]X on that null-space. But compact boundary conditions may be ex- 
pressed similarly: with the left boundary at xo and the right at x", 

A 
A 

BAY-=b, 
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And, given the stability we assumed above for the initial difference quotient problem 
along with the consistency we have demonstrated, given also a suitable consistency 
and structure for the approximate boundary conditions, one can show the same kind 
of relationship holds between them and the initial-difference quotients, this time on 
the k-dimensional null-space of Ak + L, and with A bounded and uniformly 
invertible as h -* 0. (For more details, see, e.g., Swartz [1980]). 

Now let y solve the b.v.p.; and Y, the approximate b.v.p.; and suppose Y,n solves 
the approximate i.v.p. for y. According to the first part of this section, Ein = Y-Yin 
satisfies APEin = 0(h2), p < k. For y - Y = E to behave likewise, it suffices that 
AP(E - Ein) = 0(h2), p < k. But E - E,n lies in the null-space of Ak + L, and an 
additional assumption of 0(h2) truncation error on the boundary conditions (for 
realizations, see, e.g., Swartz [1980]) means BX(E - Ein) is 0(h2). A being uni- 
formly invertible now implies that the initial difference quotients of E - Ein are also 
0(h2). So, finally, our presumed stability for the initial-difference-quotient problem 
yields the desired result for E - Ein, hence for E. 

3. Numerov's Method: A Counterexample. The results so far impel one to wonder: 
Given a difference scheme defined for nonuniform meshes, a scheme that possesses 
higher-order truncation error when the mesh is uniform; does one always attain that 
higher-order convergence even when the mesh is not uniform? We show now how 
Numerov's scheme provides a qualified counterexample. 

To do this, we first recast the results of the first section for the differential 
equation 

D2y = y(O) = Dy(0) = 0, 
as approximated by the second-order difference quotient scheme 

AY+1/2 - AYi-1/2)/[(h ?+ hi-1)/2] =f(xi), YO = 0, AYl/2 = hof(0)/2, 

in the manner of Samarskii [1971, pp. 26-27]. Plugging in the first monomial the 
scheme fails to handle exactly, namely y(x) = (x - xi)3, we see that the first-order 
part of the truncation error is 2(hi - hi-1), i.e., (hi - hi1)y(3)(x,)/3. In general, 
then, multiplying by the average local mesh size, and recurring the equation for the 
first difference quotient of the error AE back to i = 1, we have 

- AE1/2= 1 L (h2 - h2 1)y(3)(xi) + 0(h2) 
i=1 

h 2~(y(3)(X,?1 _y3)- ?(2), 

using summation by parts. But, that final sum is itself 0(h2); thus AE (and E, also) 
is 0(h2). 

Now, extensions of Numerov's scheme to this problem result when seeking linear, 
tridiagonal combinations of both Y and mesh-point values of f so that the order of 
the truncation error is as high as possible. Uniqueness results with the imposition of 
two constraints on the scheme: that the tridiagonal combination of the f 's be an 
average, and that the scheme be exact for quartic polynomials y(x). One obtains 

(=Ayi+1/2 -? (yi-1y2f(hi + hi-1)(2] 

= aiji+ I + (1 -ai- yi)fi + yifi- I = (Af ) , 
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where fi, =f(x,), and 

ai (h2 - h21 + h?h1-J1[6hi( 
hil)], 

- (h -h, I ?1)1[6hi(hi + hi-l)]; 

in principle, the same as one of Osborne's schemes [1967, associated with (4.10)]. 
Plugging in y(x) = (x - xi)5 this time, we find that 

3[(hi + hi_1)/2][A(D2y) - My]l = 2(h4 - h41) ? 5h,h,1(hi - J. 

It follows, if y(6) is smooth, that A E is given by 

,AEj+1/2 -AEI/2 = Cly-I + C2z22+ 0(h 4), 

where 

j j 
21 = E (h4 - h 4')y(5)(xi), 22 - 

i=l i=l 

and neither cl nor c2 is zero. Now, 21 sums by parts to 0(h4); what about 2? If 
one fixes on some index interval I < i < J where the factors in its summand have 
constant sign (such as would occur in index intervals where the sequence (hi) is 
monotone), then 

J J 

| hihi-(h 2- h2 _)y(5)(xi) <Iy(5|11 l(h 
2 + h-2 (h2-h2 J/2 

I I 

using the geometric-arithmetic mean inequality; and the last sums to 0(h4). Hence, 
most algorithms that recursively adapt the mesh to attain an approximate solution 
using Numerov's method for this problem would benefit from the efficiencies 
associated with fourth-order convergence, assuming the error in Y0 and AYI/2were 
0(h4). 

On the other hand, suppose that the mesh is three-periodic, i.e., that the mesh 
spacing is h, rh, sh, h, rh, sh,..., with 0 < r, s < 1. And suppose that y(5)(x) 1. 
Then, after the jth period, 

2 = (1 - r)(1 - s)(s - r)(1 + r + s)jh4, 

which, when jh is order one, is not 0(h4) unless (1 - r)(1 - s)(s - r) = 0(h). 
With this exception, then, AE will not be 0(h4); and, as A/E is eventually of one 
sign, E will not be, either. 

4. General Comments. C. de Boor has pointed out to us that the essential point, in 
the second paragraph of Section 1, is a special case of the result that the kth divided 
difference of x k+? is given by 

X a Xa .= X aoX a, X ak F, i i+~~1? i?k' 

and he has mentioned reference to Steffensen [1927, p. 19] or Milne-Thomson [1933, 
p.8] (see, also, Schumaker [1981, p 47]). We can offer no excuse that its present 
application is news to us. 
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We find that the recurrence relation for the difference quotients, namely 

= i?U 1/2 Ajli-1/2 inerlwn*isvn Aj lU+2- i integral (half-integral) when j is even (odd), I 
Xi+j/2 Xi-jl2l /J 

is more memorable once one realizes that the denominator represents both (a) the 
mean mesh size in the stencil for AjUi, and (b) the distance between the points 

Xi ? 1/2 at which the difference quotients Aj-lUi'l 2 attain their extra polynomial 
exactness as derivative approximations. 

The literature already contains many references to superconvergence, a notion 
originally associated with unanticipated accuracy-at special points-of approxi- 
mate solutions obtained by Galerkin and collocation methods. In these contexts, 
proofs of such results use the fact that here the approximate solution Y is defined 
for all x; and the residual error (Dk + L)(Y - y) is defined well enough so that its 
integrals against derivatives of the appropriate Green's function for D k + L can be 
used for error estimates, and sometimes shown especially small at certain locations. 

Although less apparent in this present paper than in its precursors (Manteuffel 
and White [1986], Samarskii [1971, pp. 130-139], and, especially, Tikhonov and 
Samarskii [1962]-the last two concern second-order convergence associated with a 
large variety of conservative difference schemes for selfadjoint, second-order prob- 
lems), the analysis we have applied is the analog of this on the discrete side of things. 
For, the truncation error is (Ak + L)(Y - y) instead, and the cancellation occurs in 
weighted sums of this against what amounts to difference quotients of the ap- 
propriate Green's matrix of Ak + L. 

We choose to emphasize this distinction by associating the term supra-conver- 
gence with the latter. 

However, it must be said immediately that there are at least two phenomena of 
unanticipated accuracy which, off hand, appear covered by neither approach: that in 
Thomee and Wendroff [1974] (although it seems closer to ordinary truncation error 
analysis once one uses Swartz and Wendroff's [1974] observation); and the unusual 
accuracy associated with a special class of difference schemes (Osborne [1967]), 
considered concurrently by Lynch and Rice [1980] and Doedel [1978, 1980]. But this 
too, given the stability the latter prove, is covered by ordinary analysis; for they 
attain unexpectedly high-order truncation error using the following device. 

As in Lynch and Rice [1980] (or, in effect, Osborne [1967, p. 136]), and for the 
O.D.E. Dky = f: take the kth difference quotient of the (k - 1)st degree Taylor 
expansion of y about xi to find that 

A<iky 0 ? j | l?X+k/2( - S)+Dky(s) ds/(k - 1)! 

f=Ik B,lk(s)Dky(s) ds, 

where B,,k is the B-spline of degree k - 1 with knots xi,..., xi+k, normalized to 
integrate to one. This is to be approximated by an average of f(N),..., f (r), where 
the r evaluation points (j may be chosen at will (so Lynch, Rice, and Doedel 
presume) from the interval [xi, xi+k]. Now, the B-spline being positive on (xi, xi+k), 
Lynch and Rice regard this average as an approximate weighted quadrature. So, 
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selecting the C as the zeros of an appropriate orthogonal polynomial with respect to 
this weight, they attain higher-order polynomial exactness (thus, truncation error) 
than one would normally expect. But, taking Dky(x) = x - xik/2 above, it 
follows from our second paragraph (of Section 1) that the first moment of the 
B-spline, about the mean 

X,+kl2 
of its knots, is zero-a fact also apparent from 

Schumaker's book [1981, pp. 128-129]-giving an alternate view of our associated 
second-order truncation error. Lynch and Rice extend this idea to more general 
equations using a relatively deep argument showing that the polynomial exactness 
can then be enforced if the (j are appropriately perturbed to new positions in 
(x,, X,+k), positions that must be found numerically, and for each i; and they prove 
stability for general equations under certain restrictions on the mesh and mesh size. 
Doedel, for the compact scheme (Dk + L)p(t,) = f(t,) (where p is the polynomial 
interpolating Y,,..., Y+k), proves stability for all small h [1980], having already 
[1978] noted second-order accuracy when 4, is the zero of DkHk=0(. - xj+1) (now 
known as Xi+k/2). 

Just as superconvergence can yield various orders of enhancement over the 
ordinary errors one expects in its context, so it seems for supra-convergence. For 
example, we mention the conservative cell-centered (or "block-centered") difference 
schemes first analyzed in modern times by Levermore [1982], cf. Larsen, Levermore, 
Pomraning, and Sanderson [1985]; but previously considered by Tikhonov and 
Samarskii [1962] (and for certain P.D.E.'s by Samarskii [1963a, b]); more recently by 
Wheeler [1983], cf. Weisert and Wheeler [1984] (also for certain P.D.E.'s); and 
perhaps most thoroughly by Manteuffel and White [1986]. Not based completely on 
polynomial approximation, O.D.E. schemes of this ilk are exemplified by an 
inconsistent tridiagonal approximation to D2y. Yet this truncation error, which is 
bounded only if local mesh ratios remain bounded, converts to 0(h2) convergence 
upon application of factors of the corresponding Green's matrix. (Neither of the 
proofs that the solution of the first-order cell-centered scheme 

(YI+12 -Yi12)1[(h,+? h,1)/2] = Dy(x,), Y172 =Y(X72) + 0(h 2), 

gives an 0(h 2) approximation to y(x.), namely, the analog of the first proof of 
Section 3 or the application of the trapezoidal rule's known accuracy, suggest the 
details covering second-order equations.) There also exist vertex-centered, compact 
approximations to D k, k > 2, with order h3 - k truncation error, that yield 0(h 2) 

supra-convergence (Manteuffel and White [1985]). 
Nevertheless, we have yet to see supra-convergence for compact schemes that 

yields more than one order higher convergence than the truncation error for the 
polynomial-based schemes. 

We point out that we have not tried to prove that the positive aspects of the 
example in Section 3 hold in practical application. For, although analogs of 
Numerov's tridiagonal method can be defined when lower-order terms are present 
(as in Swartz [1974, Section 7], Lynch and Rice [1980, p. 369], or Doedel [1978, 
Example 5.2]), one still must prove the truncation error decomposes into analogs of 

1 and 22; and that a finite number of sign-changes in the factors in that 2 will 
yield only a fourth-order contribution. Also: Fourth-order compact approximation 
of non-Dirichlet boundary data needs to be more explicitly considered-although 
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this is a less serious problem, as it only means involving an additional fixed number 
of mesh-point values of f (not Y) near the two boundaries (as could have been done 
in Swartz [1980]). 

In 1982, A. White rediscovered, numerically, the phenomenon we have called 
supra-convergence for second-order boundary value problems; and he and T. 
Manteuffel constructed the proofs, based on the linear algebra involved, in their 
[1986] paper. The present paper represents an attempt to explain the phenomenon in 
terms more familiar to some, and to explore one of its limitations. On the other 
hand, Grigorieff's [1983] response to Manteuffel and White's work is that, after all, 
there is no surprise if the truncation error in such schemes can be measured (stably) 
as suitably small. Thus, suppose one uses discrete analogs of maxx I xf(t) d I in a 
generalization of the "Spijker norm" (Tikhonov and Smaraskii [1962], Spijker [1968], 
Stetter [1973, pp. 81-87]); in particular, the one that sums the kth difference 
quotient to yield the (k - 1)st. Then truncation errors we regarded as 0(h) in size 
are now only 0(h2), as Grigorieff shows in an example (0 = (1,0, . .. , 0)). Primarily, 
though, he argues that the lower-order difference quotients are stable with respect to 
such measures of the size of Ak ? L (plus boundary conditions, assuming both they 
and L are consistent). It was his example which suggested we describe the [k/2J - 
parameter family of special evaluation points (in Section 1) as symmetric averages. 

It may be worth noting the role that numerical computation played in the 
evolution of this paper. The slope of log-log plots of the maximum error against 
maximum mesh size is the traditional method of extracting the convergence rate for 
a numerical scheme; and it was the 630 tilt of the least-squares line fitting clusters of 
200 such points, the ith point being associated with a mesh with i points chosen at 
random in (0,1), which convinced us that there was something worth proving for 
commonly used schemes approximating second-order boundary value problems. Yet, 
the same experiments for Numerov's method yielded slopes close to four; and it was 
only after some weeks of unsuccessful proofs that we noticed that the hypothesis of 
0(h4) convergence to y(x) = x5 could be more easily explored by dividing 22 by 
h 4, and so consider instead the hypothesis that 

n 

a (E41 , , in+ l )?= 1?. (i?2 2-), all (j in [0, 1], some fj = 1, 
i=1 

could be bounded independent of ( in [0,11] n?+1 and of n. Tests of this were easily 
generated by fixing n, randomly generating a few thousand 's, and then examining 
log-log plots of the maximum magnitude of this sum versus n. And such experiments 
suggested there was no bound to be found-in fact, the maximum magnitude often 
grew at a rate like n1/2. The periodic counterexample, subsequently found, also 
evolved into a succinct solution of the following related problem (Faber and White 
[1985], or Appendix 2 below): Given m > 0, find a condition on a bounded function 

F(qo .0.... ?m) that is both necessary and sufficient for Eil F(ij,... &j+m) to be 
uniformly bounded in ( and n. 

Appendix 1: Stability. For completeness, we append a proof that the compact 
difference operators 

(MU)i+k =[(I L)U] i+k/2, > 0, 



SUPRA-CONVERGENT SCHEMES ON IRREGULAR GRIDS 547 

which we have considered, are stable for the initial-difference quotient problem. For 
this, we shall continue to assume-with a shift of index-that (MU), consists of the 
k th-order difference quotient Ak, based on the stencil ending with xi, plus a 
uniformly bounded linear combination L of those pth-order difference quotients 
(p < k) whose stencils x-P ..., xi are subsets of x_ k . x..,X 

The proof will generalize the proof for the case in which L involves only Ak 1, i.e., 
when 

(MU)1 = (AkU)i-k/2 + ai(AklU)i-(k-1)/2 + bi(k U)i-I-(k-12- 

For this simple case, and with U in hand, set vi _ (Ak-lU),-(k-l)/2. Then the 
relation between Ak and Ak-1 means that 

(1 + h1aj)v, = (1 - hib1)v,1_ + hi(MU),, h = (xi - x,k)/k. 

Using, say, (1 + s)/(1 - s) < exp(3s) for 0 < s < 1/2, it follows that 

|vjI < exp(3a-hj) Ivj _j 2i(MU) 1, kji 

if a maxj1< hi < 1/2, where a = maxj(Iaj, a bj). Recurring from i back to the 
initial data, we have 

IV, I < exp(3axl) [I Vk -I + 2x, max (MU) 
[ ~~~~k ?j? i 

since EJ =k hi < EJ=bo hj = x,. Invoking, finally, the recursions for the lower-order 
difference quotients, we have the desired stability result: 

max || PU |l o < const [max I (APU) p/2?| + 1 MU loj 
p<k p<k 

independent of U and the mesh, if only a max, h, < 1/2 and E hi is bounded. 
Given a vector U, now, for the general case, let Vi') be the jth difference quotient 

of Uibj,..., Ui based on xi_j, ..., xi. We append, to the k - I relations between the 
k - 1 lower-order difference quotients, i.e., to 

(- -(x - x.__)v(P)/p =vi(- ) (1 < p<k)I 

the full-difference equation written with only vi(),..., v$k-1) on the left-hand side. 
We thereby obtain a recursive system 

(I + hiAi)v1 = (I - h,AV1)vA 1 -hiA1A2v 2h- A -h A?v,k 

+hi(MU) 1(01 . . .,O 1) T, 
for the vectors VJ = (vJO)I...I Vjkl))T. In this recursion, the entries of all k by k 
matrices AJP are uniformly bounded because of our assumption above concerning L, 
and (in each lower Hessenberg matrix Aik) also because (xi - xiP)/( phi) < k/p. 
Hence, with w, = max1<, maxp< ktv(P), it follows that 

w, < (1 + aihi)wi_/(1 - ahi) + h1I(MU)1I/(1 - ahj) 

for a = k supJ PlIAPf K and all small hi. Noting that Wk 1 is uniformly bounded in 
terms of the k initial-difference quotients using the difference quotient recursions, 
we conclude the desired stability result as before. 

Appendix 2: Periodic Sums and Supra-Convergent Functions, with V. Faber 
(December, 1984). For k > 2, let F map -k into a group (9, +, 0); here - is some 
arbitrary set. We begin by characterizing those functions F which possess the 



548 H.-O. KREISS, T. A. MANTEUFFEL, B. SWARTZ, B. WENDROFF, AND A. B. WHITE, JR. 

following additional property: The sum of the values of F, as one translates over one 
period of arbitrary periodic sequences made up from elements of S, vanishes 
identically. More specifically, and for some p > 1, by a periodic sum of period p we 
mean 

p 

p ()= E F(i,,j , ?i+k- ), ( in ; we take ( +j =j as required. 
i=1 

And we shall say that F sums to zero over the periods of arbitrary periodic sequences if 

up = 0 on X.P for all p > 1. The prettiest result is the following: 

THEOREM 1. (a) F sums to zero over the periods of arbitrary periodic sequences if and 
only if 

(b) there exists a function f of k - 1 variables such that 

F(41,,' ... -f(* (~1 . k- 1) f (42,* ... I 

Proof. (b) implies (a). For (b) means that up is a collapsing sum: 

lgp = [ f ((l .. * * k- 1) 
- 

(42, * * *, 0k) 

+ + [ (((P, 41 .. I * k-2) 
- 

f(S* (I k-1)] 

=f(** (~1 . k-l) f ((lI, (k-1 = ? ( in wP 
(a) implies (b). First, form the (2k - 1)-periodic sequence 

52k-1 
= 

( . .., r1, . . ., rl~ 41 .. - 
-0 ... -- 

(there are k -1 7q's here); then, as a particular instance of (a), 

0 - 2k-1(52k-1) 

- F(q, ., X1, 41 + +Fn 1 ,(-) + F(71, ,1 (k-A) 

+ [ F(42, , - -, r00 + +F((k,q ... *, )] 

A (4,' ... (k -1 t1) + F(41S, , 

+9(42 ... I * S )- 

Next, form the (2k - 2)-periodic sequence 

52k := (. *'q .. *'q 
S 
**.*..4 I * k-l ** 

(there are k -1 7q's here, also); then, as another instance of (a), 

o -g2k-2(52k-2) 

--F(N,- ....X, 41) + + F(q, 41, , k-l)] 

+ [F(1,' , '' k-l, )+ * * +F((k-l,'q ...** 

-A(1,' .. I k-1S ) + 9(t11 .. I * k-1, )- 

We do not need "+" to be commutative to conclude that 

(1) F(41, , (k) - =((11- (k-10 ) (42...* (k, ) 

For (b), now, let qj(-) be any constant map of 1-l onto c in ^; and set 

f (41' * * *, Sk-) g(=l *1 - - -, (k-1 nqc(tls ... I * k-l*) 

A third equivalent statement is that periodic sums of periods 2k - 2 and 2k - 1 
vanish identically (for that is all we used in the second half of the proof). 
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The final appendix uses the following rather unsymmetric 

COROLLARY 1.1. F sums to zero over the periods of arbitrary periodic sequences if 
and only if, for some c in E, F(c, . . ., c) = 0, and the function 

G.(4l I...k) F(I1, . =k) + F(42,., (k, C) + * +F((k, C,..., C) 

is independent of (k. 

Proof. From the definitions of G. and g, we have 

GJ(41, .. Ik (1 k + g(421 * kl C), 

and (as we have seen) this is g(41,..., I,k-ll C) if we assume (a) of Theorem 1; 
moreover, that assumption implies F(c,..., c) = 0. On the other hand, if Gc is 
independent of (k' then 

F(41j , 0k + M(21 .. * * (0 C) 
= 

Gj(jq .. 9 k-lq 0k GjCjq.. , (k-lq C) 

=- g(tq. * * k-19 C) + F(C, . . .,9 C), 

the last from the definitions of G, and g. Thus, (1) holds with 'q = c if also 
F(c,..., c) = 0 for some c in ^; (b) of Theorem 1 then follows as before, and 
therefore, (a). 

It was results like these that inspired Faber and White's graph-theoretic approach 
to our problem [1985], while the final section of that paper motivated Appendix 3 
here to follow. 

P. Lax has observed that Theorem 1 has a known continuous analog. For this, 
recall that a p-periodic sequence ( is a p-periodic function on the integers into ^-. 
Let 8 be the forward-difference operator, so that, e.g., (84)(i) = ((i + 1) - t(i) is 
also p-periodic. We presume is such that the map (taking -k into ^ k) given by 

(~(I)q {(2)9 .. t(k)) -*(t(I)q 84(I) ,. ak-lt(I)) 

is 1-1 and onto (as it would be if -- were the reals-by solving the initial value 
problem for 3k-1 on 1, .. ., k). Then, associated with each F on k is a unique 
function R, also on k ksatisfying 

F(t(I)q ((2)9 .. 9 (k)) = R(t(I)q 84 (1) ,..., 9 k-1tl) 

and vice versa. With this, Theorem 1 may be restated as 

COROLLARY 1.2. Let R take .k into a group. Then, 

= 0 
i=l 

for arbitrary p-periodic functions ( (on the integers into ) and for arbitrary p, if and 
only if there exists a function r on skl so that 

(Here, r(((1),..., ak-24(j)) = f(((1),..., (k - 1)).) This corollary is a discrete 
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analog of the following result (Lax [1975, Lemma 5.8], there stated for polynomials 
R): 

"CALCULUS LEMMA" (LAX). Let R be a function of k variables. With (Drq)(x) 
(d q/dt )(x), suppose 

f R(t, Do,..., Dk-l )(x) dx = 0 

for every sufficiently differentiable p-periodic function ((x). Then, there exists a 
function r of k - 1 variables, so that 

R(t, Do,..., Dk-l) = -D [r(t, Dt,..., Dk-24)]. 

Recall, now, that we have associated the phrase "supra-convergent difference 
scheme" with difference schemes possessing truncation errors whose sums were 
unexpectedly small. We are thereby led to the following definition. We shall say that 
the function F is supra-convergent if the average of its values, as one translates over 
arbitrary finite sequences, goes to zero as the length of those sequences increases; 
i.e., 

2 F(i 9 ...,9Ik-1) = o(n), n -x 00, pointwise on 
,=1 

With this, we have the following 

THEOREM 2. Suppose the range of F lies in a normed linear space, and suppose F is 
bounded on its domain. Then, F is supra-convergent if and only if F sums to zero over 
the periods of arbitrary periodic sequences. 

Proof. Necessity is clear, since a p-periodic sequence (p is also an np-periodic 
sequence for any n, whence Gnp((pq ... 9 ,p) = nap((p) 0 o(np) unless ap((p) = 0. 

On the other hand, suppose ap = 0 on ^ P for all p > 1. Associate with the finite 
sequence , (," its m-periodic extension (m := ( . 1 ( (m' We have 

? = GM "m) 9 0(1 k + - +F((m-k+lq .. 9 m 

+ F( {m-k+29 .. 9 * mq t1) + ---+ F( (mq S 19 .. * * k-1); 

but each of the last k - 1 terms is uniformly bounded since F is. Hence, the first 
part of the sum is uniformly bounded; and its bound yields the following 

COROLLARY 2. Suppose F bounded by B on -k, and that F is supra-convergent. 
Then the average of the n values of F, as one translates over an arbitrary finite sequence 
with n + k - 1 elements, is uniformly bounded by (k - 1)B/n. 

That is to say, not just the pointwise, o(1) value required by the definition. 

Appendix 3. Fixed Weights Allowable to Supra-Convergent Compact Difference 
Schemes. (December, 1984). Among the compact difference schemes one can 
consider for approximating the simple kth-order differential equation y(k) = f are 
those schemes utilizing the kth difference quotient as follows: 

k 

(1) k![x, ...,xl?k]Y =: k1yk/2 E y y(k) := y(k) 

J =o 
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where [z0,..., Zk]W is the kth-order divided difference of W based on z0,.., Zk. 

This may be reexpressed in terms of hi = xi - xj as 

S(Y; hi+,,..., hi+k) 

kA 

(hi+1 + +hi+k){ Ewpy,4!3/k! -[Xi,..., Xikk]Y} = 0 
Ji=? 

(S, here, is for "scheme"). Subtraction of S(y) from S(Y) yields a recursion for the 
(k - I)st divided difference of the error e: 

[Xi+1 1..., Xi+k]e = [Xi, ..., Xi+k-l]e + S(y); 

and this is why one is concerned with the possibility that S be supra-convergent. 
Note that S(y), for a general function y(x), will depend on more than the indicated 
arguments hi+1, .. ., hi+k; but there are two cases, namely y(x) = xk or xk+1, when 
it often depends only on these arguments, as we shall see. (The weights could also 
depend on i, as they do in Numerov's scheme, or in those of Osborne, Swartz, 
Lynch, and Rice or Doedel). 

Now, we showed at the end of Section 1, that if the weights (wj)k not only were 
independent of i (and, hence, of the mesh spacings) but also represented a symmetric 
average; i.e. 

k [k/2J Lk/2J 

E wftj E 9 [(fi + fk-j)/2]; E X j 1, 
J=1 J=0 j=0 

[k/2J :- the greatest integer in k/2; 

then the corresponding difference schemes were supra-convergent; in particular, 
S(x k) and S(xk+l) were then necessarily supra-convergent functions. Our goal here 
is to apply Appendix 2 to show that, if the weights are independent of i, then they 
must form a symmetric average if the difference scheme is to be supra-convergent. 
So, we assume them independent of i henceforth. 

If (1) yields supra-convergence in general, then it must, in particular, for xk and 
xk+1. That is to say, S(xk) and S(xk+l), if dependent only on h,+., h must to ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~i+k' 
be supra-convergent functions. Consider first xk: Since [xi,..., xi+kIxk = 1 while 
(x k)(k) = k!, we conclude 

S(xk) = (hi+, + * +hi+k)( E wj - 

With S, associate the function F, given by 

F(1j ~... ., 0k := Sx; hl,. .. ., hk)lh, hi hti, in [,lk 

recall h is the maximum mesh size. (Although it makes sense to ask if S is a 
supra-convergent function, the effect of bounds on ES for, say, h < 1/3, is less 
interesting than the effect of bounds on E F for l < 1. Offhand, F depends also 
on h. However, since S is homogeneous of order 1, we see that F(s) S(t)). Now, 
F supra-convergent implies 

k 

(2) E Wj 
j=O 
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which follows from the requirement (Theorem 2) that F(l,... , 1) = 0. This is 
equivalent to requiring that the scheme be exact for polynomials of degree k as well 
as degree k - 1; and we assume it hereafter. 

Henceforth, we examine what is necessary for S(xk+1) to be supra-convergent as 
well; in particular, we would like to show that, then, each Wk1- - 

Wj 
is necessarily 

zero. Since the scheme is exact for polynomials of degree k, we may consider 
(x - xi)k-+?l instead of xkl 1; and, indeed, may concentrate only on the generic case 
xo = 0. For this we recall, from the beginning of Section 1, that 

[X0, ..., Xk]Xk+l = Xo + +xk= h1 + (h, + h2) + +(h, + +hk), 

while 

(xk+l)(k)(xj) = (k + 1)!xj = (k + 1)!(h, + .+hj), j > O. 

Consequently, we find that S(xk+ 1) is given generically by 
k 

S(xk+l; h1, ... , hk) = (h, + +hk){(k + 1) I (h1 + +h1)w1 
j=O 

-[kh, + (k -1)h2 + +hkJ} 

With S(x k + 1) associate 

F(t1 ..., 9k) S(xk?l; hl,..., hk)/h2, hi = hi, { in [0,1]k 

(again, F = S since S is homogeneous of order 2). We take c = 0 and construct Go 
from F as in Corollary 1.1. Since the weights are mesh-independent, F is a 
homogeneous quadratic form; since c = 0, so is Go. Theorem 2 and Corollary 1.1 
insist that Go must be independent of (k for F to be supra-convergent. Thus, the 
coefficient of each term {itk in Go must vanish. But, Go is linear in (wj)k, so the 
weights must satisfy k corresponding linear (but inhomogeneous) equations. 

These k equations, when all divided by k + 1 (and the last then doubled), 
constitute the system Aw = b, where, for 1 < i < k and 0 < j < k, 

Aij:=min(i,j) + (i +j - k)+, (z),:= thenonnegativepartofz; and bi=i. 

To show this implies that all Wkj -Wj must vanish, we begin with a slight detour. 
Note that for two-vectors u = (uo, ul), 

u- v = (luEv - AuAv)/2, where Au = u1 - uo, Eu = ul + u0. 

We may extend this to row-vectors and to matrices (Mij), k by differencing or 
summing columns, working from the outside in, as follows: Define matrices 

(AM)ij = Mi,k-j - Mij, 0 < j < [(k - 1)/2J, 
and 

(7-M)ij = Mi,k-j + Mij, O < j < [ kl2j. 

Then, for (k + l)-vectors u, v, 

u- v = (ru Iv- Au - u v)/2, 
in particular (using (2)), 

k [ k/2J 
3a , I - j , 2(w) ,2 
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while 

(3b) Aw = b iff EA Ew-AA AAw = 2b. 

But for our matrix A, (EA),J = 2i independent of j; so, given the form of b, 

E2A = 2 diag( b) J, the matrix J consisting entirely of l's. 

Hence, from (3b) and (3a), 

0 = EA 2w - 2b - AA Aw = -AA Aw. 
So, we will have proved what we seek, namely, W. = Wk-J for all j, if A1A has full 
rank [(k-1)/2] + 1 =: m.But,forI < i kandO j< m, 

(AA) ij= 2[(i -j)+-(i +j -k)+] 

In particular, the upper m by m half of AA is lower triangular with 2's on its main 
diagonal. 

And we have proved that A1w = 0, so that the symmetric averages which we 
considered at the end of Section 1 are the only averages one can use which are both 
independent of the mesh and yield supra-convergence. These last two appendixes 
have also provided an alternative to Section 1 for proof that its difference schemes, 
using symmetrically averaged source terms, are supra-convergent with 0(h2) 
error-at least for polynomial solutions y(x) of degree k + 1. 
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