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A Uniformly Accurate Finite-Element Method 
for a Singularly Perturbed One-Dimensional 

Reaction-Diffusion Problem 
By Eugene O'Riordan and Martin Stynes 

Abstract. A finite-element method with exponential basis elements is applied to a selfadjoint, 
singularly perturbed, two-point boundary value problem. The tridiagonal difference scheme 
generated is shown to be uniformly second-order accurate for this problem (i.e., the nodal 
errors are bounded by Ch2, where C is independent of the mesh size h and the perturbation 
parameter). With a certain choice of trial functions, uniform first-order accuracy is obtained 
in L [0, 1]. 

1. Introduction. We consider the following two-point boundary value problem: 

Ly=E2(py')'-ry=f on (0, 1), 

(1.1) ~~~~y (O) =Yo' y(1) = Yi' 

where e is a parameter in (0, 1], yo and Yi are given constants, the coefficients p, r, 
and f are in C2[0, 1] and satisfy 

(1.la) p(x) > ? > 0 and r(x) > B > 0 forx E [0,1]. 

The solution y(x) has, in general, a boundary layer of width 0(E) at both end points 
of [0, 1]. 

Letting y(x) = w(x)( p(x))-/2, this problem transforms into 

(2W" - d(x)w = g(X), 

*1.2) w(0) = yo( p (0))1/2, w(1) = Y1 ( p (1)) 1/, 

where d(x) and g(x) are easily computed. 
However, since d(x) involves both first and second derivatives of p(x), a 

discretization of this transformed problem is not attractive from a numerical point 
of view. In this paper, we present a numerical method which is directly applicable to 
problem (1.1). 

Finite-difference schemes for singularly perturbed selfadjoint problems of the 
form (1.2), which are uniformly in - accurate, have been examined by various 
authors. Miller [6] gave sufficient conditions for the uniform first-order convergence 
of a general three-point difference scheme. Hegarty et al. [4] and Niijima [7] 
produced uniformly second-order difference schemes. Boglaev [1] examined problem 
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(1.2) in a finite-element framework and achieved uniform first-order accuracy at the 
nodes. Shishkin [11] examined problem (1.1) on a nonuniform mesh, which depends 
on E, and obtained convergence results for various difference schemes. A useful 
discussion of uniform convergence of difference schemes for singularly perturbed 
two-point boundary value problems is obtained in Doolan, Miller, and Schilders [2]. 
Schatz and Wahlbin [10] examined problem (1.2) in both one and two dimensions, 
using a Galerkin finite-element method. 

A weak form of problem (1.1) is: 

find y E H1(0, 1) such that 

(1.3) BE(y,v) -_2(py',v') -(ry,V) = (f,v) for all v EHo(O1) 

y(O) =yo, Y(l) = Y1 

where ( , ) denotes the usual inner product in L2. 
In this paper, we will discretize (1.3) using a Petrov-Galerkin finite-element 

method with exponential test functions and a quadrature rule that replaces the 
functions p, r, and f by piecewise-constant approximations. This enables exact 
evaluation of the modified integrals in (1.3). By introducing a discretized Green's 
function, the nodal errors are given explicitly in integral form. Our approximation 
will be shown to be uniformly second-order accurate at the nodes. The crux of the 
proof lies in suitably bounding the discretized Green's function and its derivative. 
Using exponential trial functions to interpolate between these nodal values, our 
approximation is then shown to be uniformly first-order accurate in L'[0, 1]. Thus 
the second-order nodal accuracy is a superconvergence result. 

For a discussion of exponential elements, see Henker [5], de Groen [3] and the 
references therein. A discretized Green's function was first used by Stynes and 
O'Riordan [12] to prove a superconvergence result for a nonselfadjoint singularly 
perturbed two-point boundary value problem. 

Note. Throughout this paper, C will be used to denote a generic constant 
independent of x, j, h, and e. Also, g = O(hP) means jgj < ChP, p = 0, 1, 2. 

2. The Continuous Problem. The differential operator L in (1.1) satisfies a 
maximum principle (see Protter and Weinberger [8]). We state this formally as 

LEMMA 2.1. If w(0) , 0, w(1) < 0, w E C2[0, 1] and Lw > 0, then w < 0 on [0, 1]. 

In order to obtain the appropriate bounds on the derivatives of the solution of 
(1.1), we will require some information about the solutions of 

(2.1) Lw = g(x, e), Iw(0) I < C and Iw(1) I < C. 

We will say that g is of class (-y, j) if the derivatives of g with respect to x satisfy 

(2.2) g(')(x, -) I C(1 + -ie-Yx/'E + &-ie-Y(l-x)/e) 

for 0 < i < j, x E [0,1], where -y is some positive constant independent of x and e. 

LEMMA 2.2. Let g be of class (-y, 0). Then the solution w of (2.1) satisfies 

Iw(x)I < C. 

Proof. Apply the maximum principle to -C + w(x). [ 
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LEMMA 2.3. Let g be of class (y, 0). Then the solution w of (2.1) satisfies 
Iw'(x ) I < C,- 

- 
for x E- [O, I]. 

Proof. From the differential equation (2.1) we have that 

(2.3) (pe-D/E(w' + &-1((r/p) /2)w))' -2e-D/E(g +((rp) 1/2)'w) 

(2.4) (peD/e(w' -1 ((r/p) /2)w))' - c-2eD/E(g-((rp) / )'cw) 

where 

D(x) = f (r/p)1"2dt 
t=0 

Integrate (2.3) from 0 to t, multiply by p-le2D/E and then integrate again from t = 0 
to t = 1. Collecting terms, we get Iw'(0)I < Cc-1. By integrating (2.4) from 0 to x 
and using Iw'(0)I < Cc-1, we get Iw'(x)I < Cc-1. [ 

LEMMA 2.4. Let g be of class (-y, 1). Then the solution w of (2.1) satisfies 

|w'(x) I < C(i + -1exp(-8x/c) + E-1exp(-8(1 - X)/E)) 

for x E [0, 1], where 8 is a positive constant depending only on p, r, and y. 

Proof. Differentiate (2.1) to obtain 

(2.5) E2V"-(rlp)v = g' + r'w, 

where v(x) = pw'(x). Applying the maximum principle to (2.5) with the barrier 
function 

z(x) = C1(exp(-8x/E) + exp(-S(1 - x )/E)) + C2 

(where C1, C2, and 8 are suitably chosen constants) and using Lemma 2.3 to bound 

w'(O)I and Iw'(1)I, we get the desired bound on Iw'(x)I. [ 

LEMMA 2.5. Let g be of class (y, 2). Then the solution w(x) of (2.1) satisfies 

iw"(x) I < C(I + c-2{exp(-Sx/c) + exp(-8(1 - x)/6)}) 

for x E [0, 1], where 8 is a positive constant depending only on p, r, and -y. 

Proof. Apply the arguments in Lemmas 2.3 and 2.4 to the differential equation 

(2.5). 5 

COROLLARY 2.6. If y is the solution of (1.1), then 

I y("(x) I < C(I + &- {exp(-Sox/c) + exp(-So(I - x)/6)}) fori = 0, 1, 2 

and x E [0, 1], where So is some positive constant depending only on p and r. 

The next lemma gives us an asymptotic expansion for the solution y of (1.1). 

LEMMA 2.7. The solution y(x) of (1.1) may be written as 

y(x) = -f (x)/r(x) + K1(E)exp(-D(x)/E) 

+K2(E)exp(-(D(1) - D(x))/c) + cRo(x), 
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where 

|K1(E) | C, |K2(E <) C, 

D(x) = (r(t)/p(t))" dt, 
t=0 

R0(x) satisfies LR0(x) = g(x, E), Ro(O) = Ro(1) = 0, 

and Ig(x,) I < Cforx E [0,1], - E (0,]. 

Proof. Check by substitution. El 
The final lemma in this section bounds the derivatives of the remainder term 

RO(x). 

LEMMA 2.8. Let R0(x) be defined as in Lemma 2.7; then for x E [0,1], 

R(o) (x) I CE-', i = 0, 1,2. 

Proof. From Lemma 2.2, IR0(x)I < C. From Lemma 2.3, IR'o(x)I < CI-. Now 

E2 ( pR' = g(x, E) + rRO(x). 

Thus 

IRTO(X CE_-2, OX 1. x C]E 

3. Discretizing the Problem. Divide the interval [0, 1] into N subintervals, each of 
length h, and let xj= jh, 0 <j < N. Define [0,1]* to be [0, I]\{xj }. As an 
approximation to the function r(x), define the piecewise-constant function r(x) to 
be 

r(x) = j= (r(xj-,) + r(x1))/2 for x E [xj-1, xj), j = 1,. .., N, 

T(xN) = rN- 

Define p(x) and f(x) similarly. Define the operator L by 

Lw = E2(pw')'-rw for w E 

the derivatives being taken in the sense of distributions. 
The next lemma shows that L satisfies a maximum principle. 

LEMMA 3.1. Let w E C[O, 1] n C2([0, 1]*) and 5w' E C[O, 1]. Suppose w(O) 0 0, 
w(1) < 0, Lw > 0 on [0, 1]*. Then w < 0 on [0, 1]. 

Proof. Suppose the conclusion is false. Then there exists z E (0, 1) such that 
max 0<x w(x) = W(Z) > 0. 

Case (i): z E [0, 1] *. Then w"(z) exists and w"(z) < 0, hence Lw(z) = W"(Z 

- w((z) < 0, a contradiction. 
Case (ii): z = xi, for some fixed i. Since w E C[O, 1], we can choose intervals 

(c, xi) and (xi, b), with x,_1 < c < xl and xi < b < xi+1, such that w > O on (c, b). 
Now Lw = 82(Pw')' -w > 0 on (c, xi) U (x, b). Thus (pw')' > 0 on (c, x) U 

(xi, b). 
(a) Suppose pw'(z) > 0. Then, since pw' E C[O, 1] and (pw')' > 0 on (xl, b), this 

implies that pw'(x) > 0 on (xi, b), hence w'(x) > 0 on (xi, b). Then w cannot have 
a maximum at xl. Contradiction. 

(b) Similarly, if pw'(z) < 0, it follows that w' < 0 on (c, xl), hence w cannot have 
a maximum at xl. Contradiction. o 
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Define each test function {Pk, k = 1,..., N - 1, to be the solution of 

(3.1) lPk = O on [O,1]*, 
(3.1) A~~~~k(Xj) 

= 
Sk,j9 J = 

?,9...,9 N, 

where Sk,, is the Kronecker delta. 
Choose the trial functions 4i, i = 0, .. ., N, to satisfy 4i(xj) = 6 , j = O,..., N, 

with the support of each 4i(x) the one or two subintervals containing xi. 
The Petrov-Galerkin approximation is 

N 

(3.2) u(x)= Y Uici(x), 
i=O 

where the u1 are determined from the system of equations 

(3.3) BE(u,4') = (f,J1) , j = 1 ... ,N -1, 
U0 =Y0 UN = Y1 

where 

Bpe(vg w --2vo -rv,) V, W E H1(0O 1) 
and 

(v,w)=j v(x)w(x) dx, v, w e L (0, 1). 

LEMMA 3.2. The difference scheme (3.3) has a unique solution. 

Proof. The difference scheme (3.3) may be written as 

E2h-2Au= Bf, 

i.e., 

e2h-2[auj-_ + aou+aJU1] =b + bj+fj, 1j= 1,...,N-1, 

where 

a- = hpjij(xf 1), a+ = -hPj+?<(xj- 1), ao = -hpj14Xj-) +h j(Xj+) 

b- = h-1(1, ij)j, bj+ = h-'(1, ,)?j+j and (u, V)1 = f u(x)v(x) dx. 

By explicitly solving for 4j(x) from (3.1), the reader can easily verify that 

a > O, a > O and ao<-a7 -a> 

This implies that the matrix -A is an M-matrix and hence invertible (see Varga 

[13]). a 
REMARK. The difference scheme (3.3) is written out explicitly in Section 7. 

4. The Discretized Green's Function. We associate a discretized Green's function 

Gj(x) with each node xj, j = 1,..., N - 1. Define each GJ(x) in the sense of 
distributions by 

LG1(x) = G2(pG) (x) - iGj(x) = 6(x -x) 

Gj(O) = Gj(1) = 0, 

where 8(.) is the Dirac 8-distribution. 
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In the classical sense, each G (x) is defined by 

(4.2a) GJ E C[0,1], 

(4.2b) Gj(0) = GJ (1) = 0, 

(4.2c) GJf exists and is continuous on [0, 11*, 

(4.2d) -2fGj -rGJ = 0 on [0,1]*, 

(4.2e) lim ur2nGj(x) - lim 2,rGj(x) = A , i = 1 ... , N- 1. 
x -x x-x, 

LEMMA 4.1. (i) Gj(x) is well-defined and lies in the test space spanned by the test 
functions defined in (3.1). 

(ii) Gj(x) < 0 on [0,1]. 

Proof. (i) We must show that there exists a unique choice of t X k } 'k= I such that 
N-1 

Gj(X) = XkAk(X)- 
k=1 

Now for each i we require 
N-1 

al, = (O,8(x - xJ)) = (p1,LGj) = Be(4 E G) = E XkBE(Oi Pk) 
k=1 

Thus, we have the system of equations 
N-1 

? XkB(J0i, 'Pk) = j i = 1,.. ., N- 1, 
k=i 

for the unknowns X1, ..., XN-1. The matrix of this system is the transpose of the 
matrix associated with the difference scheme (3.3), which from Lemma 3.2 is known 
to be invertible. 

(ii) The matrix in (3.3) is the negative of an M-matrix, so its inverse has all 
nonpositive entries (see Varga [13]). Thus Xk < 0, k = 1,..., N - 1. Now Pk > 0 

on (xk-1, xk?+) Since Gj(x) = ELI'Xk4Jk(X), we have G. O on [0, 1]. O 

THEOREM 4.2. For x E [0, 1], 1Gj(x)I < Cc lexp(-ylx - xj1/c), where y = 

min(( r(x )p (X ))1/2 )/max( p(x)). 

Proof. Set @o(x) = -{exp(-(/3g)1"2Ix - xlI/( -(x)8))}/(2(I3{)1/2E). Note that 

pX '(xf) = -1/(2E2), 
2 

'(xj) = 1/(2 2). So co'(x) has a jump of 2 at xj. Let 
z = X - Gj on [0,1]. Then z E C[0,1], z E C2([0,1]*) and pz' E C[0,1] (jumps 
cancel at x = x1). Thus we are able to apply the maximum principle for L, given in 
Lemma 3.1. Now z(0) < 0 and z(1) < 0. On [0,1]*, 

Lz = +2(pw')' _(/34w)/p ?(p/3jp -) -LG1 = ( - > 0. 

By Lemma 3.1, z < 0 on [0,1]. Thus Gj(x) > w(x), but from Lemma 4.1 Gj(x) < 0. 
Thus I G. (x) I < I X (x) I. The result follows. E 

The next result bounds the derivative of the Green's function. 

THEOREM 4.3. IGj(t)I < CE 2exp(-ylt - xj1/) for t E [0, 1]\ {x}, where y is as 
in Theorem 4.2. 
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Proof. From the definition of G (t) in (4.1), we have 

(4.3) ( ~ep X(--D/E) [GJ + (T1p) )1/2 -Gt] ) 
(4.3) 

~~= E -2exp(--D/e) [ 8(X - XJ) + (V1p)',-GJ] 

(4.4) ( P~_f exp( D/E-) [GJ' - ( p) 1/2Elt 
i3_ 

(4.4) &2x(5cf(.x. p'G] = E 2exp(i5/E)[S(x - Xi) -(v=p),EGj], 

where D(x) = fox (-(t)/p(t))1"2dt. 
Integrate (4.3) from 0 to t, multiply by (p)-1exp(2D/c) and then integrate again 

from t = 0 to t = 1. Collecting terms, we get 

Gj'(O) I < CE 2exp(-D(xj)/e) + C 21I |, 
where 

I = fJ (?p)1exp(-2(iD(1) - i(t))/c)t exp(-iDi(s)/c)cGj( (73 )'dsdt. 

The integral I equals 
N i-1 x 

E E J (PE)1exp(-2(7D(1) - iD(t))/c)exp(-1D(xk)/c) 
i-1 k= -1 

XCG1(Xk){ *jP(X )) j(Xj) } dt. 

Now for any set of numbers { bik }, it is easy to show by induction on N that 
N i-1 N-1 N 

Y Y bik = Y. bik. 
i=1 k=l k=1 i=k+l 

Applying this above yields 
N-1 

1= E2 exp(-i5(Xk)/k)cG(xk){5(xfl- (xk)} 
k=1 

N 
x Y. JI (pE)1exp(-2(7D(1) - -D(t))I/c) dt. 

i=k+1 X,l 

Thus, 
N-1 

III < E Chexp(-YXk/c)EIGj(Xk) IJ E1exp(-2(iD(1) - 7D(t))/e) dt. 
k=1 Xk 

Bounding each integral in the sum by C and using the bound on IGJ(xk)I from 

Theorem 4.2, we get 

J N-1 

III < Ch Y, exp(-yxj/c) + Y exp(-y(2xk - Xj)/ ) 
Lk=1 k=j+l 

N-1 

< Ch E exp(-yxj/c) < Cexp(-yx1/c), since hN = 1. 
k=1 

We have thus shown that 

(4.5) |Gj(O) I < C 2exp(-yxj/c). 
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We will use this to bound G)(t) on [0, xj). Let t E [xi-1, xi), where i < j. Integrate 
(4.4) from 0 to t and multiply by (j5(t))-1exp(-D(t)/c). Thus, collecting terms, we 
get 

Gj(t) < CE 2exp(-y(xj - t)/E) 

+C-2| ex(((t) - D(s))I,E)EGj(s)(Vr j)'(s) ds| 

< CE exp(-y(x1 - 

i-l 

(4.6) + Ch. 
2 exp(-y(t - xj)/c)exp(-y(xj - xk),/c) 

k=1 

= C 2exp(-y(x1 - 
i-l 

+ Ch 2exp(-y(xj - t)/,) exp(-2y(t - xk)/c) 
k=1 

< CE exp(-y(xj - t)/E) 

By symmetry arguments, we now extend this bound to (xj, 1]. For 0 < x < 1, set 

Fj(x) = Gj(1 - x), Tl(x) = r(1 - x) and p1(x) = p(i - x). 
Then 

2( 
pjF)(X)_- 

(x)FJ (x) = _2(pG))'(j - x) - T(1 - x)G (1-x) 

= 3(1 - x - xj) = S(x -(1 - xj)). 

That is, Fj satisfies the same sort of equation as (4.1) (of course Fj(O) = Fj(1) = 0). 
Note, however, that we have S(x - (1 - xj)) instead of S(x - xj), as we had for 
G1(x). From (4.6), we therefore have 

IGj(l -y) |=IFX (Y) 1 < CE2exp(_y(l _ xj _-y)/,_)g - x; 

Let x = 1 -y. Then 

IGj(x)I< C 2exp(-y(x - xi)/-) for xi < x < 1, 

which together with (4.6) completes the proof. r 

COROLLARY 4.4. (a) 1G1(x1) - Gj(xi_)Il < Chc 2 exp(-y(x1 - xi)/-) for 
1 < i < j. 

(b) JGj(x1) - Gj(xi1)l < Chc-2exp(-y(xi,- xj)/c) forj < i < N. 

Proof. (a) 

Gj (xi) - Gj(xi -1) = h Gj(qi) , xi-1 < qj < xi 

< Ch 2exp(-y(x; - 71i)/C) for i <j, 

< Ch 2exp(-y(x1 - x1)/c), since 71i < xi. 

(b) Similarly. E 

5. Estimating the Nodal Error. The error at each node xj can be given explicitly in 
terms of the discretized Green's function. 
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THEOREM 5.1. Let y(x) be the solution of problem (1.1). Let u(x) be our 
approximation defined in (3.2) and (3.3). Then 

(5.1) y(x;) - u(x,) = (f-f, G) + (E2(p -)y',GJ') + (r -r, yGj) 

forj = 1,..., N-1. 

Proof. 

y(x1) - u(x1) = (y - u,'(x - xj)) 

= (y - u, LG) = (y - u, GJ) = B(y, GJ) -B(u, Gj) 

- B?(y, G) - (f,G), by (3.3) and Lemma 4.1(i) 

= BE(y,GI) +(E2(p -p)y',GJ) ?(r -r,yGl)-(f,G1) 

=fGj)-(f,G;)+(E_2(p_-p)y',GJ) +(r-r-,yGj). r- 

On the interval [x, x,] we may write the Green's function in the form 

(5.2) GJ(x) = aisinh(ai(x - xi-0.5)/h) + bicosh(ai(x - xi-0.5)1h)q 

where 

a, = (Gj(xi) - Gj(xi_j))/(2sinh(a1/2)), 

bi = (Gj(x,) + Gj(xi_j))/(2cosh(ai/2)), 

x10o 5 = (xi-, + xi)/2 and ai = (-/Pi) he1 

The following term will arise repeatedly throughout the error analysis: 

(5-3) Ti-J [(x - xR 05)sinh(a1(x - x0.5)/h)]/[2sinh(ai/2)] dx. 
1-1 

The next lemma is a technical lemma needed in the analysis of Lemma 5.3. 

LEMMA 5.2 (i) IiI < Ch2, 

(ii) lTil < Che, 

(iii) Ti+?1 - TiI < Ch 2E 

(iv) Ti- jl < Ch2Ixi - xjl, 
where Ti is defined in (5.3) and 1 < i, j < N. 

Proof. (i) Setting y = 2(x - xi-05)lh, 

Ti = (h 2/8)j [ysinh(ajy/2)]/[sinh(aJ/2)] dy. 

Thus ITiI < Ch2. 

(ii) Evaluating the integral in (i), we get 

I Ti I = (h/lai )2{ (a /2)coth(a1/2) - 1) < ChE, 

since Ixcoth(x) - II < Cx for all x. 
(iii) Using (ii), we get 

T - Tr = h2(a-21 - a72){(aj?+j/2)coth(aj?1j/2) - 1) 

+h 2a-2{ (a i+1/2)coth(a i+1/2) - (aJ/2)coth(a11/2)}. 
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Now Ixcoth(x) - I I < Cx and Ixcoth(x) -ycoth(y)I < Ix -yi, since i(xcoth(x))'I 
< 1 for all x. Thus K?1 - i, < Ch2e. 

(iv) Fixi, j{, ...N}. Let 

u ( y) = sinh( aiy/2)/sinh( ai/2) and v (y) = sinh( ajy/2)/sinh( a1j/2), 

0 < y < 1. Let Miw = w" - (a'2/4)w, for w E C2[0, 1]. Note that Ml satisfies a 
maximum principle and M,u = 0. Apply the maximum principle for M, to 

z(y) = -CI xi - xi I _(u - MAy) o < y < 1 

Now z(O) = z(1) = -Clxi - x.1 < 0 and 

Miz = C(a c/4) | xi - xj|?(a1 - ?)V/4 >0 

for suitably large C, since lvl < 1. Thus z < 0. That is, ju - vl < Clxi - xjl. Thus 

|T t-t |j = (h h/4) ||y( u(y-v())d| Ch2I x, -Xj 1. r- 

Note that 

(5.4) 
I 

(x - x,10 5)cosh(ai(x - xi-0.5)/h) dx = 0, 

since the integrand is an odd function about x = x i105. 

LEMMA 5.3 Let Gj(x) be the solution of (4.1). If k, q, and w are functions defined 
on [0, 1] such that 1k'i)1 < C for i = 0, 1, 2, lq(')l < C for i = 0, 1, lw('i)l < CE- 
for i = 0, 1, k(x) = (k(xi) + k(xi-1))/2 for x e [xi-1, x,) and D(x) = 

f,- 0 (r(t)/p(t))1"2dt, then 
(i) i(k - kgqGj)i < Ch2, 

(ii) i(k - k,qexp(-D/c)GGj) < Ch2, 
(iii) i(k - k,qexp(-(D(1) - D(x))/e)Gj)I < Ch2, 
(iv) l(k - k, e2qGj) I < Ch2, 

(v) i(k - k, eq exp(-D/c)Gj) I < Ch2, 
(vi) i(k - k, eq exp(-(D(1) - D(x))/c)Gj ) I < Ch 2, 
(vii) I (k - k, 2wGj')i Ch2. 

Proof. For x e [x-19 xi), 

k(x) - k(x) = k'(x,105)(x - xi-05) + O(h 2), q(x) = q(xi-0.5) + O(h). 

Let s(xi) = k'(x1_0.5)q(x,_0 5) and set 

(u, v)fi u(x)v(x) dx for u, v EL2[0,1]. 
.-1 

(i) Theorem 4.2 implies that (1, lGjl) < C. Using this and (5.2), (5.3), and (5.4), we 
have 

(k - k,qGj) = , s(xi)i(Gj(x,) - Gj(xi-1)) + O(h ) 
i=l 

N-1 

= E (tj - 1-)Gj(xi) + O( h2), 
i=l 

where we put (j = s(xi)T, and used Gj(xo) = Gj(xN) = 0. By Lemma 5.2, we have 

1t, - (,I < Is(x1) - s(x,+1) I IT,J + Is(xi+,) I lTi - ,?1 1 

< Ch min(h2, he) + C min(h3,h2c) h Ch2 min( h, E ). 
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Combining this with the estimate 1G1(xi)l < Cr7'lexp(-yhlj - il/e), which follows 
from Theorem 4.2, we get 

N N-1 

E (ti- i+1)G1(x,) < Ch 2min(h/c, 1) E exp(-yhIj - i /E) 
i=l i=1 

< Ch2min(X, 1)/(1 - e-&X) 

with X = h/c. Since X/(1 -e-YX) < C for 0 < X < 1 and 1/(1 -e- ) < C for 

X > 1, we have 
N 

E (ti- i+J)Gj(Xi) < Ch2, 

which completes the proof of (i). 
(ii) Let D(x) = J%0(T(t)/p(t))1'2 dt. We have 

(k qeD/EG ) = (k - k,qexp(-15/c)Gj) + 0(h2), 

since Ik - kI < Ch, (1, IGjG) C, IqI < C and 

lexp(-D(x)/c) - exp(-D5(x)/c) I < Chx&'exp(-yx/c) < Ch. 

Hence, 

k -k q exp(-i5/Ec)Gj) 
N 

s(xi)exp(-ib(x_0.5)/c)(x 
-xj5eai(x-xio.s)/hG1) + 0(h2) 

On the interval [xi,, xi), 

Gj(x) = {(ai + bi)/2}exp(aj(x - Xi o.5)/h) 

+ {(bi - ai)/2}exp(-ai(x-Xi-0.5)-h)l 

where ai and bi are as defined in (5.2). Using (1, x - Xi-0.5)i = 0, we get 

k - k, q exp(-5/) Gj) 
N 

= E s(xi)(ai - bi)exp(-D(xi-05)/)sinh(ai)Ti* + 0(h 2), 
i-l1 

where Ti4 = (x - xi-0.5, {sinh(2ai(x - xi-0.5)/h))/2 sinh(ai))i [use e-Y = cosh(y) 
- sinh(y) and (5.4)]. Let 

ci = (ai - bi)exp(-D(xi_0.5)/c)sinh(ai). 

With this notation, 
N 

(k - k7,qexp(-ib/c)Gj) = s(xi)cii + 0(h 2). 
i=1 

From the definition of ai and bi, 

Ci = exp(-!5(xi)/c)Gj(xi) - exp(-D(xi_j)/c)Gj(xi_j) -i - 7i-1. 

Consequently, 
N N N-1 

Y S(xi)CiTi=r = E s(x,)(m - = T (s(xi)Ti( - S(xi+,)Ti*+,),i 
i=l i=l i=l 
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since G (xo) = G1(XN) = 0. Note that Lemma 5.2 can be applied to Tr* and that 
7in' < 1Gj(xi)I holds. Hence we get as in part (i), 

N 
F S(Xi)CiT,* < Ch 2 

which completes the proof of (ii). 
(iii) We have 

(k - k, qexp(-(D(1) - D(x))=,)Gj(x)) (kI --k1, q1 exp(-D1(t)/e)JF(t)), 

where k1(t) = k(l - t), kl(t) = k(l - t), q1, r1, and Pi defined similarly, 

D1(t) = f (rl(s)/p (s))"ds 

and F1(t) is defined as in the last part of Theorem 4.3. Since Fj(t) satisfies the same 
sort of differential equation as Gj(x) did, we can use (ii) to get the result. 

(iv) From (5.2), on the interval (xi-1, xi), 

GJ(x) = (aciai/h)cosh(ai(x - Xi-0.5)/h) +(a,bJ/h)sinh(ai(x - X,_05)lh). 

Thus 

|(E2(k - k), qGJ)) 

N 
= e2h'1ais(xi)Ti{Gj(xi) + Gj(x-1)}tanh(ai/2) + 0(h 2) 

<1 Ch 2e l Gj(x,) + Gj(x1-1) I(1 - ea) + O(h 2) 

since, by Lemma 5.2, I Ti I < Ch2. From Theorem 4.2, we have 

IGj(Xi- 1) + Gj(X,)I < CCf exp(-YI1 X- Xi1/e) , <J 
exp(-Y|x,_1 - x1l/E), I >1. 

Using this, we get the result. 
(v) Follow the argument in (ii), replacing Gj by eGj, and note that 

cGj(x) = (,cai/(2h)){(ai + bi)e(xx_o.s)/h +(ai - bi)e- a(x-x5os)/h} 

(vi) Use the transformation given in (iii) and then use (v). 
(vii) Write w(x) = w(xi-05) + (w(x) - w(xi-05)). Thus, 

N 

(E2(k - k),wGj)) = k'(xi_0.5)(w(x)-w(xi05) (x-J 
i=1 

+ O(h2) by (iv). 

Therefore, 

|(k-k,c2wG;) | Ch2maxlw'(x) I(1, e2Gj) + Ch2. 

Now (1, -IGj)l) < C by Theorem 4.3. Thus 

|(k - k,e2wG)) < Ch2emaxIw'(x) I + Ch2 < Ch2. r 
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THEOREM 5.4. Let y(x) be the solution of problem (1.1). Let u(x) be the approxi- 
mation defined in (3.2) and (3.3). Then 

max Iy(xi)-u(xj) I < Ch2. 
O < i < N 

Proof. Substitute the asymptotic expansion given in Lemma 2.7 into the closed 
form expression for the nodal error given in Theorem 5.1 and use Lemma 5.3 to 
bound each term. The nine terms involved are 

y(x1) - u(xj) = (f-f , Gj) + (r - r, -(f/r)Gj) 

+2( p f,ltr) GJ) + ( r- r, Kle -D(x)e-Gj) 

-t(p -p, K(r/p)1/2 eD(x)/eG;) ?(r - r K e-(D(l)-D(x))/eGj) 

+E(p -,K2(r/p)1/2e-(D(l)-D(x))/eG;) + (r - - eR0Gj) 

+ E2(p-p, R'oGj). 

The last two integrals need the bounds given in Lemma 2.8. 5 

6. A Uniform Global Error Estimate. As in O'Riordan [9], we choose the trial 
functions in such a way that, "close" to a boundary layer, they mirror the shape and 
direction of that boundary layer. For notational convenience, we will take N to be 
even. Define the trial functions {(pi)}' by 

L i - 120 +, = 0 on [O, 0.5] n [0, 1] 

(6.1) L eEp - (r) , = 0 on [0.5, 1] n [0, 1] 

f i (Xj) = si j, j = 0, . .. , N. 

THEOREM 6.1. If the trial and test functions are chosen as in (6.1) and (3.1), 
respectively, then 

IIY - uIIO ? Ch, 
where y is the solution of (1.1) and u is the approximation defined in (3.2) and (3.3). 

Proof. (a) Let x E (xi19, xi), where i < N/2 is fixed. 

L = e2py" + p)1/2y 

= e2py" + e(rp)1/2y' + E2(p _ p)y _ (v/W- i/f)ey' 

rf+ ry + e(rp)1/2y' - e2p'y' + e2(p -p)y" + (VR- /je 

Using the bounds from Corollary 2.6, 

ILT1Y_ f + ry + e(rp)1/2y' + Ce + Che~lx/e 
since exp(-Sl(1 - x)/?) < exp(-3lx/e) for x < 0.5. 

Substituting the asymptotic expansion for y from Lemma 2.7, we get 

ry + e(rX )1/2y, = 
2K_re-(D(l)-D(x))/E + ek(x), 

where Ik(x)l = I{ER'o - (f/r)'}(rp)1/2 + rRol < C. Therefore, 

ty + e(rp)1"2y'l Ce(1 + -lee y/2') sincex < 0.5 

< CE. 
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Thus jLjyj < Ce + Che-81x/e. Set z(x) = C(x - xi- h) - Che-Yx/e + (y - u), 
where the positive constants C, y are to be chosen. Now for C sufficiently large, 
Theorem 5.4 implies that z(x,1) < 0 and z(xi) < 0. Also, 

L1z = C (- )1x2 + pChyl{(i/p)1"2-y}eYx/e ? L1y 

Now ILiyj < Ce + Che-81x/E. Hence we can choose C and y such that Liz > 0. 
Since L1 satisfies a maximum principle (see Protter and Weinberger [8]), we have 
z < 0 on [xi1, xi], i.e., lY - ul < Ch on [xi , xjj, i < N/2. 

(b) Similarly for x E (xi , x1), where i > N/2 is fixed, use the maximum 
principle for L2 applied to the barrier function 

z(x) = C(xi - x - 2h) - Che-Y(l-x)/E ? (y - u) for x E [x,-lg xi]. r 

7. Numerical Experiments. In this section, we present some numerical results 
which illustrate Theorem 5.4. All computations were performed in Fortran double 
precision on a VAX 11/780 at University College, Cork. The authors are indebted 
to Dr. Jeanne Ng-Stynes for these results. 

The difference scheme (3.3) may be written in the form 

c2h-2{aa-uj-l + a>ou + auj+?i } = cff1il + c?f. + cjf +1, 

where 

a- = pj1(aja), a+ = pj+l (aj+ l), ao = -pI'q(aj ) - 
- 
+ q(aj+1), 

C- = (aj)(2a(aj/2))l2 cJ+ = (aj+l)(2a(aJ+l/2)) 

C? = CJ- + c aj 1/2 

P = (p (xj 1) + p (xj))/2, ij = (r(xj-) + r(xj))12, 

and 

a(x) = x/sinh(x), 7(x) = xcoth(x). 

Example 7.1. We applied this difference scheme to problem (1.1), with 

p(x) = 1 + x2, r(x) = cos(x)(3 -x)3, 

f(x) = 4(3x2 - 3x + 1)((x - 0.5)2 + 2), y(0) = -1, y(1) = 0 

(see [2, p. 231]). The results are given in Table 1. The errors (EMAX) and the rates 
of convergence (RATE) are based on the double mesh principle (see [2, p. 223]). We 
define, for N = 8,16, ... , 512, 

EMAX =max u, - U2N I and RATE = In(El) - ln(E2 ) }/ln (2), 

where E1 and E2 correspond to EMAX for h = 1/N and h = 1/2N, respectively. 
Example 7.2. We also applied this difference scheme to problem (1.1), with 

p(x) = 1, r(x) = (4 + 4c(1 + x)}/(1 + X)4, 

f (x) = { -4/(1 + X)4} [(I + e(I + x) + 4V 2c2)cos(2v"t) - 2 "c2(1 + x)sin(2v"t) 

+3(1 + e(1 + x))e-1/E(l - e-1/E)1] 

y(0) = 2.0, y(1) = -1.0 
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TABLE 1 

RATE(EMAX) 

lOE - 0.5 lOE - 1.0 lOE - 1.5 lOE - 2.0 lOE - 3.0 lOE - 4.0 

8 1.98 1.99 2.02 2.20 1.74 1.73 
(9.6E - 2) (7.1E - 1) (1.9E + 0) (3.4E + 0) (5.5E + 0) (5.SE + 0) 

16 2.00 2.00 2.01 2.07 1.99 1.86 
(2.4E - 2) (1.8E - 1) (4.7E - 1) (7.5E - 1) (1.7E + 0) (1.7E + 0) 

32 2.00 2.00 2.00 2.02 2.34 1.93 
(6.1E - 3) (4.5E - 2) (1.2E - 1) (1.8E - 1) (4.2E - 1) (4.6E - 1) 

64 2.00 2.00 2.00 2.00 2.24 1.97 
(1.SE - 3) (l.E - 2) (2.9E - 2) (4.4E - 2) (8.2E - 2) (1.2E - 1) 

128 2.00 2.00 2.00 2.00 2.10 2.06 
(3.8E - 4) (2.8E - 3) (7.3E - 3) (l.E - 2) (1.7E - 2) (3.1E - 2) 

256 2.00 2.00 2.00 2.00 2.03 2.31 
(9.5E - 5) (7.OE - 4) (1.8E - 3) (2.7E - 3) (4.1E - 3) (7.4E - 3) 

512 2.00 2.00 2.00 2.00 2.01 2.32 
(2.4E - 5) (1.7E - 4) (4.5E - 4) (6.9E - 4) (9.9E - 4) (1.SE - 3) 

TABLE 2 

RATE(EMAX) 

1 h**0.25 h**0.5 h**0.75 h**1 h**1.5 
8 1.96 2.02 2.08 2.08 1.95 1.79 

(4.2E - 1) (3.8E - 1) (3.3E - 1) (2.8E - 1) (2.5E - 1) (2.6E - 1) 
16 1.97 2.02 2.12 2.05 1.95 1.76 

(l.E - 1) (9.5E - 2) (7.8E - 2) (6.6E - 2) (6.4E - 2) (7.7E - 2) 
32 2.00 2.07 2.10 1.98 1.97 1.56 

(2.7E - 2) (2.3E - 2) (1.8E - 2) (1.6E - 2) (1.7E - 2) (2.3E - 2) 
64 2.00 2.07 2.06 1.98 1.69 1.82 

(6.9E - 3) (5.6E - 3) (4.2E - 3) (4.OE - 3) (4.2E - 3) (7.6E - 3) 
128 2.00 2.08 2.01 1.99 1.80 1.92 

(1.7E - 3) (1.3E - 3) (1.OE - 3) (1.OE - 3) (1.3E - 3) (2.2E - 3) 
256 2.00 2.07 1.99 1.82 1.91 1.96 

(4.3E - 4) (3.1E - 4) (2.5E - 4) (2.6E - 4) (3.7E - 4) (5.7E - 4) 
512 2.00 2.07 1.99 1.83 1.94 1.98 

(l.E - 4) (7.4E - 5) (6.3E - 5) (7.3E - 5) (1.OE - 4) (1.SE - 4) 

(see [10, p. 81]). The results are given in Table 2. In this example, the analytic 
solution can be computed. Thus we define 

EMAX = max I y(xj) - u(xj) | and RATE = {ln(E1) - ln(E2) }/ln(2), 
O<j N 

where E' and E2 correspond to EMAX for h = 1/N and h = 1/2N, respectively. 
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