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Integral Equations on the Half-Line: 
A Modified Finite-Section Approximation 

By I. H. Sloan and A. Spence 

Abstract. We consider the approximate solution of integral equations of the form yy(t) - 

fj) k(t,s)v(s)ds = f(t), where the conditions on k(t,s) are such that kernels of the 
Wiener-Hopf form k(t, s) = K(t - s) are included in the analysis. The finite-section ap- 
proximation, in which the infinite integral is replaced by fe for some /8 > 0, yields an 
approximate solution y,O(t) that is known, under very general conditions, to converge to y(t) 
as /3 oo with t fixed. However, the convergence is uniform only on finite intervals, and the 
approximation is typically very poor for t > /3. Under the assumption that f has a limit at 
infinity, we here introduce a modified finite-section approximation with improved approxima- 
tion properties, and prove that the new approximate solution converges uniformly to y as 
3 - oo. A numerical example illustrates the improvement. 

1. Introduction. We consider integral equations of the form 

(1) y(t) - k(t, s)y(s) ds = f (t), t E R+, 

or 
y - Ky =f, 

under the assumptions that f and y are bounded, continuous functions on R+, and 
that f has a limit at infinity. The conditions on k(t, s), to be stated fully in Section 
2, admit kernels of the Wiener-Hopf form k(t, s) = K(t - s), where K E L(R). 
Many radiative transfer problems in astrophysics (see, for example, [4]) are of the 
form assumed here. 

We shall assume throughout that 1 0 a(K), where a(K) is the spectrum of K in 
the space X+ of bounded continuous functions on R+ with norm 

IIgII= sup g(t)l. 
teR+ 

Then (1) has a unique solution y E X+ for each f E X+. 
The conventional finite-section approximation is defined, for /B E R+, by 

(2) yp(t) - f8k(t,s)yp(s) ds = f(t), t E R+. 

Recently, Anselone and Sloan [1], extending earlier work of Atkinson [2], have 
established that y'a(t) converges to y(t) as ,B oo, and that the convergence is 
uniform for t in any finite interval. On the other hand, the convergence is in general 
not uniform on R +. This behavior is illustrated by an example in Section 4. 
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The main purpose of this paper is to show that a uniform approximation to y may 
be obtained by a simple modification of the finite-section approximation. The 
modification is based on the fact (see [7]) that y, like f, has a limit at infinity; and, 
moreover, the limit y(ox) is available without solving the integral equation (see 
Theorem 1). Using this information, we make the approximation 

(3) f k(t, s)y(s) ds f k(t, s)y(oo) ds, 

and thus approximate (1) by the equation 

(4) z(t) - | k(t, s)zp (s) ds = f 

where 

f,(t) = f (t) +? k(t, s)y(oo) ds. 

We call zg the modified finite-section approximation to y. Note that the modified 
equation (4) has the same form as the conventional finite-section equation (2), except 
that the inhomogeneous term f is now replaced by a modified term f,8. Intuitively, it 
seems clear that zp will be a better approximation than Y,B when t is large. This 
notion is made precise in Section 3, where we prove that zp converges uniformly to y 
on R + as ,B - oc. In Section 4, a numerical example illustrates the improved 
approximation properties of the modified finite-section approximation over the 
conventional approximation. 

It should be noted that (2) and (4) are in effect integral equations over the finite 
interval [0, fi], and so may be solved by any of the standard methods for such 
problems, for example, by quadrature (see [2] or Section 4), collocation, or Galerkin's 
method. The method of collocation with piecewise-constant basis elements applied 
to (4) can be seen to be equivalent, at least on [0, /3], to a certain collocation method 
applied to the original equation (1), namely, the method of 'collocation at xc'; see [7, 
Section 6]. In [7] the authors discuss the stability, convergence and global supercon- 
vergence of this and other projection methods applied to (1). 

2. Limits at Infinity. The kernel k(t, s) in (1) will be assumed to be expressible in 
the form 

k (t, s) = K(t - S) + l(t, s), 

where K E L(R), and where / satisfies the three conditions: 

sup f I(t,s)I ds<o, 
t 0 

1 |(t, s) - I(t, s)|I ds 0 as t' -4t, for t cR+, 

J 
IG(t,s)Ids-0 astt -o. 

We shall assume from now on that f is in C,, the subspace of X+ consisting of 
the continuous functions on R+ that have a limit at infinity. In this space, the 
integral operator K with kernel k(t, s) is a bounded operator, with norm 

IIKII= sup f Ik(t,s)Ids. 
t 0 

However, it is a compact operator if and only if K = 0 (see [2], [6]). 
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The spectrum of K in the space C,' is shown in [7] to be the same as in the space 
X+, i.e., in the notation of Section 1, to be a(K). Thus, for 1 0 a(K), Eq. (1) has a 
unique solution y E C,' for each f E C,l. The existence and uniqueness in C,1 of 
the solutions yp and zp of (2) and (4), for /B sufficiently large, is established in the 
following section. 

Given the existence of the limits at infinity, it is an easy matter to take the limit 
t x-*0 in (1), (2), and (4), and so obtain the following theorem: 

THEOREM 1. Assume 1 0 a(K) andf, yp', zp E Cl/. Then 

y(xo)= 1 1 f(oo), yp(oo) = f(oo), za(0O) =y(x) 

where 

x = K(U)dU. 
-00 

The first result is proved in [7]. The second and third results follow in a 
straightforward way. From [7] we also draw the remark that the denominator 1 - X 
cannot vanish for 1 0 a(K). 

It is immediately clear from Theorem 1 that yp(ox) # y(ox), unless either f (o) = 0 
or X = 0. Hence (2) should not be used if an approximation to y(t) is required on 
the whole of [0, oc). On the other hand, zq(t) has the correct limit at xc, thus 
opening the possibility (which we shall later confirm) that it is an acceptable 
approximation for all t in [0, ox). 

3. The Modified Finite-Section Approximation. The main results in this section are 
that the modified finite-section approximation zp, the solution of (4), exists and is 
unique for ,8 sufficiently large (Theorem 2), and converges uniformly to y (Theorem 

3). 
To aid the discussion, it is convenient to introduce the finite-section integral 

operator, 

K,ag(t) = | k(t, s)g(s) ds. 
0 

Clearly, K, is a bounded operator on Cl, with 1K6I < IlKKII. The conventional 
finite-section approximation (2) and the modified approximation (4) may be written 
as 

(5) y -Kay f 

and 

(6) Z- Kzq f, 

respectively. Thus, in both cases, the existence and uniqueness of the approximations 
is established if we can prove the existence of (I - K,)-1 as a bounded operator on 
the Banach space C,t. (Here, I is the identity operator.) 

THEOREM 2. (i) Assume 1 0 a(K). Then, for/3 sufficiently large, (I - K)-1 exists 
as a uniformly bounded linear operator on C,l. That is, there exists M > 0, with M 
independent of /3, such that 1(I - Kp)-111 < M, for all ,B sufficiently large. 

(ii) Assume also f E C,l. Then, for fi sufficiently large, y and z exist u1iquely in 

C,, and are bounded uniformly in /3. 
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Proof. (i) The result is trivial if IIKII < 1, since then IIK8II < IIKII < 1. For 
1 < IIKII, the existence and uniform boundedness of (I - K)-1 as an operator on 
X+, for ,B sufficiently large, has been proved in [1] by a novel application of the 
Arzela-Ascoli theorem. (More recently, a constructive proof of this result has been 
given in [5].) The extension of that result to the space C,+ is proved in [7]. 

(ii) On noting that f, in (6) is bounded uniformly in ,B, these results follow 
immediately from (i). O 

To establish the uniform convergence of z to y, we write the exact equation (1) as 

y - Kfy =f +(K- K8)y, 

and subtract (6) from this equation, obtaining 

(I-Ks)(y-z.) = rs, or y-z = (I-Ks)lr 
where 

r,(t) = J k(t,s)[y(s) -y(oo)] ds. 

Clearly, 

llr| |K || sup I|Y(S)- y(ox)| 
s?/ 

and so, using the result of Theorem 2, 

|| y- z, | < M|| K || sup I y (s) -y (xo)| 
s?/3 

which converges to zero as 3 xo. Thus we have proved the following theorem: 

THEOREM 3. Assume 1 0 a(K) and f E Cl+. Then for /3 sufficiently large, the error 
in the modified finite-section approximation zp satisfies 

II Y - zp II< Ml| K || sup l y(s) - y(oo)1, 
s>/3 

where M is the constant in Theorem 2. Thus, zp converges uniformly to y as /3 x~ 0. 

If, as will often be the case, y is monotone for sufficiently large argument, then 
the bound in the theorem becomes simply 

IY - Z|| 1 < Mll K 1 Iy(p) -Y(Xo)1 

Thus, the rate at which zp converges to y depends on the rate at which y(/) 
approaches y(oo). 

4. Example. In this section we consider an example, similar to Example 1 of [2], on 
which the performance of the approximations y and z can be compared. The 
example is 

y(t) - f K(t - s)y(s) ds = f (t), t E R+, 

with 

K(U) = 2 (eu + e- )- 

and 

f(t) = 1-e - 
2 

[tan-l(e') - 4e-'log(l + e 
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where X * 0 is a real number. It can easily be verified that y(t) = 1 - e-t is an 
exact solution of this problem for all X. A kernel of this type arises in a reformula- 
tion, using the double-layer potential, of Laplace's equation on a wedge of angle 
iT/2 [3, Eq. (2.11)]. 

For this example, the norm of the integral operator K is IIKII = 1/XIX. Moreover, 
by using the results in Section 8 of [1] and Section 6.10 of [8], one can show that the 
spectrum of XK in the space X' (or, equivalently, in the space Cj) is [0, 1]. Since 
1 E a(K) if and only if X E a(XK) = [0, 1], it follows that the inverse, (I - K)-1, 

exists as a bounded operator on Cj' for all X outside the interval [0, 1]. Finally, 

x = 1/x, f (x) = 1 - 1/X, 
so that Theorem 1 predicts y(oo) = 1 for X 0 [0, 1], which is consistent with the 
known exact solution. 

The exact solutions of the conventional and modified finite-section equations (5) 
and (6) are not available for this example, so we have to resort to standard numerical 
methods to obtain numerical results. Any method could be used, as long as it is of 
sufficient accuracy. For simplicity we used the quadrature (Nystrom) method, based 
on Simpson's rule, with a step-length h = 0.005. The resulting approximate solutions 
of (5) and (6) are denoted below by Y1 and Zp, respectively. Numerical experiments 
suggest that in fact they differ insignificantly from the corresponding exact quanti- 
ties Y,B and Z,f. 

First we consider the example with X = 2. In this case, IIKiI = 2, and since 

IIK,fh < IlKII, we have the bound 11(I - Kfl)-'I < (1 - IIKflI)-' < 2. Using the fact 
that y(t) = 1 - e t, the bound from Theorem 3, 

IIY - z#I < MIIKIIsup Iy(s) -y(oo), 
s?/3 

now becomes 

Numerical results for IIY - Z,,11 for four values of ,B are given in Table 1. In every 
case the theoretical bound is satisfied comfortably. 

TABLE 1 

Numerical results for the example with X = 2, illustrating the 
validity of the bound in Theorem 3. 

bound from 

A3 IIY - Z#11 Theorem 3 (= e-) 

4 0.25 10-2 0.18 10-1 
6 0.33 10-' 0.25 10-2 
8 0.45 10-4 0.34 10' 

10 0.61 10-5 0.45 10-4 

Next, we consider the same example, with X = -0.5. In this case IIKII = 2, so that 
Theorem 3 yields 

11 Y- Z, 11 < 2Me-, 
with an unknown value for the constant M. The observed behavior of IIY - Z I I as a 
function of / (not shown) was broadly similar to that in Table 1. In Figure 1 we 
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FIGURE 1 

Comparison of approximation properties of Z8 and Y} for example 
with A = -0.5 and f = 8. Here X = log10ly(t) - Y1(t) , and 

o = log10Ay(t) - Zfi(t)j. 

show how the error for X = -0.5 behaves as a function of t for a particular value of 
,B, namely /i = 8. Specifically, the plotted quantities are logloly(t) - Z (t)l (shown 
by circles) and logloly(t) - Y,1(t)l (shown by crosses). As predicted by Theorem 1, 
one observes that ly(t) - Z,8(t)l -> 0 as t -> oo, whereas logloly(t) - Y}(t)l con- 
verges to 0.301, corresponding to ly(t) - Y8(t)l -> 2. It is apparent that the mod- 
ified approximation is already much superior to the conventional finite-section 
approximation for this value of ,B, and the superiority can be expected to increase as 
,B increases. The modified approximation, not surprisingly, is seen to have its 
greatest error in the vicinity of the cut-off parameter P. 
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