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A Spectral Galerkin Method for a Boundary 
Integral Equation 

By W. McLean 

Abstract. We consider the boundary integral equation which arises when the Dirichlet 
problem in two dimensions is solved using a single-layer potential. A spectral Galerkin 
method is analyzed, suitable for the case of a smooth domain and smooth boundary data. The 
use of trigonometric polynomials rather than splines leads to fast convergence in Sobolev 
spaces of every order. As a result, there is rapid convergence of the approximate solution to 
the Dirichlet problem and all its derivatives uniformly up to the boundary. 

1. Introduction. Let S denote a bounded open subset of R2 with boundary 
F =as. 

The interior and exterior Dirichlet problem is to find U satisfying 
(1.la) AU=O on R2\F, 
(1.lb) U= g on F, 

(l.lc) U(X) =log l) + 0(1) as I Xi - oo, 

where g is a given function on F, and ,B is a specified constant. A unique classical 
solution exists, assuming F is Lipschitz and g is continuous. We shall seek a 
function v e L2(F) and a constant a such that this solution is given by the 
single-layer potential 

(1.2) U(X)= 
1 

log(1x y1)v(Y)dc(Y)+a, Xe R , 

where a is the arclength measure on F. The formula (1.2) defines a function which is 
harmonic on R2 \ F and continuous on R 2. The boundary condition (1.lb) is 
satisfied if and only if the pair (v, a) is a solution of the integral equation 

(1.3a) 1TI logt 1X y v(Y) da(Y) + az = g(X), X E Ir, 

and the required behavior at infinity (1.lc) occurs if and only if 

(1.3b) jvda = P. 

In order to state a basic existence and uniqueness theorem for (1.3), let K denote 
the real or complex number field and let W21(F) denote the Sobolev space consisting 
of those functions in LP(F) which have a weak tangential derivative in Lp(r). 
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THEOREM 1.1 ([10]). If I' is Lipschitz, then the operator (v, a) |-* (g, /3) defined by 
(1.3) is an isomorphism L2(r) x K -- W2'(F) x K. 

The proof of this result is straightforward, given the work of Verchota [16] on the 
classical method of layer potentials for Lipschitz domains. 

From this point on, it will be assumed that F is C', except where something to 
the contrary is stated explicitly. Moreover, we shall assume for convenience that F is 
connected and g E Cx(F). 

Numerical methods for solving the integral equation (1.3), or equations closely 
related to it, have been discussed by many authors, including [1], [3], [5]-[12], [17]. A 
Galerkin method using periodic splines was analyzed by Hsiao, Kopp, and Wend- 
land [6], [7], who proved typical finite element error estimates with polynomial rates 
of convergence limited by the degree of the splines. Later, Arnold [1] introduced a 
Petrov-Galerkin method with periodic splines as trial functions and trigonometric 
polynomials as test functions. He proved error estimates for the resulting approxi- 
mations to (v, a) in Sobolev norms of arbitrarily large negative order, and from 
these was able to establish polynomial rates of convergence of arbitrarily high order 
for the corresponding approximations to U, the error being measured in the 
L.,-norm on compact subsets of R2 \ F. Furthermore, by use of the Hilbert space 

X, (see Section 5 below), Arnold showed that if F and g are not only C? but also 
analytic, then exponential rates of convergence are attained. 

In what follows, we shall present a spectral Galerkin method for solving (1.3), in 
which trigonometric polynomials are used both as test functions and as trial 
functions. The rates of convergence attained are the same as in the Petrov-Galerkin 
method of Arnold, but in our case the error estimates also hold in stronger norms, 
with the result that the approximations to U converge exponentially fast uniformly 
up to the boundary. We mention that a related technique was discussed briefly in a 
paper of Henrici [5, pp. 292, 501]. Also, in a recent paper, Lamp, Schleicher, and 
Wendland [9] have independently studied a generalization of the method, which 
allows one to deal with a class of periodic, elliptic pseudodifferential equations, and 
thus have obtained some of our results as special cases. (They consider the spaces Hp 
only for p = 2.) 

2. The Integral Equation on the Torus. The one-dimensional torus 
T = IR/2TZ 

will be identified as a set with the half-open interval (-7T, 7T] in the usual way. Let 
(2.1) Y = (71IY2): 
be a C? parametrization of F satisfying 

I 7(t) I =# 0 for -7T < t < 7T, 
where y denotes the derivative of y. By putting 

(2.2) u(t) = v[y(t)IIi(t)I, f(t) =gy(t)] 
the integral equation (1.3) can be rewritten as 

(2.3a) j log( Iy(x) - Y u(t) dt + ta f (x), -7r < x < , 

(2.3b) J u(t) dt = /3 
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In the special case where y is a circle of radius r, one can take 

-y(t) = re it -wT < t , wT; 

then 

jy(x) - y(t)l = 2rlsin((x - t)/2)1. 

In the general case, we write (cf. [5, Eq. (2.8)], [6], [9]) 

\ I( lo X) - y(t) = A(x - t) + k(x, t), 

where 

A(t) = Wlog( Isin(t/2)I) 

is singular but 

I1lg Isin((x - t)/2)1 for) x t, 
jTIy(x) - y0 

k(x, t) = { l 1 2 
I 
s7 log( 1/2 l) for x = t, 

satisfies 

(2.4) kE C(T2)e 

Define the integral operators 

Au(x) = A * u(x) = J A(x - t)u(t) dt, Ku(x) = f k(x, t)u(t) dt; 

then (2.3) may be written 

(2.5a) (A+K)u+a=f onT, 
17 

(2.5b) f udt = ,B. 

In the next section we shall discuss the solvability of these equations using the 
Bessel potential spaces 

Hps(T), I < p < oo, s e R, 

which are defined as follows (cf. Nikol'skii [15], Bergh and Lofstrom [2]): Denote the 
Fourier coefficients of u by 

17 

Um f e -meu(t) dt, m EZ; 

define the basis functions 

em(t) = elmt, m E Z, 

and recall that for 1 < p < xc, if u e Lp(T), the Fourier series 

U = 2 T umem 
mez 

converges in Lp(T). Let D = d/dt be the operator of differentiation in the sense of 
distributions on T; then 

(2.6) (Dsu)m = (im)sum, s = 0,1,2. 
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For any real number s, put 

Jsu = E (1 + Im12)S/2Umem; 

then one can see from (2.6) that formally 

is = (1 -D 2) s12 

The space Hp(T) consists of those distributions u on T for which Jsu E Lp(T), and 
is a Banach space with norm IIUIIHs(T) = IlJsullp. The Bessel potential spaces are 
related to the familiar Sobolev spaces by 

HPs(1) = Wps(T), 1 <p < o, s = 0, 1, 2,.... 

with equivalence of norms. When p = 2, this fact is a consequence of Parseval's 
identity 

(2.7) 11UI12 = I ( uml2)a 

and for general p it can be proved using the following Fourier multiplier theorem. 

THEOREM 2.1 (MARCINKIEWICZ [13]). Assume 1 < p < so. If the complex numbers 
am, m E Z, satisfy 

lamI < M for m E Z, 

? lam+,-amI < M forj= 0,1,2,.... 
2J < Iml <2J +l 

then for every u E Lp(T) the sum m2m E z am'umem converges in Lp(T) and there is a 
constant cp depending only on p such that 

||Eamumem| < cpMIIuIIP. m E-Z p 
3. Regularity Theory. Our aim in this section is to generalize Theorem 1.1 by 

determining the precise relation between the smoothness of the solution to the 
integral equation and the smoothness of the boundary data. The first step is to 
determine how A transforms the Bessel potential spaces. 

Observe that, since 

DA(t) = cotan - 

the operator A is related to the Hilbert transform 

Hu(x) 21Ti f cotan( 2 ) u(t) dt 

by 
(3.1) DA = iH. 

(The notation f is used to indicate a Cauchy principal value integral.) It is a simple 
exercise in the calculus of residues to show 

Hem= sign(m)em, m E Z, 

where 

(-1 for m<0, 
sign(m)= 0 form =0, 

1 form > 0, 
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and from this one can see why the following well-known results hold; cf. Theorem 
2.1. 

THEOREM 3.1. The Hilbert transform is a bounded operator 

H: Lp (T) Lp (T), 1 < p < o, 

and satisfies 

(Hu) = sign(m)U-m, m E Z, 

H2u=u- udt. 

Since A is a convolution operator, 

(Au) 'Xm = m where Am =m 

and using (2.6), (3.1), and Theorem 3.1, one can deduce 

Am l/Imi forO # m e , 

Ao=J A(t)dt=21og2, 

A-lf = -iHDf + 2 AX Jfdt. 

Noting that Js commutes with convolution operators, the next theorem is now 
obvious. The notation a is used to indicate an isomorphism of Banach spaces. 

THEOREM 3.2. For 1 < p < o and s E RS, 

A: Hp(T) ? Hps+l(lr). 
Define the vector operator 

sel(u,a) = ((A + K)u + a, f udt) 

and write the equations (2.5) in the form 

(3.2) ..V(u,a) = (f,,6); 
then the main result for this section can be stated as follows. 

THEOREM 3.3. For 1 < p < oo and s E R, 

.29: Hps(T) X K +-- Hps+ 1(T) X K. 

Proof. Decompose jV onto so= ij + 1 where .o/0(u, a) = (Au, a) and %(u, a) 
= (Ku + ao, Jf, udt - a); then P0 is an isomorphism by Theorem 3.2 and X is 
compact by (2.4). Therefore s/ is a Fredholm operator with zero index and we have 
only to observe that Theorem 1.1 implies P/ is one-one. E 

Remark 3.4. An alternative proof of the preceding theorem for the case p = 2 is 
given by Hsiao and Wendland [7]. 

4. The Numerical Method. Denote the space of trigonometric polynomials of 
degree < n by 

Yi;= span{em: ImI < n}, n = 1,2,3,.... 
and write 

(f ig) = J f(t) g(t) dt; 
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then look for an approximate solution (un, aE) E -rn x K satisfying the Galerkin 
equations 

(4.1a) (Pl(A + K) un + aXn) = (p I f )for all (p E i; 

(4.1b) f undt= 

This is a spectral method, because the eigenvalues and eigenvectors of A are given 
by 

Aem=Xmem m E Z. 

Write un in the form 

(4.2) u Z em 
Imln m 

then the unknowns z-, .... < Z, an satisfy the (2n + 2) x (2n + 2) linear algebraic 
system 

E [6m + A (e, I Kem) jzm + 2 7T810an = (e, f) 1 < n, 
(4.3) m IV nLm 

xo 

The inclusion of the factor 1/Am in the mth term of the expansion (4.2) for un 
ensures that the 12 condition number of the coefficient matrix is bounded as n - oo; 
cf. Mikhlin [14, Chapter 5]. 

Let the operator Pn: L2(T) -- $7n be the orthogonal projection onto the subspace 
Tn; then Eq. (4.1a) is equivalent to 

Pn[(A + K)Un + an] = Pnf. 

Since 
1 

Pnu = - E umem 
' 2 ImI <n 

is just a truncation of the Fourier series for u, it is clear that Pn commutes with A 
and satisfies Pnl = 1. Hence, if we define the operator 

n (u, a) = ((A + PnK)u + a, f udt), 

then the Galerkin equations (4.1) can be written 

(4.4) -fln(un,an) = (Pnf,fi). 
This form is convenient for carrying out the error analysis which follows. 

THEOREM 4.1. If 1 < p < oo and s E R, then for n sufficiently large, the solutions 
to (3.2) and (4.4) satisfy 

(4.5) IIun - uIIS(T) + I a -a| < C5 Pll(I - Pn)f)u (T) 

Proof. First note that 

(Vn - s&)(u, a) = ((Pn - [)Ku, O); 
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then observe that, since K has a smooth kernel, 

lim I(I - P)K: Hps(T) - 
Hp+(T) = 0. 

ii -* 00 

(This can easily be proved using Theorem 4.2 below.) Hence s&n converges to _W in 
the operator norm and the stability result 

I :n 
1 

Hps+ 1(T) x K- Hps(T) x K < cS p 

follows immediately from Theorem 3.3. The error estimate is now a consequence of 
the identity 

Wn (un - an - a) = ((Pn - I)Au, O) 
and the inequality (cf. Theorem 3.2) 

|'(I - Pn)AuIH,+1(T) = A(I- PJ)UIIHs+1(T) < Cll(I - P)UIIHps(T). 

The next step is to estimate the right-hand side of (4.5). 

THEOREM 4.2. For 1 < p < x and -x < s < r < x, 

Il(- Pn)UsHps(T) < Cp,r-sn iiUiiHr(T). 

Proof. Since Js commutes with Pn we may assume s = 0. Given n > 1, let 1 > 0 
be the unique integer satisfying 2' < n < 2'`1; then by the Marcinkiewicz Multiplier 
Theorem 2.1, 

IP 2 11U 2 1, m m | cp umem rnjl>n p lmlI,2' 

The triangle inequality implies 
00 

|| E m || < E | E m m | 
jmtl>21 p j=e 2J<Iml<2J+ 

< ( 2 i sup 2J ||Umem|j 
j=l ri> 2J< 2mm<2J+1 p 

and another application of Theorem 2.1 gives 

jr- C IjrU lip. || E 2i2 umemi < Cp,rillJU| 
2J<Inm1<2J+1 p 

By the choice of 1, 

___2-_Ir 2r r 
E 2 =1 - 2- 1 - 2 -rjn 

1= 

and therefore 

1(1 - Pn)UIIp < Cp,rn rIIUIIHr(T). L3 

Remark 4.3. With minor modifications, the preceding proof actually establishes 
the slightly stronger result 

' (I- P1 )U||p < Cr,pn rIlUllBr(T). 
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This estimate involving the Besov space BPo'.(T) is in a certain sense the best 
possible; cf. Bergh and Lofstrom [2, p. 188]. 

5. Exponential Rates of Convergence. The error estimates of the last section can 
sometimes be improved upon by making use of the Hilbert space 

XS,e S E R, - > 0, 

which is defined abstractly as the completion in the norm 
1/2 

se = ( E (1 + Im12)s E2ImII m) 
mEEZ 

of the space Ul0 0; of trigonometric polynomials. These spaces are taken from the 
paper of Arnold [1], where a discussion of their basic properties may be found. 

One can see from (2.6) that 

Xs, CC o(T) fors E=Rand E>1, 

and from Parseval's identity (2.7) that 

XS= H2(T) fors e R, 

with equivalence of norms. On the other hand, for 0 < E < 1, the space Xs, contains 
elements which are not even distributions on T. (If u is a distribution, then 
um O(ImIs) for some integer s > 0.) For our purposes, the utility of Xs, stems 
from the following approximation theorem; cf. Theorem 4.2. 

THEOREM 5.1. For -oo < s < r < oo and E 1, 

(((I - Pn)JUIIH(T) < 2 n IIUIIr,e 

Proof. Using Parseval's identity (2.7), 

(2h)211(I _ Pfl) UII112 = 12 (1 ? IM12)S I mI2 (2 7T) || W) 2(T) 
- 

(+ m)|U| 

lml>n 

< ( SUp (1 + Im12)sr E21m)( l (1 ? IM12)re21ml mI2) 
lml >n lml> n 

< (fns E r)n)2I1UI1re2 

To make use of this result in Theorem 4.1, we must know u E Xs, for some E> 1, 
and hence the remainder of this section is devoted to establishing the necessary 
regularity theorem. 

For 8 > 0, let Y, be the vector space of functions f which are analytic and satisfy 
f(z + 2 7) = f(z) in the strip jIm(z)I < S. By Cauchy's theorem, if f E Ya0, then 

(5.1) IfmI < e8m I max If(Z)I 0 < a < so 

which shows 

Y,8c X5 fors ER and0 < E <e8. 

We shall now assume: 

(5.2) the functions y1, y2 and f appearing in (2.1) and (2.2) all 
belong to Y^0 for some o > 0. 
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This will enable us to prove the following 

LEMMA 5.2. The operator 

K * X5l ?1* X52 .2 

is compact for s1, s2 E R, El > e-8o and 0 < E2 < e80. 

Proof. First we remark that since u --* ((1 + ImU2)s/2emum)m E Z is an isometry 

Xs"e -_ 12(Z), a subset Y of XsE is precompact in XsE if and only if it is bounded 
and satisfies 

lim sup u (1 + |m| )sE2ImI = 0; 
n-oo UEY' Imj>n 

cf. Edwards [4, p. 269]. The Fourier coefficients of the kernel of K, 

km = f e-'(mx?+t)k(x, t) dxdt, 

satisfy 

IkIml < ea(ImI?III) max Ik(zl, Z2) 
IM(ZI)= +, IM(Z2)=+ 

for 0 < 8 < 80; cf. (5.1) and [1, Lemma 4.5]. Choose 8 so that E2e-8 < 1 < E18; 
then by the Schwarz inequality, 

I(Ku),I2=, , k u2 
feZ 

2 ce281mi( (i + 
11Als1(cieay2III)( 

+ 2l2)s1e2IIl,I2) ce 
z 

le8 
z 

= ce-281mIlIUII 2 

and hence 

sup E (1 + Imj2)s2E2ImII(Ku) 12 < (i + Im12)S(E2e_)21m. 
lull5l e< 1 n1j> 7 Iml > n 

This shows that K maps the unit ball of Xs, E, into a precompact subset of XS2 E2. El 

THEOREM 5.3. If (5.2) holds, then 

jz: Xs e X K6 Xs+,?e X K 

fors E- R and e-8o < E < ea. 

Proof. One has only to modify the proof of Theorem 3.3, noting that 

K: Xs, *Xs+,,ie 

is compact by Lemma 5.2, and 

A: Xse X?s+,,. El 

Remark 5.4. Arnold [1] proved this theorem only for e 'o < E < 1, which is not 
the case of interest to us. 

6. Conclusion. Corresponding to the numerical solution un on T, there is a unique 
function vn on F satisfying un(t) = vj[y(t)]Ij(t)I; cf. (2.2). The resulting single-layer 
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potential 

(6.1) Un(X) = 7f log(11_ VJ(Y)da(Y) + 
an, X E R 2 

furnishes an approximation to U which satisfies the following asymptotic error 
estimates. 

THEOREM 6.1. Let a (al1, a(2) be any pair of nonnegative integers and write 

k=a1+(X2, a ( ax ) ( aX2 

(i) If F and g are C , then 

I|aa(Un - U) ||L.(R 2\F) < Cklrnk111ogn IIgIIH2r) 

for every r > k + I2 

(ii) If F and g are analytic as in (5.2), then 

llaa(Un - U)IIL.(R2\r) ck,r eE n og n IIgilIr,e 

for r> k ? 2 and 1 E e < ea8. 

Proof. Put gn = Un F F; then the error En = Un - U satisfies 

AEn =0 onR2\F, 

En = gn-g on F, 

En( X) = 0(1), as IXi - , 

and so, using the arguments set out in Arnold [1, Theorem 5.4], 

(6.2) IIa3EnIIL.(R2\r) < Ck/j lIgn - gIIHJ+M+1/2(P) 

for 0 < .t < 1. Theorems 3.3 and 4.1 imply 

lign - gIH2(F) < Cs-lun UIIH2-1(T) + Ian - aI) 

< cs|(I - Pq))utH2s-1(T) < cr Sn CIgriHn(s) 

for r > s, so 

llaaEnil L (R 2\r) -< Cr,ktL 112nk tL1/2r rllgI2r (IF) 

and putting tcO = log n this proves part (i). For part (ii), use Theorems 5.1 and 5.3 
to obtain 

lIgn - gIIH2'() < Csrns -rE Igr 

for s < r and 1 < - < e8o. O 
Remark 6.2. In part (i) of the above theorem we have not made full use of the 

results of Sections 3 and 4 but only of the case p = 2. This restriction is due to the 
trace theorems and to a priori estimates used to prove (6.2). It is interesting to note, 
however, that the well-known formula for the normal derivative of a single-layer 
potential allows one to prove natural error estimates for the normal derivative of Un 
in Hp(F) for 1 < p < oo. Actually, if instead of Hp one works with the Besov space 
Bpq, for which the relevant trace theorems and a priori estimates hold for 1 < p < oo, 
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then it is possible to show [12, Theorem 6.2] 

Ilaa(Un - U) ||L,(R2\r) < Ck,p,rn 
k+ llp r 1 (r), 

where r > k + i/p and 1 < p < oo. Notice that here there is no factor involving 
log n, the reason being that one can use the sharp imbedding B1jP(T) c QT), 
1 < p < oo, to obtain maximum-norm estimates. 

In contrast to the analogous results of Arnold [1, Theorem 5.3], our error 
estimates for Un and its derivatives are valid uniformly up to the boundary and not 
just on compact subsets of R2 \ r. Of course, in practice one must take account of 
additional errors arising from the use of numerical quadratures to evaluate the 
integrals defining (el I Kern) and (el I f ) in (4.3) and Un in (6.1). For a discussion of 
these matters, including the use of fast Fourier transforms, we refer to [9], [10, 
Section 5.4], and [11]. Results of numerical experiments are given in [5], [9], [11], [17]. 

*Finally, I wish to thank Professor H. Triebel for some discussions which were 
helpful in the proof of Theorem 4.2. 
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