An Estimate of Goodness of Cubatures for the Unit Circle in R²

By J. I. Maeztu

Abstract. The Sarma-Eberlein estimate s_E is an estimate of goodness of cubature formulae for n-cubes defined as the integral of the square of the formula truncation error, over a function space provided with a measure. In this paper, cubature formulae for the unit circle in \mathbb{R}^2 are considered and an estimate of the above type is constructed with the desirable property of being compatible with the symmetry group of the circle.

1. Isometries and Two-dimensional Cubature Formulae. Let

(1.1)
$$S_2 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$$

be the unit circle in the two-dimensional Euclidean space \mathbb{R}^2 and let $\mathscr{U}(S_2)$ denote the symmetry group of S_2 . This group consists of all linear bijective maps u: $\mathbb{R}^2 \to \mathbb{R}^2$ which preserve the Euclidean distance (that is, isometries of \mathbb{R}^2 leaving the origin invariant). Each element of $\mathscr{U}(S_2)$ can be identified with a 2×2 real orthogonal matrix and therefore

$$\mathscr{U}(S_2) = \{ u_{\alpha}, u_{\alpha} \circ v; \alpha \in [0, 2\pi) \},$$

where u_{α} denotes the rotation of α radians around the origin and v is the reflection about any fixed straight line passing through the origin; thus

(1.3)
$$u_{\alpha}(x, y) = (x \cos \alpha - y \sin \alpha, x \sin \alpha + y \cos \alpha),$$
$$v(x, y) = (x, -y).$$

Let w(x, y) be a normalized weight function compatible with $\mathcal{U}(S_2)$, that is, a real positive continuous function in the interior of S_2 such that

(1.4)
$$\iint\limits_{S_2} w(x, y) dx dy = 1 \text{ and } w \circ u = w \text{ for all } u \in \mathscr{U}(S_2).$$

A cubature formula for the w-weighted circle S_2 has the form

(1.5)
$$I(f) = Q_N(f) + E(f),$$

Received May 14, 1985; revised November 27, 1985. 1980 Mathematics Subject Classification. Primary 65D32.

where

(1.6)
$$I(f) = \iint_{S_2} w(x, y) f(x, y) dx dy,$$
$$Q_N(f) = \sum_{i=1}^N A_i f(x_i, y_i), \quad (x_i, y_i) \in S_2,$$

and the constants A_i are independent of f.

Let us consider a symmetry $u \in \mathcal{U}(S_2)$ acting on (1.5). Since $I(f \circ u) = I(f)$, it leads to another cubature formula

(1.7)
$$I(f) = Q'_{N}(f) + E'(f),$$

where

(1.8)
$$Q'_{N}(f) = Q_{N}(f \circ u) = \sum_{i=1}^{N} A_{i} f(u(x_{i}, y_{i})),$$
$$E'(f) = E(f \circ u).$$

Definition 1. For every $u \in \mathcal{U}(S_2)$, the cubature formulae (1.5) and (1.7) are said to be $\mathcal{U}(S_2)$ -equivalent or equivalent with respect to the symmetry group of S_2 .

The integration of a function on the w-weighted circle S_2 is independent of the pair of orthogonal axis OX, OY whose origin O lies in the center of the circle. Therefore, all $\mathcal{U}(S_2)$ -equivalent formulae have identical characteristics when they are considered as approximations of the operator I.

Therefore, any estimate of goodness for cubature formulae (1.5) should be compatible with the $\mathcal{U}(S_2)$ -equivalence relation, that is, all $\mathcal{U}(S_2)$ -equivalent formulae should have the same estimate of goodness. For instance, the degree of precision of a cubature formula (1.5) is an estimate compatible with $\mathcal{U}(S_2)$, because the space of polynomials of degree at most n is invariant under all the symmetries in (1.2).

The aim of this paper is to construct an $\mathcal{U}(S_2)$ -compatible estimate of goodness of cubature formulae for S_2 similar to that defined by V. L. N. Sarma in [3] for cubatures for the square.

The next section is devoted to recalling briefly some characteristics of the Sarma-Eberlein estimate that are useful for our purpose. A detailed exposition of the construction of this estimate can be found in [3], [4] and [5] and an excellent summary of these results in [6, pp. 188–192].

2. The Sarma-Eberlein Estimate of Goodness s_E . Let us consider the square

$$C_2 = \{(x, y) \in \mathbf{R}^2 : |x| \le 1, |y| \le 1\}$$

and cubature formulae

(2.1)
$$I(f) = Q_N(f) + E(f),$$

where

(2.2)
$$I(f) = \frac{1}{4} \iint_{C_2} f(x, y) dx dy,$$
$$Q_N(f) = \sum_{i=1}^{N} A_i f(x_i, y_i), \quad (x_i, y_i) \in C_2.$$

Sarma in [3], [4] defines the estimate of goodness of the cubature formula (2.1) as

(2.3)
$$s_E^2 = \int_{FS_{\infty}} E(f)^2 df,$$

where the integral is defined over the unit sphere of a normed space of functions provided with a measure defined as follows:

Let l_1 be the space of real sequences

$$(2.4) f = \{ f_{nk}; n = 0, 1, \dots; k = 0, 1, \dots, n \}$$

such that

(2.5)
$$||f||_1 = \sum_{n,k} |f_{nk}| < \infty; \qquad n = 0, 1, \dots; k = 0, 1, \dots, n.$$

The unit sphere $S_{\infty} = \{ f \in l_1: ||f||_1 \leq 1 \}$ is compact in the weak*-topology of l_1 , and an elementary integral defined for the weak*-continuous real functions on S_{∞} can be extended by the Daniell process inducing a countably additive measure on S_{∞} .

Among the properties of this measure, let us recall that

(2.6)
$$\int_{S_{-}} f_{nk} f_{ml} df = 0 \quad \text{if } (n, k) \neq (m, l),$$

(2.7)
$$\int_{S_{\infty}} f_{nk}^2 df = \frac{2^{n+2}}{(n+2)!(n+3)!} = q_n^2.$$

Real two-dimensional power series

(2.8)
$$f(x,y) = \sum_{n,k} f_{nk} x^{n-k} y^k; \qquad n = 0, 1, ...; k = 0, 1, ..., n,$$

whose coefficients satisfy the condition

(2.9)
$$||f||_1 = \sum_{n,k} |f_{nk}| < \infty$$

converge uniformly and absolutely for all points $(x, y) \in C_2$.

The space Fl_1 of all functions defined by (2.8) and (2.9) can be identified with the sequence space l_1 and is dense in the space $\mathcal{C}(C_2)$ of all real continuous functions on C_2 with the uniform norm. This identification allows us to consider the above integral as an integral over the unit sphere FS_{∞} of the function space Fl_1 .

The truncation error E(f) of the cubature formula (2.1) is a continuous linear form over $\mathcal{C}(C_2)$ with the uniform norm and therefore also over Fl_1 with the $\|\cdot\|_1$ -norm. Using (2.6) and (2.7), it follows that the estimate s_E defined by (2.3) can be written as

(2.10)
$$s_E^2 = \sum_{n=0}^{\infty} q_n^2 e_n^2,$$

where q_n is defined in (2.7) and

(2.11)
$$e_n^2 = \sum_{k=0}^n E(x^{n-k}y^k)^2.$$

It should be noted that the identification of l_1 and Fl_1 is made through the monomials $x^{n-k}y^k$ and the use of these particular functions makes s_E compatible with $\mathcal{U}(C_2)$, the symmetry group of C_2 , in the sense described in the previous

section. In effect, $\mathcal{U}(C_2)$ consists of the eight symmetries

$$(2.12) (x,y) \rightarrow (\pm x, \pm y); (x,y) \rightarrow (\pm y, \pm x)$$

and the equalities

(2.13)
$$e_n^2 = \sum_{k=0}^n E(x^{n-k}y^k)^2 = \sum_{k=0}^n E((\pm x)^{n-k}(\pm y)^k)^2 = \sum_{k=0}^n E((\pm y)^{n-k}(\pm x)^k)^2$$

imply that $\mathcal{U}(C_2)$ -equivalent cubature formulae have the same estimate of goodness s_E . Unfortunately, this estimate of goodness is not useful for cubature formulae (1.5), (1.6) for the unit circle S_2 , because it is not compatible with $\mathcal{U}(S_2)$, as can be computationally checked. For instance, taking $w(x, y) = 1/\pi$, the cubature formula (degree 3, 4 points) given by

$$(2.14) \quad Q_4(f) = \frac{1}{4} \left[f(\sqrt{2}/2, 0) + f(-\sqrt{2}/2, 0) + f(0, \sqrt{2}/2) + f(0, -\sqrt{2}/2) \right]$$

has an estimate of goodness $s_E = (-4)1.75032$, whereas the $\mathcal{U}(S_2)$ -equivalent formula (use a rotation of $\pi/4$ radians) given by

(2.15)
$$Q_4(f) = \frac{1}{4} \left[f(1/2, 1/2) + f(-1/2, 1/2) + f(1/2, -1/2) + f(-1/2, -1/2) \right]$$

has an estimate of goodness $s_F = (-4)3.81547$.

3. An Estimate of Goodness of Cubatures for the Unit Circle. In the previous section, the sequence space l_1 was identified with the space of functions Fl_1 by using the family of monomials $\{x^{n-k}y^k; n=0,1,\ldots; k=0,1,\ldots,n\}$, but we can also identify l_1 with other subspaces of $\mathcal{C}(C_2)$ or $\mathcal{C}(S_2)$ by using other families of polynomials. For each n, let us denote

(3.1)
$$M_n = \left\{ a_0 x^n + a_1 x^{n-1} y + \dots + a_n y^n; \ a_i \in \mathbf{R} \right\}$$

and let

$$\Phi_n = \{\varphi_{n0}, \dots, \varphi_{nn}\} \subset M_n$$

be a basis of M_n , i.e., $M_n = \operatorname{span} \Phi_n$.

If the polynomials φ_{nk} satisfy

$$(3.3) \quad \|\varphi_{nk}\|_{\infty} = \max_{(x,y) \in S_2} |\varphi_{nk}(x,y)| \leq c; \qquad n = 0,1,\ldots; \ k = 0,1,\ldots,n,$$

then the series

(3.4)
$$f(x, y) = \sum_{n,k} f_{nk} \varphi_{nk}(x, y)$$

whose coefficients satisfy (2.9) converge uniformly and absolutely for all points $(x, y) \in S_2$. If we denote $\Phi = \{\Phi_1, \Phi_2, \dots\}$, the space $Fl_1(\Phi)$ of all functions defined by (3.4) and (2.9) can be identified with the sequence space l_1 . Let us note that $Fl_1(\Phi)$ contains all real polynomials in two variables and therefore is dense in $\mathscr{C}(S_2)$ with the uniform norm.

This identification allows us to define, in a natural way, an estimate of goodness for cubatures (1.5) by

$$(3.5) s_E^2(\Phi) = \int_{FS_{\infty}(\Phi)} E(f)^2 df,$$

where

(3.6)
$$FS_{\infty}(\Phi) = \left\{ f \in Fl_1(\Phi) \colon \sum_{n,k} |f_{nk}| \leq 1 \right\}.$$

It is straightforward to deduce that this estimate can be expressed by

(3.7)
$$s_E^2(\Phi) = \sum_{n=0}^{\infty} q_n^2 e_n^2(\Phi_n),$$

where q_n^2 is given in (2.7) and

(3.8)
$$e_n^2(\Phi_n) = \sum_{k=0}^n E(\varphi_{nk})^2.$$

Our problem at this stage is to choose suitable families Φ_n satisfying (3.3), such that the estimate $s_E^2(\Phi)$ is compatible with the symmetry group $\mathscr{U}(S_2)$ in the sense described in Section 1.

As the matrix

(3.9)
$$\begin{pmatrix} \cos \alpha, & -\sin \alpha \\ \sin \alpha, & \cos \alpha \end{pmatrix}$$

associated with the rotation $u_{\alpha} \in \mathcal{U}(S_2)$ has eigenvalues $e^{i\alpha}$, $e^{-i\alpha}$ and eigenvectors $(1, i)^T$, $(1, -i)^T$, the use of complex arithmetic will simplify the calculations. Let us denote

$$(3.10) M_n^* = \{ a_0 x^n + a_1 x^{n-1} y + \dots + a_n y^n; a_i \in \mathbb{C} \},$$

and let

(3.11)
$$\Phi_n^* = \{ \varphi_{n0}^*, \dots, \varphi_{nn}^* \}$$

be a basis of M_n^* , i.e., $M_n^* = \operatorname{span}^*(\Phi_n^*)$.

Considering the natural complexification of linear operators

$$(3.12) E(f+ig) = E(f) + iE(g)$$

with the standard complex notation

$$(3.13) \qquad \left| E(f+ig) \right|^2 = \overline{E(f+ig)} E(f+ig) = E(f)^2 + E(g)^2,$$

we can define

(3.14)
$$e_n^2(\Phi_n^*) = \sum_{k=0}^n |E(\varphi_{nk}^*)|^2.$$

THEOREM 1. For every n, let $\Phi_n^* = \{\varphi_{n0}^*, \dots, \varphi_{nn}^*\}$ and $\Phi_n = \{\varphi_{n0}, \dots, \varphi_{nn}\}$ be bases of M_n^* and M_n , respectively, satisfying

- (i) $(\varphi_{n0}, \dots, \varphi_{nn})^T = A_n(\varphi_{n0}^*, \dots, \varphi_{nn}^*)^T$ where A_n is an $n \times n$ complex unitary matrix, i.e., $A^H = A^{-1}$;
- (ii) $\sum_{k=0}^{n} |E(\varphi_{nk}^*)|^2 = \sum_{k=0}^{n} |E(\varphi_{nk}^* \circ u_{\alpha})|^2 = \sum_{k=0}^{n} |E(\varphi_{nk}^* \circ u_{\alpha} \circ v)|^2$ for all $\alpha \in [0, 2\pi)$;
- (iii) there exists a $c \in \mathbf{R}$ such that $\|\varphi_{nk}\|_{\infty} \leq c$ for all n, k. Then, the estimate $s_E(\Phi)$ associated with the family $\Phi = \{\Phi_0, \Phi_1, \dots\}$ is compatible with the symmetry group $\mathcal{U}(S_2)$.

Proof. Let us remark that the operators

$$f^* \in M_n^* \to E(f^*) \in \mathbb{C},$$

$$f^* \in M_n^* \to f^* \circ u_\alpha \in M_n^*,$$

$$f^* \in M_n^* \to f^* \circ u_\alpha \circ v \in M_n^*$$

are linear and therefore "pass through the matrix A_n ".

Moreover, $E(\varphi_{nk})$ and $E(\varphi_{nk} \circ u)$ are real and therefore

$$\sum_{k=0}^{n} E(\varphi_{nk} \circ u_{\alpha})^{2}$$

$$= \left(\overline{E(\varphi_{n0} \circ u_{\alpha})}, \dots, \overline{E(\varphi_{nn} \circ u_{\alpha})}\right) \left(E(\varphi_{n0} \circ u_{\alpha}), \dots, E(\varphi_{nn} \circ u_{\alpha})\right)^{T}$$

$$= \left(\overline{E(\varphi_{n0}^{*} \circ u_{\alpha})}, \dots, \overline{E(\varphi_{nn}^{*} \circ u_{\alpha})}\right) A_{n}^{H} A_{n} \left(E(\varphi_{n0}^{*} \circ u_{\alpha}), \dots, E(\varphi_{nn}^{*} \circ u_{\alpha})\right)^{T}$$

$$= \sum_{k=0}^{n} \left|E(\varphi_{nk}^{*} \circ u_{\alpha})\right|^{2} = \sum_{k=0}^{n} \left|E(\varphi_{nk}^{*})\right|^{2}$$

$$= \left(\overline{E(\varphi_{n0}^{*})}, \dots, \overline{E(\varphi_{nn}^{*})}\right) \left(E(\varphi_{n0}^{*}), \dots, E(\varphi_{nn}^{*})\right)^{T}$$

$$= \left(\overline{E(\varphi_{n0})}, \dots, \overline{E(\varphi_{nn})}\right) A_{n} A_{n}^{H} \left(E(\varphi_{n0}), \dots, E(\varphi_{nn})\right)^{T} = \sum_{k=0}^{n} E(\varphi_{nk})^{2},$$

given that A_n is unitary. Similarly, it can be shown that

$$\sum_{k=0}^{n} E(\varphi_{nk} \circ u_{\alpha} \circ v)^{2} = \sum_{k=0}^{n} E(\varphi_{nk})^{2},$$

and therefore it follows in a straightforward way that $s_E(\Phi)$ is compatible with $\mathscr{U}(S_2)$. \square

Now let us consider the complex polynomials

(3.15)
$$\varphi_{nk}^* = (x + iy)^{n-k} (x - iy)^k \in M_n^*$$

obtained from the monomials $x^{n-k}y^k$ by a linear transformation with Jacobian

$$J = \begin{vmatrix} 1 & i \\ 1 & -i \end{vmatrix} = -2i,$$

so that $\varphi_{n_0}^*, \ldots, \varphi_{n_n}^*$ are linearly independent in M_n^* . Also,

$$(\varphi_{nk}^* \circ u_\alpha)(x, y) = \varphi_{nk}^*(x \cos \alpha - y \sin \alpha, x \sin \alpha + y \cos \alpha)$$
$$= e^{i(n-k)\alpha}(x+iy)^{n-k} e^{-ik\alpha}(x-iy)^k = e^{i(n-2k)\alpha} \varphi_{nk}^*(x, y),$$

thus

(3.16)
$$\sum_{k=0}^{n} \left| E\left(\varphi_{nk}^{*} \circ u_{\alpha}\right) \right|^{2} = \sum_{k=0}^{n} \left| E\left(\varphi_{nk}^{*}\right) \right|^{2}.$$

Similarly.

$$(\varphi_{nk}^* \circ u_{\alpha} \circ v)(x, y) = (\varphi_{nk}^* \circ u_{\alpha})(x, -y) = e^{i(n-2k)\alpha}(x - iy)^{n-k}(x + iy)^k$$

= $e^{i(n-2k)\alpha}\varphi_{n,n-k}^*(x, y),$

and then

(3.17)
$$\sum_{k=0}^{n} \left| E\left(\varphi_{nk}^{*} \circ u_{\alpha} \circ v \right) \right|^{2} = \sum_{k=0}^{n} \left| E\left(\varphi_{nk}^{*} \right) \right|^{2}.$$

Therefore, for each n, the family $\Phi_n^* = \{\varphi_{n0}^*, \dots, \varphi_{nn}^*\}$ is a basis of M_n^* which satisfies the hypothesis (ii) of Theorem 1.

For k < n/2 let us define

(3.18)
$$\varphi_{nk} = \frac{1}{\sqrt{2}} \left(\varphi_{nk}^* + \varphi_{n,n-k}^* \right) \\ = \frac{1}{\sqrt{2}} \left(x^2 + y^2 \right)^k \left[\left(x + iy \right)^{n-2k} + \left(x - iy \right)^{n-2k} \right],$$

(3.19)
$$\varphi_{n,n-k} = \frac{1}{\sqrt{2}i} (\varphi_{nk}^* - \varphi_{n,n-k}^*) \\ = \frac{1}{\sqrt{2}i} (x^2 + y^2)^k [(x + iy)^{n-2k} - (x - iy)^{n-2k}],$$

and if n is even,

(3.20)
$$\varphi_{n,n/2} = \varphi_{n,n/2}^* = (x^2 + y^2)^{n/2}.$$

Then, $\Phi_n = \{\varphi_{n0}, \dots, \varphi_{nn}\}$ is formed by polynomials with real coefficients and is a basis of M_n . Also the matrix A_n of Theorem 1 that relates the elements of Φ_n and Φ_n^* is a unitary matrix, because the matrices

$$\begin{pmatrix} \frac{1}{\sqrt{2}}, & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}i}, & \frac{-1}{\sqrt{2}i} \end{pmatrix}$$

that relate the pairs $(\varphi_{nk}, \varphi_{n,n-k})$ and $(\varphi_{nk}^*, \varphi_{n,n-k}^*)$ are unitary. Moreover, it can easily be shown that

$$\|\varphi_{nk}\|_{\infty} = \|\varphi_{n,n-k}\|_{\infty} = \sqrt{2}, \quad k < n/2,$$

and $\|\varphi_{n,n/2}\|_{\infty} = 1$ for n even.

Using the results above, and applying Theorem 1, we deduce the following

THEOREM 2. Let $\Phi = \{\Phi_0, \Phi_1, \dots\}$ where, for each n, $\Phi_n = \{\varphi_{n0}, \dots, \varphi_{nn}\}$ is the basis of M_n defined by (3.18), (3.19) and (3.20). Then the estimate $s_E(\Phi)$ defined by (3.5) is an estimate of goodness of cubature formulae for the unit circle that is compatible with the symmetry group $\mathcal{U}(S_2)$.

Following the proof of Theorem 1, we can also deduce that

(3.21)
$$s_E^2(\Phi) = \sum_{n=0}^{\infty} q_n^2 \sum_{k=0}^n E(\varphi_{nk})^2 = \sum_{n=0}^{\infty} q_n^2 \sum_{k=0}^n \left| E(\varphi_{nk}^*) \right|^2,$$

and therefore the estimate $s_E(\Phi)$ can be calculated using any of these two expressions.

TABLE 1

Formula	D	N	$s_E(\Phi)$
Centroid	1	1	(-2)3.72941
$S_2: 3-1$	3	4	(-3)1.52574
$S_2: 5-1$	5	7	(-5)4.17361
$S_2: 5-2$	5	9	(-5)1.56155
$S_2: 7-1$	7	12	(-7)7.32827
$S_2: 7-2$	7	16	(-7)7.31334
$S_2: 9-1$	9	19	(-10)2.86050
$S_2: 9-3$	9	21	(-9)8.64763
$S_2: 9-5$	9	28	(-10)5.70093
$S_2:11-1$	11	28	(-11)7.64307
$S_2:11-2$	11	28	(-12)2.00147
$S_2:11-3$	11	28	(-11)4.55280
$S_2:11-4$	11	32	(-11)7.64002
$S_2: 13-1$	13	37	(-14)3.05146
$S_2: 13-2$	13	41	(-14)1.03972
$S_2:15-1$	15	44	(-15)2.92306
$S_2:15-2$	15	48	(-15)2.88250
$S_2:17-1$	17	61	(-20)4.97655

Table 1 shows the values of $s_E(\Phi)$ for some cubature formulae (1.5) for the unit circle with $w(x, y) = 1/\pi$. The nomenclature of these formulae corresponds to the one in [6, pp. 277–289]. N stands for the number of nodes and D for the degree of precision.

Departamento de Matematica Aplicada Facultad de Ciencias Apartado 644 Bilbao, Spain

- 1. H. S. M. COXETER, Introduction to Geometry, Wiley, New York, 1969.
- 2. D. J. S. ROBINSON, A Course in the Theory of Groups, Springer-Verlag, Berlin and New York, 1982.
- 3. V. L. N. SARMA, "A generalisation of Eberlein's integral over function space," *Trans. Amer. Math. Soc.*, v. 121, 1966, pp. 52-61.
- 4. V. L. N. SARMA, "Eberlein measure and mechanical quadrature formulae I. Basic theory," *Math. Comp.*, v. 22, 1968, pp. 607-616.
- 5. V. L. N. SARMA & A. H. STROUD, "Eberlein measure and mechanical quadrature formulae II. Numerical results," *Math. Comp.*, v. 23, 1969, pp. 781-784.
- 6. A. H. STROUD, Approximate Calculation of Multiple Integrals, Prentice-Hall, Englewood Cliffs, N. J., 1971.