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An Estimate of Goodness of Cubatures 
for the Unit Circle in 12 

By J. I. Maeztu 

Abstract. The Sarma-Eberlein estimate SE iS an estimate of goodness of cubature formulae for 
n-cubes defined as the integral of the square of the formula truncation error, over a function 
space provided with a measure. In this paper, cubature formulae for the unit circle in 12 are 
considered and an estimate of the above type is constructed with the desirable property of 
being compatible with the symmetry group of the circle. 

1. Isometries and Two-dimensional Cubature Formulae. Let 

(1.1) S2 = {(X, y) E 1R2: x2 + y2 < 1} 

be the unit circle in the two-dimensional Euclidean space R2 and let 91(S2) denote 
the symmetry group of S2 This group consists of all linear bijective maps u: 
R2- R2 which preserve the Euclidean distance (that is, isometries of R2 leaving the 
origin invariant). Each element of 0&(S2) can be identified with a 2 x 2 real 
orthogonal matrix and therefore 

(1.2) 91(S2) = { ua, ua o v; a E [O, 2 

where u. denotes the rotation of a radians around the origin and v is the reflection 
about any fixed straight line passing through the origin; thus 

(1.3) ua(x, y) = (xcosa -ysina, xsina +ycosa), 
v (x, y) = (x, -y). 

Let w(x, y) be a normalized weight function compatible with 0&(S2), that is, a real 
positive continuous function in the interior of S2 such that 

(1.4) ff w(x,y)dxdy=l and wou=w foralluE91(S2). 
S2 

A cubature formula for the w-weighted circle S2 has the form 

(1.5) I(f ) = QN(f ) + E(f) 
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where 

I( f ) = Jf w(x, y)f(x, y) dxdy, 

(1.6) NS2 

QN(f) = E Aif (xi, yi), (xi, yi) E 52 
i=1 

and the constants Ai are independent of f. 
Let us consider a symmetry u E O/(S2) acting on (1.5). Since I(f o u) = I(f ), it 

leads to another cubature formula 

(1.7) I(f) = Q`(f) + E'(f), 

where 
N 

(1.8) QN(f) QN(f ? u) = (u(xi yi)) 

E'(f) = E(f o u). 

Definition 1. For every u E 0/(S2), the cubature formulae (1.5) and (1.7) are said 
to be 9/(S2)-equivalent or equivalent with respect to the symmetry group of S2. 

The integration of a function on the w-weighted circle 52 is independent of the 
pair of orthogonal axis OX, QY whose origin 0 lies in the center of the circle. 
Therefore, all 0&(S2)-equivalent formulae have identical characteristics when they 
are considered as approximations of the operator I. 

Therefore, any estimate of goodness for cubature formulae (1.5) should be 
compatible with the 9/(S2)-equivalence relation, that is, all 0&(S2)-equivalent for- 
mulae should have the same estimate of goodness. For instance, the degree of 
precision of a cubature formula (1.5) is an estimate compatible with 0&(S2), because 
the space of polynomials of degree at most n is invariant under all the symmetries in 
(1.2). 

The aim of this paper is to construct an 9/(S2)-compatible estimate of goodness of 
cubature formulae for 52 similar to that defined by V. L. N. Sarma in [3] for 
cubatures for the square. 

The next section is devoted to recalling briefly some characteristics of the 
Sarma-Eberlein estimate that are useful for our purpose. A detailed exposition of the 
construction of this estimate can be found in [3], [4] and [5] and an excellent 
summary of these results in [6, pp. 188-192]. 

2. The Sarma-Eberlein Estimate of Goodness SE. Let us consider the square 

C2= {(x, y) E R2: lX I< 1, IyI 1) 
and cubature formulae 
(2.1) I(f) = QN(f) + E(f ), 
where 

I(f)= f f(x, y) dxdy, 
4C2 (2.2) N 

QN(f) = E Aif (xi, yi), (xi, YJ) e C2 
i=1 
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Sarma in [3], [4] defines the estimate of goodness of the cubature formula (2.1) as 

(2.3) s2 = E( f)2 df, 
FS00 

where the integral is defined over the unit sphere of a normed space of functions 
provided with a measure defined as follows: 

Let 11 be the space of real sequences 

(2.4) f= {ffnk; n = 0, 1, .. .; k = O, ,I..., n} 

such that 

(2.5) IfIll= IfnkI< a); n=O,1,...; k=0,1,...,n. 
n,k 

The unit sphere S. = {ff El- 11: l1f ll < 1} is compact in the weak*-topology of 11, 
and an elementary integral defined for the weak*-continuous real functions on S. 
can be extended by the Daniell process inducing a countably additive measure on 

SOO 

Among the properties of this measure, let us recall that 

(2.6) ffnkfmldf = 0 if (n, k) 0 (m, 1), 

2n+2 
(2.7) 2df = =2q?2 (2.7) IsX tn~fnk ( n + 2) ! (n + 3) ! n qn- 

Real two-dimensional power series 

(2.8) f(x Y) = . fkXn-kyk; n = 0,1,...; k = 0,1,..., n, 
n,k 

whose coefficients satisfy the condition 

(2.9) 1f 1ll = . Ifnk I < X 
n,k 

converge uniformly and absolutely for all points (x, y) E C2. 
The space Fl1 of all functions defined by (2.8) and (2.9) can be identified with the 

sequence space 11 and is dense in the space W(C2) of all real continuous functions on 
C2 with the uniform norm. This identification allows us to consider the above 
integral as an integral over the unit sphere FS. of the function space Fll. 

The truncation error E(f) of the cubature formula (2.1) is a continuous linear 
form over W(C2) with the uniform norm and therefore also over Fl1 with the 
l -ll1-norm. Using (2.6) and (2.7), it follows that the estimate SE defined by (2.3) can 
be written as 

00 

(2.10) S~~~~~E Y. qnen 
n=O 

where qn is defined in (2.7) and 
n 

(2.11) e= E(Xn-kyk)2. 
k=O 

It should be noted that the identification of 11 and Fl1 is made through the 
monomials Xn-kyk and the use of these particular functions makes SE compatible 
with 0&(C2), the symmetry group of C2, in the sense described in the previous 
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section. In effect, 0l(C2) consists of the eight symmetries 
(2.12) (x, y) (?x, ?y); (x,Iy) (?y, ?x) 
and the equalities 

n n 

en 2 
E(Xn-kyk)2 = E((?X)n-k(?y)k)2 

(2.13) k=O k=O 

= n 
E((y)n-k(?x)k)2 

k=O 

imply that 01(C2)-equivalent cubature formulae have the same estimate of goodness 
SE. Unfortunately, this estimate of goodness is not useful for cubature formulae 
(1.5), (1.6) for the unit circle S2, because it is not compatible with 91(S2), as can be 
computationally checked. For instance, taking w(x, y) = 1/7T, the cubature formula 
(degree 3, 4 points) given by 

(2.14) Q4(f) = ([f(2/2,0) +f(-V2/2,0) +f(0,V2/2) +f(0, -V2/2)] 
has an estimate of goodness SE = (-4)1.75032, whereas the 9/(S2)-equivalent 
formula (use a rotation of -r/4 radians) given by 

(215Q4 (f) = f [(1/2, 1/2) + f (-1/2, 1/2) 
(2.15) +f(1/2, - 1/2) + ( -1/2, - 1/2)] 

has an estimate of goodness SE = (- 4)3.81547. 

3. An Estimate of Goodness of Cubatures for the Unit Circle. In the previous 
section, the sequence space 11 was identified with the space of functions Fl1 by 
using the family of monomials {Xn-kyk; n = 0,1, .. .; k = 0, 1, .. ., n }, but we can 
also identify 11 with other subspaces of W(C2) or W(S2) by using other families of 
polynomials. For each n, let us denote 
(3.1) Mn= {a xn + alXn-ly + --- +anyn; ai E R} 

and let 

(3.2) n= {TnO .Pnn} C Mn 
be a basis of Mn i.e., Mn = span Dn4 

If the polynomials 99nk satisfy 

(3.3) 119nk ILoo = (m)ax 19 kk(X Y) y < c; n = 0,1, .. .; k = 0, 1, ... I n, 

then the series 

(3.4) f(x, y) = Efnkf9nk(x, Y) 
n,k 

whose coefficients satisfy (2.9) converge uniformly and absolutely for all points 
(X, y) E S2. If we denote D = {D1, 2, }, the space Fll(D) of all functions 
defined by (3.4) and (2.9) can be identified with the sequence space 11. Let us note 
that Fll(D) contains all real polynomials in two variables and therefore is dense in 
W(S2) with the uniform norm. 

This identification allows us to define, in a natural way, an estimate of goodness 
for cubatures (1.5) by 

(3.5) s2 (D)=f E( f)2df 
FS, (4) 
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where 

(3.6) FSoo(4O) = {fE Fll('D): f ink I < 1} 
n,k 

It is straightforward to deduce that this estimate can be expressed by 
00 

(3.7) sE(?) = 2e 2( 
n=O 

where qn2 is given in (2.7) and 
n 

(3.8) e2(4n) = E E(qynk)2. 
k=O 

Our problem at this stage is to choose suitable families Dn satisfying (3.3), such 
that the estimate s2(4) is compatible with the symmetry group 91(S2) in the sense 
described in Section 1. 

As the matrix 

( 
9 cosa, -sina 

sin a, cos a 

associated with the rotation Ua E 0&(S2) has eigenvalues e a, e-ia and eigenvectors 
(1, i)T7, (1, -i)T7, the use of complex arithmetic will simplify the calculations. Let us 
denote 

(3.10) Mn* {aoxn + alXn-ly + ... +anYn; a, E C 

and let 

(3.11) n= {1PnO .**Pnn} 

be a basis of Mn*, i.e., Mn* = span*(D*). 
Considering the natural complexification of linear operators 

(3.12) E(f + ig) = E(f ) + iE(g) 

with the standard complex notation 

(3.13) I E(f + ig)|2 = E(f + ig)E(f + ig) = E(f )2 + Eg 2 

we can define 
n ~~~2 

(3.14) e2(OD*) = , E |(qgn*k)|- 
k=O 

THEOREM 1. For every n, let n* = {p,n*O qpn*n} and (J= 
{9nOg ... .9nn} be 

bases of Mn* and Mn, respectively, satisfying 

(i) (n0 9 .. , *)nn)T = An(99n*0 ... * q,n*n)T where An is an n X n complex unitary 
matrix, i.e., AH A A-1; 

(ii) ?k=oIE(qqnk)I2 = ?=oIE(qqn*k 0 Ua)12 = ?=oIE(q@P*k ? 0 v)12 for all a E 

[O,27T); 
(iii) there exists a c e R such that II(PnkI I < c for all n, k. 

Then, the estimate sE(0) associated with the family D = {(D,g l,... } is compatible 
with the symmetry group 0&(S2). 
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Proof. Let us remark that the operators 

f * E Mn* E( f *) e C, 

f 
* e Mn* f * 0 Ua E 

Mn* 

f 
* e Mn* f 

* 0 Ua 0 V - Mn* 

are linear and therefore "pass through the matrix An". 
Moreover, E(q)nk) and E(pfnk o u) are real and therefore 

n 

Y E(9nk 0 U.) 
k=O 

- (E(qnO ? Ua), , E(qqnn 0 Ua) )(E(q(nO ? ua), ... E( E(nn 0 Ua)) 

(E(q)nO ? u.) , E(qgn*n ? uj) )AnHAn(E(qqn*O ? ujq . .. 9 E ( qn*n ? u c)) 

- E iE(9)*k0?Ua)i| = E jE(q~)jk 

n 

- ( E(qn0) ,...,0 E(cp,n) )AnAn(E(cpq),...,qq E(pq)n)T = E E(q9flk) , 
k =O 

given that An is unitary. Similarly, it can be shown that 
n n 

E E(pfko uUa 0 V) = E(pElk) , 
k=O k=O 

and therefore it follows in a straightforward way that sE(4?) is compatible with 

5~~~~~~~~~~~~ 

Now let us consider the complex polynomials 

(3.15) q)nlk =(X + iy)nk(X - i)kE M 

obtained from the monomials Xn-kyk by a linear transformation with Jacobian 

so that %*O,. .= . , c)p .. are linearly independent in Mn*,. 
Also, 

(9)n*k0?Ua)(X, Y) = )q*k(xcosa -ysina, xsinax + ycosax) 
- ei(n-k)a(x + iy) nke-ika(x - iyk= ei(n-2k)acp (X, y), 

thus 

(3.16) = ( A) A2 E I (. ) E 2 
k=O k=O 

Similarly, 
() 0 U 0 )( ) E(99nk 0 Ua)(X -y ) = e i(n2k)a( X - iy)nk(x + 

ei(n 2k)Xa i)n-k(X, y), 
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and then 
n 

V 12 n 2 

(3.17) E 299,*ko 
u | E(qgnk) . k=O k=O 

Therefore, for each n, the family F*= {qcn*p, ... , q*n} is a basis of Mn* which 
satisfies the hypothesis (ii) of Theorem 1. 

For k < n/2 let us define 

1 
q)nk = ( (nk + 9n*, n - k) 

( 1k(9 + y2) [(X + iY)n-2k + (X - .)f-2k] 

q)n, n7- k . ()n*k -9n- , nP-k) 

(3.19) Al- 
i 

1 (x2 + y2)k[(X + Y)n-2k _(X - -2k] 

and if n is even, 

(3.20) 'Pn,n/2 = Pn* nn/2 = (X2 + n/2 

Then, 4?n = { qn0, 9) n *n } is formed by polynomials with real coefficients and is a 
basis of Mn. Also the matrix An of Theorem 1 that relates the elements of In and 
(I* is a unitary matrix, because the matrices 

1' 1 

1 -1 

that relate the pairs (qnk, 9nn - k) and (9n*k 9n* n - k) are unitary. Moreover, it can 
easily be shown that 

IInklloo IIn,n-klloo - x/2 k < n/2, 

and q(Pn, n/211Ko = 1 for n even. 

Using the results above, and applying Theorem 1, we deduce the following 

THEOREM 2. Let (F = { DO , D.... } where, for each n, 4Fn = { 9)n 0.... I 9p } is the 
basis of Mn defined by (3.18), (3.19) and (3.20). Then the estimate SE(?D) defined by 
(3.5) is an estimate of goodness of cubature formulae for the unit circle that is 
compatible with the symmetry group /(S2). 

Following the proof of Theorem 1, we can also deduce that 
00 n 00 nfl 

(3.21) SE(? =Eqn2 E E(9)nk) Y. q qn E |(9pn*k)| 
n=O k=O n=O k=0 

and therefore the estimate SE(?) can be calculated using any of these two expres- 
sions. 
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TABLE 1 
Formula D N SE(M) 

Centroid 1 1 (- 2)3.72941 

S2: 3- 1 3 4 (-3)1.52574 
S2: 5 - 1 5 7 (-5)4.17361 

S2: 5 - 2 5 9 (-5)1.56155 
S2: 7- 1 7 12 (-7)7.32827 
S2: 7 - 2 7 16 (-7)7.31334 
S2: 9 - 1 9 19 (-10)2.86050 
S2: 9- 3 9 21 (-9)8.64763 
S2: 9 - 5 9 28 (-10)5.70093 

S2: 11 - 1 11 28 (-11)7.64307 
S2: 11 - 2 11 28 (-12)2.00147 
S2: 11 - 3 11 28 (-11)4.55280 
S2: 11 - 4 11 32 (-11)7.64002 
S2: 13 - 1 13 37 (-14)3.05146 

S2: 13 - 2 13 41 (-14)1.03972 
S2: 15 - 1 15 44 (-15)2.92306 
S2: 15 - 2 15 48 (-15)2.88250 

S2: 17 - 1 17 61 (-20)4.97655 

Table 1 shows the values of sE(?) for some cubature formulae (1.5) for the unit 
circle with w(x, y) = 1/X. The nomenclature of these formulae corresponds to the 
one in [6, pp. 277-289]. N stands for the number of nodes and D for the degree of 
precision. 
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