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Number-Theoretic Transforms of Prescribed Length 

By R. Creutzburg and M. Tasche 

Abstract. A new constructive method for finding all convenient moduli m for a number-theo- 
retic transform with given length N and given primitive Nth root of unity modulo m is 
presented. This method is based on the prime factorization of cyclotomic polynomials with 
integer-valued argument or on the primitive divisors of integers. Many known results can be 
obtained as simple corollaries. 

1. Introduction. The number-theoretic transform (NIT) was introduced as a 
generalization of the discrete Fourier transform (DFT) over residue-class rings of 
integers in order to perform fast cyclic convolutions without round-off errors [8], 
[11]. A large number of transform methods were developed to remove some of the 
length limitations of conventional Fermat number and Mersenne number transforms 
[6], [10, pp. 216-219 and 222-224]. These NTT's, which under certain conditions 
can be computed via fast transform algorithms, allow the implementation of digital 
signal processing operations with better efficiency and accuracy than the fast Fourier 
transform. However, it is always difficult to find moduli m that are large enough to 
avoid overflow, and to find primitive Nth roots of unity modulo m with minimal 
binary weight for transform lengths N that are highly factorizable and large enough 
for practical applications. In this note, a useful way is shown to solve this problem 
by studying cyclotomic polynomials and primitive divisors of integers. 

2. Primitive Roots of Unity Modulo m. Let Z be the ring of integers and m > 1 an 
odd integer with prime factorization 

(1) m =P * * prs. 

Then a E Z is called a primitive Nth root of unity modulo m if 

(2) aN 
= 

l mod m, 
GCD(avn- 1, m) = 1, n-1 = L.. .N- 1. 

By definition, a = 1 is a primitive first root of unity modulo m. If a E Z is a 
primitive Nth root of unity modulo m, then a belongs to the exponent N modulo m, 
but, in general, the converse is not true. 

Note that by (2) the integer m > 1 is a primitive divisor of aN - 1 (i.e., m is a 
divisor of aN - 1 with the property GCD(a' - 1, m) = 1 for n = 1, . . . , N - 1). 
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Remark. The definition and properties of primitive roots of unity in a finite field 
can be found in [7, pp. 63-66]. For a detailed discussion of primitive roots of unity 
in a finite commutative ring R with unity, the reader is referred to [4]. Here we 
consider the important special case R = Z/mZ, where m > 1 is an odd integer. 

The following theorem gives criteria for an integer to be a primitive Nth root of 
unity modulo m. We denote the Nth cyclotomic polynomial by 4N* 

THEOREM 1 ([3], [4]). Let m > 1 be an odd integer. A number a E Z, lal > 2, is a 
primitive Nth root of unity modulo m if and only if one of the following conditions holds: 

(1) 4DN(a) 0 mod m, GCD(N, m) = 1; 
(2) N- 1 mod m, GCD(N, m) = 1, kN/od) 1dk mod m for every divisor 

d > 1 of N, such that N/d is prime; 
(3) aN -1 mod m, GCD(ad - 1, m) = 1 for every divisor d > 1 of N, such that 

N/d is prime; 
(4) aN-1 mod p, i = 1,...,s, ad 1 modpi, i= 1,...,s, for every divisor 

d > 1 of N, such that N/d is prime; 
(5) m is a primitive divisor of aN - 1. 

A necessary and sufficient condition for the existence of a primitive Nth root of 
unity modulo m [1], [10, p. 215] is 
(3) N I GCD( pj - 19 .., pS 1 

Condition (3) implies the existence of 9p(N)s incongruent primitive Nth roots of 
unity modulo m [3]. Here qp denotes Euler's totient function. 

Remark. The order N and the number 9p(N)s of primitive Nth roots of unity 
modulo m depend only on the prime divisors of the modulus m, and do not depend 
on the exponents of the prime divisors in (1). 

The concept of the primitive Nth root of unity modulo m is fundamental in the 
following context. Let x = [x0, ... 9, xN- ] and Y = [Yo, ... 9 YN-1] be two N-point 
integer vectors, and let m > 1 be a fixed odd integer. Note that equality of such 
vectors x and y is defined by Xk = Yk mod m, k = 0,..., N - 1. The number-theo- 
retic transform (NTT) of length N with a as a primitive Nth root of unity modulo 
m, and its inverse, are defined to be the following mappings between N-point integer 
vectors x = [x0, ... ., XN1] and X = [XO,..., XN-1] 

N-1 

Xn- X Onk mod m, n =O,9...,9N- 1, 
k=O 

N-1 

Xk N' E Xna-ank mod m, k = 0,..., N-1, 
n=O 

where N'N 1 mod m. Note that there exists such an integer N' by GCD(N, m) = 1 
(see Theorem 1, (1)). We denote this correspondence by 

NTT 
x **X. 

The NTT has a structure and properties resembling those of the DFT [4], [10, pp. 
211-216], particularly the cyclic convolution property: 

NTT 

X*Y X?Y = [X= OYO,, XN-1YN-1] 

where * denotes the cyclic convolution and o signifies the Hadamard product. 
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3. Construction of Primitive Roots of Unity Modulo m. The following algorithm 
allows us to calculate all qp(N)S primitive Nth roots of unity modulo m for a given 
odd modulus m > 1 (with (1)) and for a suitably chosen order N > 2 satisfying 
condition (3). Let ni (i = 1, . .. , s) be arbitrary integers with 1 < n1 < N - 1 and 
GCD(n1, N) = 1. Further, let gi be a primitive root modulo pi (i = 1,... , s). 

Step 1. Calculate cp(N) primitive Nth roots of unity modulo p[i by 

at n gR(P )fl/Nmodp i = . i,n, I11 

Step 2. Calculate qp(N)s primitive Nth roots of unity modulo m by the Chinese 
Remainder Theorem 

S 

a - (mpyr')a<i t mod m, 
i=l 

with 

(mp ri)ti 1 mod pT. 

For a proof of this algorithm, the reader is referred, e.g., to [3]. 
If a primitive Nth root of unity modulo m is known, then in some cases it is 

possible to obtain a primitive (2N)th root of unity modulo m. 

THEOREM 2. Let m > 1 be an odd integer. 
(1) Let N > 2 be odd. The integer a (lal > 2) is a primitive Nth root of unity 

modulo m if and only if -a is a primitive (2N)th root of unity modulo m. 
(2) Let N = 2 1N' with n > 4 and an odd N' > 1 be given. If 2 is a primitive Nth 

root of unity modulo m, then 3 = 2N/8(2N/4 - 1) is a primitive (2N)th root of unity 
modulo m with =32 2 mod m. 

Proof. (1) Let N > 2 be odd. By Theorem 1, (1), the integer a is a primitive Nth 
root of unity modulo m if and only if 4N(a) - mod m and GCD(N, m) = 1. By 
ON(x) = 42N(-x), this condition is equivalent to I2N(-a) 0 modm and 
GCD(2N, m) = 1, i.e., -a is a primitive (2N)th root of unity modulo m by Theorem 
1,(1). 

(2) Now let N = 2n-1N' with n > 4 and an odd N' > 1 be given. If 2 is a 
primitive Nth root of unity modulo m, then it follows by Theorem 1, (3), that 

2N_ 1 = (2N/2 - 1)(2N/2 + 1) - Omodm 

and GCD(2N/2 - 1, m) = 1. Hence 2N/2 = -1 mod m. For /3 = 2N/8(2N/4 - 1), we 
obtain 

A32 = 2N/4(2N/2 -2. 2N/4 + 1) -2* 2N/2 2 mod m. 

Applying 42N(X) = N(X2) for even N, we get by Theorem 1, (1), 

?2N(/3) = bN(3N ) -N(2) O modm 
and GCD(N, m) = 1, since 2 is a primitive Nth root of unity modulo m. Then there 
also holds GCD(2N, m) = 1. Again using Theorem 1, (1), /B is a primitive (2N)th 
root of unity modulo m. OJ 

Let a be a primitive Nth root of unity modulo m. In order to perform fast 
multiplication by powers of a in the NT], it is desirable to choose an a with small 
binary weight. With the help of the above algorithm, it is possible to select from all 
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cp(N)s primitive Nth roots of unity modulo m that integer with minimal binary 
weight. The following example readily shows that the binary representation of 
primitive Nth roots of unity modulo m can be complicated. 

Example. The integers + 57 and + 307 are all primitive 4th roots of unity modulo 
1625 = 53 13. By 57 = 25 + 24 + 23 + 20 and 307 = 28 + 25 + 24 + 21 + 20, the 
minimal binary weight of the above integers is 4 (see also [6]). 

From the numerical point of view, the following three essential conditions on 
NTT's are required: 

-The length N has to be large enough and highly factorizable in order to 
implement fast algorithms like prime-factor, Winograd, single-radix, or mixed- 
radix algorithms [10, pp. 85-94, 116-120, and 125-144]; 

-The primitive Nth root a of unity modulo m should have a simple binary 
representation (a = 2, for example), so that the arithmetic modulo m is easy to 
perform; 

- The modulus m has to be large enough to avoid overflow, but on the other 
hand small enough, so that the machine word length is not exceeded. Further- 
more, m should have a simple binary representation. 

For instance, the Fermat number transform with N = 2d? (d > 0), a = 2 and 
m = 22 + 1 is a compromise between these various conditions, but its length 
limitations are well known (see [5], [10, pp. 222-224], or Corollary 3). It is clear that 
the above algorithm does not, in general, fulfil the required conditions. Therefore, in 
the following section we determine, by studying cyclotomic polynomials, all possible 
moduli m for given N > 2 and given a E Z (lal > 2) such that a is a primitive Nth 
root of unity modulo m. 

4. Construction of Convenient Moduli. An important question for practical appli- 
cation is the following: Is it possible to find convenient moduli m for NTT's, if a 
highly factorizable length N and an integer a with small binary weight are 
prescribed, such that a is a primitive Nth root of unity modulo m? 

The following result originates with Kronecker and was developed in detail later. 

THEOREM 3 ([13]). Let N > 2 and a E Z (I al > 2) be given. Let p be the greatest 
prime factor ofNwithptlNand pt?l + N(t> 1), and let 

T /1 if a belongs to the exponent N/pt modulo p, 
kG otherwise. 

Then the value ON(a) of the Nth cyclotomic polynomial DN possesses the prime 
factorization 

ON(a) = PTpi2 qtq 

where H is defined as the product of all primes q > 2, such that a belongs to the 
exponent N modulo q. For these primes q > 2, IU q denotes that integer ,u > 1 with 
qy I aN-1 and qM?1 + aN - 1. Iffurther (N, a) # (3, -2), (6,2), then the integer 

(4) M= = NWIPTP> 

possesses only prime factors 1 mod N. 
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With the help of Theorems 1 and 3, the following construction of suitable moduli 
is obtained. 

THEOREM 4. Let N > 2 and a E Z (lIal > 2) be given, where (N, a) =# (3, -2), 
(6, 2). Under these assumptions, a is a primitive Nth root of unity modulo m if and only 
if m > 1 is a divisor of M given by (4). 

Remark. By Theorems 1,(5) and 4, it follows that under the above assumptions, m 
is a primitive divisor of aN - 1 if and only if m > 1 is a divisor of (4). 

Proof of Theorem 4. (1) Let m > 1 be a divisor of M. Then one has 4N(a) 0 
mod m and GCD(N, m) = 1 by Theorem 3. Using Theorem 1, (1), a is a primitive 
Nth root of unity modulo m. 

(2) If a is a primitive Nth root of unity modulo m, then m I ON(a) and 
GCD(N, m) = 1 by Theorem 1, (1). Theorem 3 implies m I M. O 

Note that there exists only a finite number of moduli m for given transform 
length N and given integer a, such that a is a primitive Nth root of unity modulo m. 

Known results of Erdelsky [10, pp. 231 and 234] and others can be obtained as 
simple corollaries of Theorems 2 and 4. 

COROLLARY 1 ([10, pp. 231 and 234]). Let p be prime, N = pt > 2 (t > 1) and 
a E Z (I al > 2) with (N, a) : (3, -2). The integer a is a primitive Nth root of unity 
modulo m if and only if m > 1 is a divisor of the integer 

(5) M= /D (a)/p if a 1 modp, 

IDN(a) otherwise, 

with 

(6) N(X) = (XN - 1)(XN/P _ j)-1 

Furthermore, for p > 2, the integer -a is a primitive (2N )th root of unity modulo m if 
and only ifm > 1isadivisorof (5). 

Proof. Using the notation of Theorem 3, we observe that 

/1 if a 1 modp, 
"P 0 otherwise. 

Hence (5) follows from (4). To complete the first part of the proof, we apply 
Theorem 4. For p > 2, we can apply the first assertion of this corollary and 
Theorem 2. 0 

Note that in Corollary 1, the discussion of the case a 1 mod p is new, so that 
we improve Erdelsky's result. In the special case a = 2 and N = p with prime 
p > 2, an immediate consequence of Corollary 1 is 

COROLLARY 2 ([10, pp. 217-218]). Let p > 2 be prime. The integer 2 is a primitive 
pth root of unity modulo m if and only if m > 1 is a divisor of the Mersenne number 

(7) M = Op(2) = 2P -1. 

Furthermore, -2 is a primitive (2p)th root of unity modulo m if and only if m > 1 is a 
divisor of (7). 
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For a = 2 and N = 2d+1 (d > 0), we obtain by Corollary 1 and Theorem 2: 

COROLLARY 3 ([5], [10, pp. 223-224]). Let N = 2d+1 (d > 0). The integer 2 is a 
primitive Nth root of unity modulo m if and only if m > 1 is a divisor of the Fermat 
number 

(8) M = 4D(2) = 22d + 1. 

In the case d > 2, the integer A - 2X/8(2/4 -1) with 2 2 mod m is a primitive 
(2N)th root of unity modulo m, if m > 1 is an arbitrary divisor of (8). 

The next results are new. The proofs of Corollaries 4-6 follow directly from 
Theorems 2 and 4. 

COROLLARY 4. Let p > 2 be prime, and let N = 2d+1pt> 6 (d > 0, t ) 1). The 
integer 2 is a primitive Nth root of unity modulo m if and only if m > 1 is a divisor of 
the pseudo-Fermat number 

(DN(2)/p if 2 belongs to the exponent 2d+1 modulop, 
9 M N(2) otherwise, 

with 

'DN(X) = (XN/2 + 1)(xN/(2P) + 1)-1. 

In the case d > 2, the integer / - 2X/8(2/4 -1) with =2 2 mod m is a primitive 
(2N)th root of unity modulo m, if m > 1 is an arbitrary divisor of (9). 

COROLLARY 5. Letpandqbe primes (2 < q < p), and let N = qSpt (s > 1,t > 1). 
Further, let a E Z (lIal > 2). The integer a is a primitive Nth root of unity modulo m if 
and only if m > 1 is a divisor of the integer 

(10) M fDN(a)/P if a belongs to the exponent qS modulop, 
\DN(a) otherwise, 

with 

IN(X) = (XN - 1)(XN/(qP) - 1)(XN/q - 1)l(XN/P - 1)1 

The integer -a is a primitive (2N)th root of unity modulo m if and only if m > 1 is a 
divisor of (10). 

COROLLARY 6. Let p and q be primes with 2 < q < p, and let N = 2 d+lqSpt 

(d > 0, s > 1, t > 1). The integer 2 is a primitive Nth root of unity modulo m if and 
only if m > 1 is a divisor of the integer 

f M N(2)/p if 2 belongs to the exponent 2d+ lqs modulo p, 
( 1) M = 

DN(2) otherwise, 

with 

'DN(X) = (XN/2 + 1)(XN/(2qP) + 1)(XN/(2q) + 1)1l(XN/(2P) + 1)-1. 

In the case d > 2, the integer / - 2N/8(2/4 -1) with /2 2 mod m is a primitive 
(2N)th root of unity modulo m, if m > 1 is an arbitrary divisor of (11). 
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Finally, we demonstrate the importance of our results. The following Table 1 gives 
a detailed overview of interesting cases for NTT's that can be obtained from 
Theorems 2 and 4 or from Corollaries 1-4. In Table 1, known parameters of 
practicable NTT's (see [9], [10, pp. 216-219, 222-224, and 231-236]) are sum- 
marized. We show that these parameters follow in a unified and simple way from the 
above results. 

TABLE 1 

Parameters a, N and m for NTT's, where m > 1 is an 
arbitrary divisor of M = 4'N(a), such that a is a primitive Nth 
root of unity modulo m. 

a N M = ?N(a) Corresponding NTf 

2 p 22P - 1 Mersenne number 
p prime transform 

-2 2p 2P - 1 Mersenne number 
p> 2 prime transform 

2 2 d+1 22d + 1 Fermat number 
d > 0 transform 

2- (22 - 1) 2d+2 + 1 Fermat number 
d > 2 transform 

2 p2 (2 P2 - 1)/(2P - 1) Pseudo-Mersenne 
p prime number transform 

-2 2p2 (2 PI - 1)/(2 P - 1) Pseudo-Mersenne 
p > 2 prime number transform 

(2pq- -1)(2q_ 1) Pseudo-Mersenne 
2q p p prime, q > 2 number transform 

2q 1 mod p 

(2pq- 1)1(2q- 1) Pseudo-Mersenne 
-24 2p p > 2 prime, q > 2 number transform 

2q # 1 modp 

2q 2a+ 1 2q2d + 1 Pseudo-Fermat 
q > 2, d > 0 number transform 

2qd (242 1) 2d+2 2q2d + 1 Pseudo-Fermat 
q > 2, d > 2 number transform 

2 2p (2P + 1)/3 Pseudo-Fermat 
p > 3 prime number transform 

2 2p2 (2 P2 + 1)/(2P + 1) Pseudo-Fermat 
p > 3 prime number transform 

(2pq + 1)/(2q + 1) Pseudo-Fermat 
2q 2p p > 2 prime, q > 2 number transform 

2q # -1 modp 

(2Pp2 + 1)/(2+ 1) Pseudo-Fermat 
2 p2d+ 1 p > 2 prime, d > 0 number transform 

22d # -1 modp 

(2P2 + 1)/(22 + 1) Pseudo-Fermat 
2p d(2p2 1) 22 p > 2 prime, d ] 2 number transform 

22d # -1 modp 
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Table 1 is obtained by systematic application of properties of the cyclotomic 
polynomials. Of course, every divisor m > 1 of M listed in Table 1 is a possible 
modulus for a NTT with the same length N and the same integer a, such that a is a 
primitive Nth root of unity modulo m. This means, for example, that for a = 2 and 
N = 2d?1 (d > 0), the only possible moduli are the Fermat number M = 22d + 1 
and its divisors m > 1 [5]. These divisors are often too large for practical applica- 
tions, so that one has to look for other moduli for transform lengths that are not 
powers of 2. 

TABLE 2 

Parameters for various NTT's with a = 2 as primitive Nth 
root of unity modulo m, where N is of mixed-radix form and 
m > 1 is an arbitrary divisor of M = by(2). 

Transform length N Prime factorization of 4N (2) 

260 -230 + 1 
180 = 22 x 32 x 5 2 = 181 x 54 001 x 29 247 661 

212 - 26 + 1 

210 = 2 x 3 x 5 x 7 3(270 
- 

2321) = 211 x 664441 x 1 564 921 
(210 - 25 + 1)(2'4 - 27 + 1) 

240 = 24x 3 x 5 16 8 + 1= 394 783 681 x 46 908 728 641 
216 28 + 1 

252=22x32x7 ~284 242?+1 252 = 2 2x 3 2 

X26+1 
= 40388 473 189 x 118 750 098 349 

256 = 28 2128 + 1 = 59 649 589 127 497 217 x 5 704 689 200 685 129 054 721 

21 12 - 256 + 1 
336 = 24 x 3 x 7 16 + = 2 017 x 25 629 623 713 x 1 538 595 959 564 161 

216 - 28 + 1 

2120 _260 + 1 
360 = 23x 32 x 5 212 1=168 692 292 721 x 469 775 495 062 434 961 

224 -212 + 1 

420 = 22 x 3 x 5 x 7 13(214(2 - + 1) 421 x 146 919 792 181 
(2 20 -210 + 1)(2 28 - 214 + 1) 

x 1 041 815 865 690 181 

2168 284 + 1 
504 = 2 3x 3 2 x 7 224 _ 212 + 1= 1009 x 21169 x 2627857 x 269389009 

224 -212 + 1 
x 1475204679190128571777 

Example. According to Theorem 4, and by the prime factorization of 421o(2) 
(apply the prime decomposition of 2105 + 1 given in [2, p. 13]), 

021O(2) = 211 x 664 441 x 1 564 921, 

seven moduli m, (i = 1, .. ., 7) arise, with the result that 2 is a primitive 210th root 
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of unity modulo mi, where 

ml = 211, 
m 2 = 664 441, 
M3 = 1 564 921, 
m 4 = 211 x 664 441 = 1.41 x 108, 

m5 = 211 x 1 564 921 = 3.30 X 108, 

M6 = 664 441 x 1 564 921 = 1.04 x 1012, 

m7 =211 x 664 441 x 1 564 921 = 2.19 x 1014. 

Note that mi (i = 1, .. . , 7) are all the primitive divisors of 2210 - 1. 

For practical applications, mixed-radix, Winograd, or prime-factor algorithms 
become attractive. These algorithms are based on highly factorizable transform 
lengths. Mixed-radix lengths have the form N = 2a3b5c'7d. In Table 2, we give 
explicitly all possible moduli for some NTT's with mixed-radix lengths > 180 and 
a = 2. These results are new (compare with [12], [10, pp. 233, 235, and 236]). Table 2 
lists the complete prime factorization of ON(2). Note that (DN(2) can, of course, be a 
prime number, for example: (D56(2) = (228 + 1)/17 = 15 790 321. The preceding 
discussion apparently represents an interesting application of factorization of very 
large numbers. 
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