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Dedicated to Professor Daniel Shanks on the occasion of his 70th birthday 

Abstract. We describe an efficient algorithm for the computation of the regulator and a 
fundamental unit of an arbitrary totally complex quartic order. We analyze its complexity and 

4 
we present tables with computational results for the orders Z[V ], 1 < d < 500. 

1. Introduction. The computation of fundamental units in orders of algebraic 
number fields is one of the main problems in computational algebraic number 
theory. 

The simplest fields for this problem are those with only one fundamental unit. 
There are three types of such fields; the real quadratic, the complex cubic, and the 
totally complex quartic fields. 

It is well known that the fundamental unit of a real quadratic field can be 
computed by means of the ordinary continued fraction algorithm, cf. [2, II, Section 
7]. There are interesting refinements of this algorithm due to Shanks [16] and 
Lenstra [13]. 

The fundamental unit of complex cubic fields can be computed using Voronoi's 
generalized continued fraction algorithm, cf. [5], [18]. This algorithm was discussed 
and improved in several interesting papers of Williams et al., cf. [20]. 

For totally complex quartic fields there are only a few results. If the field contains 
a real quadratic subfield, the computation of a fundamental unit can be reduced to 
the computation of the fundamental unit of the subfield, cf. [8]. 

For complex quartic fields containing an imaginary quadratic subfield, Scharlau 
proved that a fundamental unit is a minimal solution of a certain relative Pell 
equation, cf. [15], but he did not give a method for solving it. 

For complex quartic fields containing quadratic subfields of class number one, 
there are results due to Amara [1] and Lakein [9], [10]. 

More generally, the author proved that the generalized Voronoi algorithm (GVA), 
developed in [3], yields a fundamental unit for any order of a totally complex quartic 
field. The algorithm of Jeans [7] seems to have some similarities with this method. 
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In this paper we describe how to apply the GVA practically. We analyze its 
complexity and prove that it yields a fundamental unit of any totally complex 
quartic order in O(RD') binary operations (for every e > 0), where D is the 
absolute value of the discriminant and R is the regulator of the order. 

We establish an analogue of Galois' theorem on the symmetry of the continued 
fraction expansion of the square root of a rational number. We conclude the paper 

4 
by presenting computational results for the orders Z[ - d], 1 < d < 500. 

The author is indebted to the referee for many helpful corrections and suggestions. 

2. Notations. In this paper 
L = Q(p) is a totally complex quartic algebraic number field, 
a is a Q-isomorphism of L into C, different from the complex conjugation. For 
E L we write 

t() t t2)= a~) (3)= t n (4)=at. 

(9 is an order of L, 
D is the absolute value of the discriminant of (9, 
R is the regulator of (9, 
W11 . * *W4 is a Z-basis of (, 

?1..., * is the corresponding dual basis, 
W= max{IwX(j) 1 < i, k < 4), 

= max{14*(i) II < i, k < 4). 
We assume that 

(2.1) W < D12 
Such a basis can be computed using a basis reduction algorithm, e.g., [11], in the 

Minkowski lattice corresponding to 0. It follows immediately that 

(2.2) W < 6D. 

For a (fractional) ideal a of (9 we fix 
d(a) = mind e NIda c (}, N(a) = normof a. 

3. The Method. We recall the main definitions and results of [3]. There, we 
introduced the map 

L V2I IU I 
(2t,1at1) 

which, restricted to the multiplicative group LX, is a homomorphism, if we use the 
product 

(Y1 I Y2) * ( Y1 Y2 =( YlYi, Y2Y2') 

Moreover, Lx acts on L by 

*t' = Et' for every t E Lx, i' E L. 
For a point 57 = (yl, y2)t E R2 its norm is defined by 

N(y) =Y1Y21 

Now let a be a (fractional) ideal in d. Then the image a is a discrete set in R2. A 
point 0 0 m' in a is called a minimalpoint of a, if its norm body 

Qm-) = { E W I0 < yi < mi for 1 < i < 2} 
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does not contain points of a aside from 0 and m. Minimal points are of bounded 
norm 

(3.1) N(im ) ? (4/ST 2 )D1/2N(a). 

Moreover, for { u, v } = {1, 2) the u-neighbor of a minimal point mh is defined to be 
the (uniquely determined) minimal point m' with mt < ma and minimal m". For 
this neighbor we have by Minkowski's convex body theorem 

(3.2) mtms < (4/Vr2) D1/2N(a). 

Finally, 1 is a minimal point in 0 and all the minimal points of 0 can be arranged in 
a two-sided sequence (mk)kEz, mb = 1, where mbkl is always the 2-neighbor of mk 
and, in turn, m-k is the 1-neighbor of m-k+l for every k E Z. This sequence, called 
the GVA-expansion in (9, is of the purely periodic form 

..., el*, el*l1 . . . l* l, 1, in,..., m l, 

e*1, e*m1, ..., e*rmpn19 .... 

Here e is a unit in (9, and if p is chosen minimal, then e is a fundamental unit of (9, 
and p is called the period length of the GVA in (9. 

4. The Algorithm. Here is our algorithm for computing a fundamental unit e and 
the regulator R of (9. 

ALGORITHM 4.1. 
Input: W1,... 9 (4. 

Output: R, e. 
1. Initialize: k .- 0, N *- 1, o <- 1, a <- (9, R O- 0. 
2. Repeat until k > 1 and N = 1: 

(a) a (l/mk) a. 
(b) Compute 'qk + 1 in a such that %k+ is the 2-neighbor of 1 in a. 
(c) k <- k + 1, R +- R -logqk 

12 , N *-N INLIQ(qk)I. 
3. e Hk.oj 

Notice that we can compute a maximal system of pairwise nonassociated "minima" 
in the sense of [21, Section 3], if we calculate in step 2(b) all the q in a such that q is 
the 2-neighbor of 1 in a. 

The representation of the principal ideals a will be discussed in Section 6 and the 
computation of 'qk+l will be described in Section 7. 

We conclude this section by giving a justification for our algorithm. We define for 
0 < k < p 

k 

(4.1) Mk H 1. 
j=O 

Then we have 

(4.2) /Lk E9 and Rk = rk for O < k < p, 

and in step 2(b) 

(4.3) a = (1/Mk)7(9 
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In fact, (4.2) and (4.3) are true for k = 0. Now suppose that (4.2) and (4.3) hold for 
k > 0. Since qkI1 (i/Mk) 9, we must have k?+ 1 = Mk7k?+ l (9. Moreover, Ik+ 1 is 

the 2-neighbor of 1 in (1/,uk), and therefore tk+l = tk'k+l must be the 2-neigh- 
bor of tk = Mrk in 0, i.e., tk+1 = 1M k+1 It follows immediately that in step 2(c), 

(4.4) N = N(mk) = NLIQ(ik) 

If k = p, then by (3.3) and (4.4) we must have N = 1, and because of the minimality 
of p, this is the first time that N = 1 can happen. 

5. The Theorem of Galois. By a theorem of Galois, the period of the continued 
fraction expansion of the square root of a positive rational number is symmetric, cf. 
[14, Section 23]. A similar result is proved in this section. We assume that the order 
under consideration satisfies the condition 

(5.1) (0) = 0. 
4 

This is true, for example, if ( = Z- ], d E N. Note that (5.1) implies that L has 

a quadratic subfield. On the plane R2 we introduce the reflection 

(5.2) 6: R2 -* R2 9y = (Y1 Y2)t -* M(y) = (Y2, Yt. 

Then we have for every t E L 

a(i) = a(t). 

Consequently, the minimal points in ( have the symmetry property: 

PROPOSITION 5.1. For every k E Z we have -k = M 

Proof. Let m- , mr' be minimal points of (. Then a(mi) and a (mi') are minimal 

points of A, and m- is the 1-neighbor of mr' if and only if a(m) is the 2-neighbor of 

6(m' ). El 
This yields the following application: If we have computed O. .. . mk, then we 

know mk, ..., ink. Hence, we can compute the regulator and a fundamental unit of 
0 by computing only half the period of the GVA-expansion in 9. This is done by 

ALGORITHM 5.2. 
Input: W' ... 9 ?4. 

Output: R, e. 
1. Initialize: k +- 0, R O- 0, o +- 1, a d- (. 
2. Repeat: 

(a) a +- (1k) a. 
(b) Compute a complete system of nonassociated q in a such that q is the 

2-neighbor of 1 in a. Choose one of these I's to be Wk?1 

(c) R +- R - logq k+112. 
(d) If a(a) = (1/,q)a holds for one of the I's of (b), then e 11- 

k 
la(j)) 

and return. 
(e) R +- R + logla(qk+1)12. 

(f) If a((1/1qk+1)a) = (1/,q)a for one of the I's of (b), then e 

Qq/af~k ?1))HkX 1(q/ja(j)), and return. 

(g) k-k?+ 1. 
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For the description of the representation of the ideals a and the computation in 
2(b), 2(d) and 2(f) we refer to Sections 6 and 7. We conclude this section by giving a 
justification of Algorithm 5.2. 

For 
k 

Ak == r qj, 0 < k < p , 
j=O 

one can prove as in Section 4 that 

(5.3) Ek 0 and Ik-=nk 

and that in step 2(b), (d) and (f) 
(5.4) a = (lk) d7 

and that 

(5.) Mk+1 =a'* Rk 

for every q computed in step 2(b). 
It follows by (5.1) and Proposition 5.1 that 

(5.6) O(Rk) = Mk 

and that in step 2(d) 
(5.7) G(a)= (l/a(tk))e'. 

Now suppose that in step 2(d), a(a) = (1/q) a. Since in 2(d) 
(5.8) E = ?1Ik/aOGk), 

it follows from (5.4) and (5.7) that E is a unit in 29. Moreover, by (5.5) and (5.6), 

(5.9) Em-k = Mk+l- 

Because of the minimality of the period length p, this can happen only if p l2k + 1. 
But if p = 2k + 1, then (5.9) holds for every fundamental unit e with 1,l < 1. Let e 
be such a fundamental unit. It follows from (5.5), (5.6) and (5.9) that 
(5.10) e *(Mk) = a 'qk+l?k 

with a E L, a = 1. We set q = O aq k+I and see by (5.4), (5.7) and (5.10) that q E a, 
= lk+I, and a(a) = (1/q)a. 
Analogously, one can show that in step 2(f) one has a((l/'qk+ ) a) = (1/) a only 

if E is a unit and p 12k + 2 and, in turn, that this happens in fact if p = 2k + 2. 
Then e is again a fundamental unit of c9. 

6. Basis Reduction and Ideal Representation. In this section we describe how we 
represent the ideals a in Algorithm 4.1 and Algorithm 5.2. 

First of all, we recall some properties of the basis reduction algorithm of Lenstra, 
Lenstra and Lovasz [11]. Let bl,..., be be a basis of a lattice F in Z' and let B > 2, 
bjbI < B for 1 ] j < n. This algorithm yields in O(n4 log B) binary operations a 
basis a',,..., dn of r which satisfies 

n 

(6.1) aH a1 < 2(n -1)/4det(F), 

where det(r) is the determinant of F. 

**1 I denotes the Euclidean norm. 
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Now let a be an ideal in 0, and let a,,.. ., a4 be a Z-basis of a, 
4\ 

(6.2) aoj E akj~k)/d(a), 1 < j < 4. 
k=i 

Denote by F the lattice spanned by the columns of the integral matrix A = (akj). 
We call A an LLL-matrix of a, if the columns of A form a basis of F which is 
reduced in the sense of [11, p. 516]. The ideals in Algorithm 4.1 and Algorithm 5.2 
are represented in terms of their common denominator and an LLL-matrix. It has 
turned out in our computational experience that these representing integers are 
always small compared to the discriminant of a. We are also able to give bounds on 
the denominators and the elements of the LLL-matrices. These bounds are poly- 
nomials in D, and this means that the number of digits of these integers is O(log D). 
This statement will be useful in our complexity analysis in Section 8. 

PROPOSITION 6.1. If A is an LLL-matrix of a, then the column vectors a-,, . . ., a4 of 

A satisfy 

(6.3) cj1d(a)N(a)1/4 I a- I< c2d(a)N(ca)1/4*** 

forl < js4. 

Proof. Let a1, .. ., a4 be defined as in (6.2). Then we have for 1 < j < 4, 

1a(1) 121a(2)2 = NLIq(aj) I > N(a). 
Hence, we have ja5)I > N(a )1/4 for i = 1 or i = 2, and the first inequality of (6.3) 
follows from (2.1), (6.2), and Cauchy's inequality, whereas the second one follows 
from the first one and (6.1), since in this case det(F) = N(a). Dl 

COROLLARY 6.2. If A is an LLL-matrix of a and if a1,... , a4 is the corresponding 
Z-basis of a, defined in (6.2), then we have for 1 < i, j < 4, 

|a0 c | 3N( a) 1) 

Proof. This corollary follows from (2.1), (6.2) and Proposition 6.1. O 

COROLLARY 6.3. If a is one of the ideals, used in Algorithm 4.1 or Algorithm 5.2, if 
A is an LLL-matrix of a with the columns a1,..., a4, and if a1, .. ., a4 is the 
corresponding Z-basis of a, defined in (6.2), then we have for 1 < i, j < 4, 

Ia < C4 and la(')I < c5. 

Proof. It follows from (3.1), (4.2), (4.3), (5.3), and (5.4) that N(a) < 1 and 
d(a) < D1/2. o 

The last result shows that the ideals a in Algorithm 4.1 and Algorithm 5.2 can be 
represented by integral matrices which are-independently of k-of the same 
"small" size. 

***The numbers Ck, k c N, are of the form uDv, u, v > 0. 
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We finally remark that the comparison of the ideals in Algorithm 5.2 step 2(d) and 
2(f) can be carried out by comparing the denominators and Hermite normal forms 
of the representation matrices. 

7. The Neighbor Computation. In step 2(b) of Algorithm 4.1 we want to know a 
number -q in the ideal a such that q is the 2-neighbor of 1 in a. Following the 
explanation given in Section 3, this means that we have to find -q in a with 

(7.1) 1 
-(1) 12< 1 ad I 

q(2) 
12 (4/ 

2)D1/2ff (7.1) < ad_,() (4/7T)D /N(ca) 

with minimal I 7(2) i 2. 

Let A = (ak, j)1 k, j<4 be an LLL-matrix of a and let a1,..., a4 be the corre- 

sponding Z-basis of a, defined in (6.2). For X = (X1, .. ., X4)t E Z4 and 1 < i < 2 

we write 

(44 4 

(7.2) ?1(i)(X) - =1 = (kEl 
E 

akixi)/d(Q) ifk 
x k O 

t 1/4NC )1/2ifx=O 

Then we can compute -q using 

PROCEDURE 7.1. 

1. Initialize: X2 < 0, f <- 2. 
2. Repeat: 

Try to find xl E Z4 satisfying 

(7.3) -q(1)(X,) I < 1 and X X2) 11f 

If the search is successful, then set x2 x, 
else 

if f = 2, then set f <- 1, 
else return -q = ?1(X) ? 

Notice that for all x E Z4 with 

| 71() (x) I < 1 and |7()X )|<(2/ST)D D/N(ac)/ 

by the well-known dual basis argument [2, p. 403], 

(7.4) A akjxj < 4W*d(a)D1/4N(Q)1/2, 1 < k < 4. 
j=1 

The comparisons in (7.3) have to be carried out using rational approximations Wy) 
to @) 1 < k, i < 4. We must therefore discuss the question of how this is to be 
done. Let A > 0 have the property 
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For x # 0, let 71(i)(X) be the approximation of q7(l)(j) obtained by substituting at o) 
by W ) in (7.2), and let i7(2)(O) be a rational approximation of D174 such that 
I7(2)(0) - D1/4i < X. Finally, we set for x E Z4 

4 

(7.6) X kjXj Id( a) 
ifx 

XA if x= 0, 

and 

(7.7) 8(x) = 81(x.)(2D1/4 + Al(x)). 

Then it follows for every x', subject to (7.4), that 

(7.8) 8(x) < 8 = 81(2D'/4 + 81), 

with 

81 = 16XW*D1/4N(a)1/2, 

and we have for every x E Z4, subject to (7.4), and 1 < i < 2, 

(7.9) 1 7()X) 17()X) < 8(x-) < S. 

Hence, (7.3) can be true only if 

(7.10) jj7' )(xl) 2 + 1j(2)(.J) <2 1 + jI^(2)( 2) 12 /f2 

The solutions of (7.10) can be computed using an algorithm of Fincke and Pohst 
[6] which yields all the integral solutions x of an inequality Q(x) < K, where Q is a 
positive definite n-dimensional rational quadratic form and K > 0 is a real constant. 
By (7.9) we are able to decide whether a solution of (7.10) satisfies (7.3) as long as 

(7.11) | ~1nl(C) 2 - 
1 > S(Xa) and 

J ,(2)(X) 2 - jn(2)(X2) /f2 > 8(X1) + (8(X2). 

This, in turn, is true if 

(7.12) jq(l)(X-,) I 1 and I-(2)(X-) 
I _ 

I(2)(X2) 1f, 

and X is small enough. Notice that (7.12) can be tested by using [21, Proposition 
2.2]. 

Concluding these remarks, we can carry out the search for X' in Procedure 7.1 in 
the following way. 

We enumerate the solutions of (7.10) using the algorithm of Fincke and Pohst [6]. 
If we find a solution x., we check if X' satisfies (7.4). If not, we reject Y, as a 
possible solution of (7.3). Otherwise, we check whether X' is subject to 

A57(1)(l) 2 <1- (xl) and JiB(2)(-1) 12 <I^(2)( 2)j2/f2_(X) - 



FUNDAMENTAL UNIT OF TOTALLY COMPLEX QUARTIC ORDERS 47 

or 

2 1-2( 2 > -() 2/12 + 
(XI) I > 1 + 8(X1) or X -q> X2) + (aX) + a( 2). 

In the first case, we have found a solution of (7.3). In the second case, we must 
reject xl as a possible solution of (7.3). 

If neither the first nor the second case holds, a situation which we have never 
encountered in any of our computations, then we check whether (7.12) is true. If the 
answer is negative, then we must reject xl; otherwise, we have to increase the 
precision of our approximation to w(k), i.e., we have to decrease X. During our 
computations we found the value X = 10-12 always to be sufficient. 

If we have enumerated all the solutions of (7.10) without finding a solution of 
(7.3), then no such solution exists. 

In Algorithm 5.2 we need all the al e a such that q is the 2-neighbor of 1 in a. 
These numbers can be computed by a further application of the algorithm in [6]. 

For our complexity analysis in the next section, it is necessary to be able to prove 
that there exists a value of X such that (7.11) follows from (7.12). This can be done 
analogously to the proof of [21, Proposition 4.1]. The result is 

PROPOSITION 7.12. We can choose X = c7 1 and 8 = c8X such that for every X1, X2 

subject to (7.4) the following statements hold: 
(i) If x2 = 0, then itfollowsfrom 

(7.13) (X- I < 1 and [r(2)X(.X)|< (2/T) D1/4N(al/2/f 

that 

(7.14) 1 (l)(x) 2 1 - 6 and j(2)(l) X2 < ij( 2) 2/f2 - 6 

Conversely, (7.14) implies (7.3). 
(ii) Let X2 * 0; then (7.14) and (7.3) are equivalent. 

8. Complexity Analysis. It is well known that the continued fraction algorithm 
computes a fundamental unit of an order of a real quadratic field in O(R'D'1) 
binary operations (for every I' > 0), where R' is the regulator and D' is the absolute 
value of the discriminants of the order, cf. [19]. An analogous result is true for 
Voronoi's generalized continued fraction algorithm in complex cubic fields, cf. [19]. 
The purpose of this section is to prove that Algorithm 4.1 and Algorithm 5.2 are of 
the same complexity. 

Since by [4] the period length of the GVA in ( is O(R), also the number of 
iterations in Algorithm 4.1, step 2, is O(R). Since we use LLL-matrices to represent 
the ideals a in Algorithm 4.1, it follows from Corollary 6.3 and from (7.1) that step 
2(a) requires O(DIL) binary operations (for every p > 0). 

We must now analyze step 2(b), i.e., Procedure 7.1. Since 1 is a minimal point in 
a, the number of iterations, when f = 2, must be 0(log D). But then it follows from 
the same arguments as used in the proof of [4, Lemma 2] that the number of 
solutions of (7.3) with f = 1 is 0(1). The number of iterations of the procedure is 
therefore 0(log D). 
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It remains to analyze the complexity of the search for xl in Procedure 7.1. It 
follows from Proposition 7.12 that, instead of searching the convex body described 
by (7.3), which has irrational constraints, we can search the convex body described 
by (7.4) and (7.14), which has rational constraints. Though the algorithm of Fincke 
and Pohst [6] has turned out to be very efficient in practice, we cannot use the 
complexity analysis provided for this algorithm in [6]. Therefore, we replace this 
method by a procedure of Lenstra [12], which, however, is too complicated for 
practical implementation. This procedure solves our search problem in polynomial 
time in the size of the input data, because obviously, our convex set is "solvable", cf. 
[12, Remark (d) in Section 2]. In view of (2.1), (2.2), Corollary 6.3, (7.1), (7.5), and 
the choice of X in Proposition 7.12, the input data length is 0(logD). Hence, 
Procedure 7.1 requires O(D") binary operations (for every p > 0). 

Finally, it follows from (7.1) and the fact that by [4] the number of factors in step 
3 of Algorithm 4.1 is O(R), that E can be computed in O(RDA) steps (for every 
p.> 0). 

Concluding these remarks, we have 

THEOREM 8.1. A fundamental unit of ( can be computed by means of Algorithm 4.1 
in O(RDA) binary operations (for every pL > 0). 

The same complexity can be proved for Algorithm 5.2. 

4 

9. Example. Let (9= Z[p], p = -326. Since condition (5.1) is satisfied, we can 
apply Algorithm 5.2: 

1. Initialization: k -- 0, R '- 0, 7o '- 1, a d- (. 
2. (a) a -. 

(b) q = 18 + 6p + p2 is up to association the only number such that q is the 
2-neighbor of 1 in a, 71l 7- 

(c) R 7.8633. 
(d) a1 1, a2 <- p, a3 <- P2/2, a4 -p3/2,(1/a1) = E 4 

1Za1j# (a). 
(e) R 14.3402. 
(f) a((1/1l)a) = (1/7q1)a, E -- /a(ql) = 1 + 108p - 36p2 + 6p3. 

10. Numerical Results. We have computed the GVA-expansions in the orders 
4 

(9 = Z[ ], de N, d # 4k4 for 1 < d < 500. In Table 1, 

E1 + E2p + E3p2 + E4p3 

4 
is a fundamental unit of (9, p = d. 

In Table 2 we denote by 

PL the period length, 
REG the regulator, 

NR the relative norm of the fundamental units over Z[-]. 
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TABLE 1 

Fundamental units of Z [ ( - d)1/4], 1 < d < 40. 

D E? E2 E3 E4 

1 0 1 -1 1 
2 -1 0 1 -1 
3 2 -2 1 0 
5 -2 2 -1 0 
6 1 4 -4 2 
7 36 -26 9 2 
8 1 2 -2 1 
9 -485 198 0 -66 

10 -27 12 -1 -3 
11 -98 96 -45 6 
12 23 -14 4 1 
13 -86 28 3 -10 
14 -13 2 2 -2 
15 16 4 -7 4 
16 577 -204 0 51 
17 -16 7 -1 -1 
18 -13823 58332 -36792 11512 
19 14439374 11821890 -11320425 4956000 
20 -9 6 -2 0 
21 1 36 -24 8 
22 -91167 440140 -267972 81146 
23 25899588 -8909082 352849 1629810 
24 -95 46 -10 -3 
25 -4443 1405 0 -281 
26 -125 12 17 -13 
27 -1414178 220224 135531 -126466 
28 57 2 -12 7 
29 330206 -411912 189709 -39122 
30 -74879 57396 -21012 2218 
31 1975104 28184 -371631 217672 
32 6913 -360 -1008 663 
33 67 -74 32 -6 
34 -33 -4 8 -4 
35 64926 -77790 34255 -6768 
36 1351 -390 0 65 
37 -571878 289258 -71847 -6356 
38 -267790150327167 -183064217333724 147714465189436 -54441051012990 
39 3745 -2544 840 -68 
40 -159 -94 78 -29 

TABLE 2 

Regulators of Z[(-d)1/4] 

D PL NR REG D PL NR REG 

1 2 1 1.7627 15 4 1 8.2853 
2 3 -1 2.4485 16 10 1 14.1020 
3 5 1 3.3258 17 2 1 6.9942 
5 1 -1 3.5796 18 20 1 25.3105 
6 2 1 5.9660 19 38 1 36.8971 
7 8 1 8.9161 20 2 1 6.4677 
8 2 1 4.8969 21 6 1 10.7870 
9 12 1 13.7546 22 26 1 29.4799 

1O 13 -1 7.9923 23 38 1 35.5300 
11 16 1 11.7560 24 6 1 10.7298 
12 6 1 7.9666 25 13 -1 18.1845 
13 7 -1 10.3107 26 9 -1 11.4356 
14 2 1 6.8013 27 36 1 29.9319 
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TABLE 2 (continued) 

D PL NR REG D PL NR REG 

28 8 1 10.2793 88 40 1 35.4889 
29 23 -1 29.1595 89 44 1 54.5712 
30 36 1 25.0462 90 22 1 33.7471 
31 28 1 31.1193 91 34 1 50.8547 
32 10 1 19.5876 92 28 1 31.3328 
33 4 1 11.9390 93 56 1 60.0945 
34 4 1 9.4774 94 16 1 19.6221 
35 28 1 25.9225 95 32 1 37.4436 
36 14 1 15.8035 96 18 1 23.8641 
37 27 -1 28.3596 97 30 1 34.3796 
38 70 1 70.3594 98 2 1 11.0465 
39 16 1 18.9285 99 26 1 49.2976 
40 10 1 13.8874 100 18 1 28.8727 
41 9 -1 11.5768 101 13 -1 23.6552 
42 14 1 20.9260 102 ?6 1 64.0178 
43 72 1 65.4578 103 186 1 174.6268 
44 58 1 44.6300 104 60 1 54.3461 
45 28 1 30.5438 105 8 1 16.5349 
46 6 1 10.6957 106 53 -1 64.0716 
47 62 1 65.8973 107 106 1 121.6505 
48 8 1 13.3031 108 68 1 71.6995 
49 40 1 47.6012 109 27 -1 44.3041 
50 35 -1 38.7416 110 64 1 77.2438 
51 26 1 29.8215 111 10 1 22.1403 
52 16 1 19.2904 112 26 1 35.6645 
53 21 -1 24.6862 113 12 1 20.0114 
54 104 1 96.5684 114 78 1 69.3097 
55 10 1 19.9494 115 116 1 103.6233 
56 4 1 8.1859 116 38 1 34.0075 
57 12 1 21.0419 117 28 1 31.8778 
58 11 -1 14.3255 118 136 1 143.8799 
59 120 1 120.9619 119 126 1 131.9000 
60 4 1 9.6399 120 20 1 19.8271 
61 19 -1 25.0618 121 22 1 23.9054 
62 4 1 11.0587 122 97 -1 98.6025 
63 2 1 6.2305 123 10 1 26.3885 
65 1 -1 6.2461 124 16 1 34.7878 
66 2 1 11.1212 125 9 -1 17.8982 
67 104 1 114.9532 126 14 1 23.6952 
68 2 1 9.7650 127 166 1 187.6628 
69 40 1 42.9765 128 34 1 39.1752 
70 36 1 43.1795 129 72 1 79.2322 
71 64 1 75.4121 130 43 -1 48.4233 
72 2 1 8.4368 131 96 1 107.5991 
73 14 1 26.4517 132 20 1 21.0849 
74 9 -1 13.7289 133 76 1 88.0299 
75 48 1 54.9405 134 344 1 309.1082 
76 22 1 34.8990 135 16 1 31.3204 
77 10 1 14.0040 136 2 1 8.7844 
78 44 1 53.3431 137 3 -1 10.6102 
79 116 1 143.0598 138 16 1 21.9224 
80 4 1 14.3186 139 272 1 282.8793 
81 52 1 63.4589 140 54 1 61.9243 
82 15 -1 17.2367 141 2 1 9.1079 
83 112 1 100.7354 142 88 1 112.8690 
84 20 1 20.6834 143 68 1 101.5713 
85 33 -1 33.3199 144 32 1 55.0184 
86 126 1 103.5648 145 3 -1 11.6309 
87 8 1 13.9061 146 22 1 35.1488 
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TABLE 2 (continued) 

D PL NR REG D PL NR REG 

147 38 1 54.8322 206 44 1 50.1061 
148 42 1 55.1209 207 8 1 12.2720 
149 189 -1 194.0644 208 14 1 20.6215 
150 34 1 52.7798 209 120 1 116.8674 
151 40 1 53.3334 210 74 1 74.1316 
152 42 1 51.3585 211 184 1 204.1566 
153 34 1 56.7027 212 86 1 85.6995 
154 36 1 51.5545 213 40 1 55.5989 
155 4 1 13.8075 214 250 1 252.4171 
156 2 1 8.5164 215 158 1 179.6845 
157 105 -1 98.3062 216 48 1 53.6943 
158 18 1 29.2540 217 8 1 15.4263 
159 140 1 140.2070 218 53 -1 61.8690 
160 56 1 63.9380 219 16 1 23.9217 
161 10 1 17.0583 220 20 1 25.9591 
162 168 1 176.2886 221 20 1 31.5731 
163 248 1 255.1354 222 12 1 29.2041 
164 36 1 42.4639 223 256 1 287.3029 
165 46 1 45.3833 224 12 1 27.2051 
166 224 1 226.4442 225 68 1 92.6691 
167 258 1 262.0549 226 2 1 12.2875 
168 24 1 28.3465 227 292 1 300.2000 
169 39 -1 60.1234 228 30 1 37.5111 
170 57 -1 57.0557 229 7 -1 18.6889 
171 30 1 45.0703 230 114 1 137.2790 
172 12 1 29.3731 231 8 1 20.7683 
173 165 -1 151.4328 232 70 1 82.9100 
174 188 1 195.8745 233 92 1 94.4689 
175 12 1 23.1631 234 14 1 25.1475 
176 14 1 23.5120 235 154 1 162.1329 
177 6 1 14.8157 236 106 1 120.1679 
178 40 1 56.5423 237 188 1 161.0306 
179 430 1 436.3769 238 48 1 45.0959 
180 22 1 31.3516 239 88 1 95.7492 
181 71 -1 93.3738 240 8 1 16.5705 
182 48 1 42.8558 241 50 1 67.9555 
183 46 1 59.6027 242 322 1 355.5986 
184 52 1 51.7444 243 270 1 269.3875 
185 4 1 11.7772 244 134 1 145.6830 
186 108 1 114.2256 245 206 1 194.9075 
187 134 1 147.8083 246 114 1 107.7667 
188 8 1 20.1458 247 174 1 177.9984 
189 50 1 60.6175 248 22 1 32.0201 
190 26 1 43.3695 249 116 1 142.7931 
191 164 1 190.6173 250 159 -1 173.5928 
192 44 1 63.7329 251 318 1 334.1780 
193 50 1 71.7403 252 32 1 41.5299 
194 108 1 118.2099 253 34 1 49.4254 
195 40 1 49.7549 254 4 1 13.2797 
196 62 1 77.5225 255 70 1 78.7884 
197 155 -1 128.6433 256 90 1 112.8158 
198 12 1 15.4730 257 13 -1 19.5379 
199 170 1 162.9320 258 74 1 83.6537 
200 76 1 77.4831 259 96 1 89.4168 
201 38 1 47.7578 260 12 1 23.0330 
202 147 --1 151.4960 261 28 1 33.4639 
203 38 1 38.4180 262 360 1 388.5790 
204 86 1 89.9429 263 94 1 106.1759 
205 56 1 46.7214 264 10 1 18.1441 
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TABLE 2 (continued) 

D PL NR REG D PL NR REG 

265 46 1 53.4454 325 1 -1 7.8617 
266 42 1 52.5164 326 2 1 14.3402 
267 174 1 171.0466 327 2 1 13.5324 
268 50 1 65.1967 328 2 1 12.9601 
269 273 -1 273.0119 329 222 1 222.7142 
270 62 1 68.0688 330 2 1 12.1552 
271 128 1 108.5475 331 166 1 200.8754 
272 40 1 55.9533 332 4 1 23.1719 
273 28 1 45.2243 333 10 1 34.0602 
274 4 1 13.9617 334 126 1 154.5054 
275 90 1 100.3821 335 240 1 272.3563 
276 8 1 15.6401 336 2 1 10.7870 
277 217 -1 226.3740 337 16 1 36.3692 
278 314 1 355.4098 338 9 -1 17.7100 
279 38 1 46.5751 339 270 1 307.0294 
280 40 1 46.5511 340 10 1 20.4472 
281 38 1 53.5975 341 190 1 194.7969 
282 64 1 78.7796 342 6 1 29.9819 
283 498 1 534.2976 343 454 1 436.8904 
284 128 1 160.7741 344 76 1 78.8263 
285 4 1 13.3667 345 56 1 59.2368 
286 116 1 136.5902 346 49 -1 61.1623 
287 150 1 165.4356 347 122 1 160.9133 
288 14 1 25.3105 348 4 1 18.8724 
289 118 1 144.4419 349 257 -1 304.3413 
290 147 -1 151.2632 350 144 1 152.6403 
291 18 1 26.7751 351 46 1 82.8841 
292 46 1 52.1155 352 80 1 82.0567 
293 271 -1 217.7830 353 78 1 80.3032 
294 288 1 314.4971 354 148 1 179.1556 
295 16 1 33.6647 355 56 1 70.2960 
296 86 1 95.7995 356 52 1 53.3035 
297 60 1 81.3816 357 144 1 123.0712 
298 83 -1 71.4501 358 616 1 646.7992 
299 86 1 92.5525 359 28 1 35.6185 
300 8 1 18.5757 360 6 1 25.9792 
301 26 1 36.0290 361 120 1 163.5475 
302 216 1 218.2099 362 215 -1 222.2816 
303 232 1 235.1681 363 66 1 75.3363 
304 134 1 147.5885 364 182 1 191.6409 
305 51 -1 67.4837 365 73 -1 100.3562 
306 18 1 29.6483 366 134 1 148.8015 
307 482 1 490.9257 367 470 1 420.3721 
308 12 1 20.2496 368 114 1 142.1201 
309 370 1 368.9610 369 66 1 103.1073 
310 62 1 64.4781 370 189 -1 181.5445 
311 94 1 120.4224 371 36 1 38.7761 
312 4 1 10.7129 372 10 1 16.2358 
313 61 -1 87.0739 373 168 1 166.4816 
314 11 -1 18.2544 374 168 1 161.2338 
315 20 1 33.8935 375 232 1 261.0032 
316 8 1 23.0731 376 12 1 26.1178 
317 79 -1 80.5413 377 57 -1 59.7611 
318 4 1 12.1182 378 38 1 71.0890 
319 58 1 72.4672 379 820 1 865.4943 
320 4 1 12.9354 380 24 1 30.6399 
321 4 1 13.5139 381 218 1 223.3955 
322 4 1 14.3279 382 215 -1 256.2240 
323 2 1 7.8586 383 502 1 524.9965 
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TABLE 2 (continued) 

D PL NR REG D PL NR REG 

384 74 1 85.8386 443 158 1 185.2916 
385 72 1 76.2725 444 50 1 54.7087 
386 14 1 19.7568 445 16 1 34.7171 
387 36 1 42.9218 446 22 1 38.3673 
388 80 1 68.9839 447 52 1 62.8728 
389 91 -1 88.9151 448 68 1 82.2346 
390 32 1 33.6724 449 50 1 88.9369 
391 162 1 171.7357 450 34 1 37.2955 
392 64 1 77.3254 451 144 1 158.3658 
393 64 1 89.0531 452 8 1 22.1945 
394 493 -1 541.8796 453 308 1 266.8515 
395 46 1 43.7689 454 1062 1 1211.1332 
396 24 1 44.2289 455 188 1 187.0916 
397 260 1 248.2283 456 12 1 21.6822 
398 2 1 13.9520 457 41 -1 50.0053 
399 28 1 41.2984 458 206 1 229.7405 
400 108 1 145.4757 459 448 1 491.2462 
401 80 1 99.6167 460 156 1 159.9725 
402 58 1 66.0425 461 71 -1 73.7591 
403 208 1 265.5586 462 126 1 114.3615 
404 160 1 215.3186 463 778 1 766.1231 
405 236 1 257.7341 464 42 1 58.3189 
406 44 1 43.1812 465 6 1 16.5710 
407 60 1 59.3021 466 24 1 31.8975 
408 42 1 58.9399 467 428 1 471.6362 
409 223 -1 275.1346 468 30 1 36.9668 
410 68 1 81.7698 469 226 1 274.8130 
411 64 1 76.6110 470 352 1 371.6888 
412 142 1 152.9192 471 82 1 83.2163 
413 334 1 288.8929 472 164 1 190.5559 
414 206 1 223.2892 473 148 1 176.9863 
415 324 1 306.4599 474 72 1 94.1183 
416 82 1 91.4846 475 66 1 100.7383 
417 32 1 46.7187 476 10 1 22.9074 
418 124 1 151.9582 477 284 1 294.5090 
419 104 1 92.2576 478 14 1 25.804,2 
420 38 1 41.1450 479 364 1 361.1309 
421 18 1 23.1981 480 86 1 100.1847 
422 562 1 566.4572 481 51 -1 65.8861 
423 34 1 38.9541 482 88 1 116.3825 
424 176 1 193.3631 483 78 1 76.4443 
425 50 1 66.1080 484 108 1 119.7289 
426 116 1 133.3298 485 161 -1 183.4538 
427 232 1 256.8214 486 294 1 311.9160 
428 422 1 401.2819 487 184 1 185.0248 
429 14 1 30.5790 488 174 1 156.7782 
430 28 1 35.7034 489 264 1 277.8649 
431 468 1 436.4574 490 220 1 274.5838 
432 38 1 59.8639 491 566 1 559.1352 
433 168 1 175.7602 492 188 1 190.6584 
434 8 1 25.3625 493 203 -1 197.4414 
435 128 1 131.6412 494 244 1 286.6531 
436 70 1 103.3975 495 46 1 66.3733 
437 376 1 329.6845 496 50 1 62.2386 
438 64 1 69.6490 497 6 1 19.6465 
439 434 1 388.0275 498 154 1 204.6873 
440 40 1 68.4719 499 46 1 79.0547 
441 40 1 52.1058 500 140 1 161.6921 
442 58 1 69.9187 
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Notice that NR = -1 if and only if PL is odd for 5 < d < 500. 
The computations were carried out on the CDC-Cyber 76 of the Universitat zu 

Koln and the VAX 11/785 of the Department of Electrical Engineering of The Ohio 
State University. 
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