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Abstract. Let Y? be any totally complex quartic field. Two algorithms are described for 
determining whether or not any given ideal in Y is principal. One of these algorithms is very 
efficient in practice, but its complexity is difficult to analyze; the other algorithm is 
computationally more elaborate but, in this case, a complexity analysis can be provided. 

These ideas are applied to the problem of determining the cyclotomic numbers of order 5 
for a prime p - 1 (mod 5). Given any quadratic (or quintic) nonresidue of p, it is shown that 
these cyclotomic numbers can be efficiently computed in 0((log p)3) binary operations. 

1. Introduction. In general, the question of whether an ideal in an algebraic 
number field Y is principal seems to be very difficult to answer. Nevertheless, in 
order to solve several important problems concerning A, for example the determina- 
tion of the class group of Y, we must be able to answer this question. In the case 
when Y is a real quadratic field, one can use the well-known continued fraction 
algorithm (see [3]) or a refinement of this idea due to Shanks [21] and extended by 
Lenstra [16] and Schoof [20] (see also Williams [25]). When Y is a cubic field, the 
problem can be solved by using Voronoi's generalized continued fraction algorithm 
(see [7]). Williams [25] has shown that, in the case when Y is a complex cubic field, 
this technique can be improved by extending Shanks' [21] idea. The Generalized 
Voronoi Algorithm (GVA) described by Buchmann [4] can be applied in all fields of 
unit rank 1 and 2. 

For a general Y we can employ the method due to Pohst and Zassenhaus [19]. 
Unfortunately, it is not yet known how efficient this method is. Other procedures, 
for example that of Billevich [2], do not appear to be computationally efficient. In 
fact, complexity results are known only for the quadratic and complex cubic fields, 
cf. Williams [25], Dueck and Williams [9]. 

In this paper we discuss the problem of principal ideal testing in totally complex 
quadratic fields. We derive an algorithm which makes use of the GVA, describe its 
implementation, and prove that its complexity is of the same order as that of the 
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continued fraction and Voronoi method applied to real quadratic and complex cubic 
fields, respectively. Actually, we give two algorithms: one which is efficient in 
practice but for which we are unable to supply a complexity analysis, and one which 
is rather more elaborate but for which we can provide a complexity analysis. 

As an application of our ideas, we show that in the cyclotomic field 9(D), where D 

is a primitive fifth root of unity, we can find a generator for any prime ideal of norm 
p, where p is a rational prime and p 1 (mod 5), in O((log p)3) binary operations, 
provided that we know either a quadratic or quintic nonresidue of p. This means, in 
practice, that we have a very efficient method for determining a solution (x, u, v, w) 
of Dickson's [8] well-known Diophantine system 

16p = x2 + 50u2 + 50 2 + 125w2, 

(1.1) xw= v2-4uv-u2, 
x = 1 (mod 5), 

even when p is very large. These numbers x, u, v, w are of great importance in 
cyclotomy when e = (p - 1)/f = 5. 

We intend, in a subsequent paper, to show that the ideas of Shanks [21] can also 
be used to improve our algorithm. 

2. Notation and Preliminary Results. Let Y= .(p) be a totally complex quartic 
field, where id, id, a, a, are the .9 isomorphisms of Y. We write Y(')= ?, 

-(2) = a(s), and for ~ 
E ?9 ((1)= 

- (2)- a(q), ((3)= 
- ,(4) = a((). We denote 

the norm of ((i) by N(((i)) or Ny)/_(,(l)) - ((1)((2)((3)t(4) and the trace of ( by 

Tr(0) = ((1) + ((2) + ((3) + ((4). 

Also, set 

s(q) = E m 
i>j 

We will require the following simple results. 

PROPOSITION 2.1. Let ,1, 42 E ?; then 1j11 = 121 if and only if la(,)I =I a 

Proof. Suppose IG1I = 1j21 and define 7) = A1/42 We have Af = 1, i = 1/'q C ?, 

and 1 = a(71fi) = a('q)a(ij) Hence, 

(2.1) a('q) = 1/a(ij) 

On the other hand, since ',pj = 1, it follows that 

r = N(M) = a(q) a(q) >0 

and r E 9. By using (2.1) we see that 

N ) N () )1 N(q)-1 = r-1 and a(71)r = a('q) 

By taking the norm of both sides, we must have r = 1; hence, Ia(4Dl = Ia(D2)1. The 
second part of this result can be proved in a similar fashion. E 

PROPOSITION 2.2. If c E ?, then t = 1 if and only if all of the following hold: 

(i) N()= 1, 

(ii) Tr(Q) =Tr(-) 
(iii) Tr(()2 > 4S(A ) -8. 
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Proof. Let P(x) = X4 - ax3 + bx2 - cx + d, a, b, c, d E 2, be the characteristic 
polynomial of {. We have a = Tr(t), b = S(4), c = N(t)Tr(( '), d = N((). 

If 4( = 1 then by Proposition 2.1, N(t) = 1, -i = and Tr((-) = Tr(()= 

Tr((). Also, 

P(X) = 91(X)92(X), 

where gi(x) - x2 + hix + 1 (i = 1,2), hl = t + (, h2 = a(t) + a(t). It follows 
that, since c = a and d = 1, we must have hIh2 = b - 2 and hI + h2 = -a. Since 
h1 and h2 are real, we must also have a2> 4(b - 2). 

If (i), (ii), (iii) hold, then a = c, d = 1, and a2 > 4(b - 2). Putting 

hl = (-a + k)/2, h2 = (-a -k)/2, 

where k2 = a2 - 4(b - 2), we have P(x) = g1(x)g2(x), where gi(x) (i = 1,2) is 
defined above. With no loss of generality we may assume that gl(t) = 0. Since hl is 
real, we must have gj(t) = 0 and tt = 1. 0 

Let 0, be the ring of algebraic integers in Y and let { 1c, ?2 ?31 4 } be a Z-basis 
of 6Q,. We also let { 0, ?*, 4, w* } be the dual basis of ?% (see [2, pp. 403]); that is, 

Tr(wiwj*) = 8ij (1 < i, j < 4). 

Since N(wj) > 1, we have 

W=max{ I ji) I < i,J 4} 1, 

W*= max{ j?(i)j j < i, j < 4 > 1. 

Let D be the absolute value of the discriminant of Y. We may assume that 

(2.2) WV< F . 
Such a basis can be computed by using the basis reduction algorithm of Lenstra, 
Lenstra, and Lovasz [15] in the Minkowski lattice corresponding to (9. It follows 
from (2.2) and the definition of W * that 

(2.3) W * < 6D. 

Suppose b is an ideal of Oy and we wish to test whether or not b is a principal 
ideal*** of 6,. Without loss of generality we will assume that b is an integral ideal 
and that { A1, I2,/ 33,1 4} is a Z-basis of b, where 

4 

(2.4) 1 = E bkjok- 
k=l 

We also use N( b) to denote the norm of the ideal b. 

3. The Method. The method which we will employ here was developed in 
.Buchmann [5]. We will now review the main ideas of this technique. 

For any (fractional) ideal a of Oy we set 

d(a) = min{d e Z+ Ida C 9y} 
and 

L(a) = min{k e Z+ Ik e d(a)a} 

* ** We assume our ideals are nonzero ideals. 
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A number a e a (a # 0) is called a minimum in a if there is no a' E a (a' # 0) 
with I a'(i)I < I a 'Il for i = 1 and 2. An integral ideal a in 0? is called reduced if a is 
primitive and L( a) is a minimum in a. The number of reduced ideals in 0Y is finite 
and every ideal class in dor contains at least one reduced ideal. 

From these remarks we can derive the following procedure for testing whether or 
not b is principal. 

ALGORITHM 3.1. 
1. Compute the cycle _f= {(a1),... , (ap)} of all reduced principal ideals in 0 

(It is often more convenient to compute these ideals by computing their Z-bases 
rather than their generators.) 

2. Compute a reduced ideal b' = (1/fl) b in the ideal class b. 
3. The ideal b is principal if and only if b' E f, i.e., b = (flak) for some 

k E {1, 2,..., p}. 

In order to carry out steps 2 and 3 we use the following results of [5]. Let a be any 
integral ideal of ?.9 and let u be a minimum in a. Then du-l a with d = d(pcl a) is 
a reduced ideal equivalent to a. Moreover, if W = { 1 2... -k } is a maximal 
system of pairwise nonassociated minima in a, then 

'= {dipt-la di = d(,ucla), I < i < k} 
is a cycle of reduced ideals in the ideal class of a. f can be computed by using 
Algorithm 4.1 of [6]. 

Thus, it is now necessary to show how a minimum /L of b can be computed. 

4. Reduction of the Ideal b. Let { P1, 82, P3,4 } be a Z-basis of b and let B be the 
matrix (bkj), where the bkj (1 < k, j < 4) are given in (2.4). If we apply the 
reduction algorithm of [15] to the columns of B, we obtain the so-called LLL-matrix 
B = (bkj) of b. The numbers 

flj = E bkj~k (I < j < 4) 
k=1 

form another Z-basis of b. Further, if we denote the columns of B by b, ..., b4, 
then we can deduce from [6, Proposition 6.3] that 

(4.1) |b < C1D3/2N(b)114 (1 < j < 4), 

where cl is a constant which is independent of Yf. Indeed, from [15, (1.8)] we get 

(4.2) b1j <2N(b)1/4; 
hence, by definition of W, we can derive 

(4.3) 1 f)t< 4WN( b )1/4 (1 < i < 2). 
In many cases this fl1 is a minimum of b. If it is not, we search for a minimum ji 

such that I u(i)I < I/I, i - 1, 2. Thus, having found . our next problem is to find 
some minimum /L satisfying 

11 MI,< PMBi~ (1 < i < 2). 
For x = (x1, X2, X3, X4)' E Z4 and 1 < i < 2, we set 

4 4 

(4.4) -(X) = xjp() - E E bk jxj W(,. 
j.1 k=1 j=1 
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We compute p by using 

ALGORITHM 4.1. 
1. Initialize x2 < (1, 0,0 0)t, f +- 2. 
2. Try to find x E Z4 (Xi 0) such that 

(4.5) Jtt'i)(XJ) I < JP'i)(X2) 11f (I i < 2). 
If this search is successful, set 
X2 Xi; 

else, 
if f = 2, then set f +- 1; otherwise return , - (x2). 

Because of Proposition 2.1, this algorithm must find a minimum of b. 
Notice that for all x E V with 

(4.6) IXi)X PO I~) l (1 < i < 2), 
we have 

4 

(4.7) E, bkjXj <- 16WW*N(b) 1/4 (1 < k < 4) 
j=1 

This can be easily seen by using the well-known dual basis argument [3, p. 403] and 
(4.3). 

Now in order to carry out the comparisons in (4.5), we are compelled to use 
rational approximations @(k) to w(k) for 1 < k, i < 4. We must therefore discuss the 
question of how this is to be done. We let e > 0 be such that 

max{ o(') - @k)|I |1 < i, k < 4) <e; 

and, for x E we denote by ii(i)(x.) (i = 1, 2) the approximation obtained by 
substituting L7i) for @(k) in (4.4). 

On putting 

(4.8) 8 = (64W2W*N(b)1/4 + 81/4)819 
where 83 = 128eWW*N(b)1/4, it is a simple matter to show that for every x E Z4 
subject to (4.7), we get 

I(X)- ()(X) |< 81/2 (i = 1, 2). 
Hence, 

(4.9) 1()X) _ #()X)2 8/2. 

Thus (4.5) can be true only if 

(4.10) I(f)( _1) 12 + IA(2)(. ) 22 IIf()( )I2/f2 IA(2)( )12/f2 + 23. 

We see, then, that the search for xl can be conducted by using an algorithm of 
Fincke and Pohst [10]. This algorithm computes all the solutions x of an inequality 

Q ( x) _< K, 
where Q is a positive definite n-dimensional rational quadratic form and K > 0 is a 
constant. By (4.9) we can check whether a pair x1, x2 subject to (4.7) satisfies (4.5) 
as long as 

(4.11) I i(xi) I2 - I(X() 212 > 8 
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for 1 < i < 2. We conclude these remarks by describing how the search for xl in the 
second step of Algorithm 4.1 should be conducted. 

We determine the solutions of (4.10) by using the method of [10]. Suppose xl is 
any such solution. If the components of xl do not satisfy (4.7), then this xl must be 
rejected as a possible solution of (4.5). If xl is not rejected, we next check whether 

(4.12) IL 12 I f()(x2) 12/12 - X8 

or 

(4.13) Ifi(i)(A ) 2 > IA(i)(x ) I2/12 + 8. 
In the first case, we have found a solution xl of (4.5); in the second case, we must 
reject xl as a possible solution of (4.5). 

If neither (4.12) nor (4.13) holds (a situation which we never encountered in any of 
our computing), we must check whether 

(4.14) (i)(x/) I = I(i)(x2) lf (i = 1,2). 
This can be done by computing the characteristic polynomial of 7 = tL( )(x1)/,t(')(x2) 
and using Proposition 2.2. If (4.14) holds, we reject xl; if (4.14) does not hold, we 
must increase the precision of our approximations to @(k); that is, we have to 
decrease E and repeat this part of step 2. During our calculations, we found, on using 
a value of E - 10-12, that one of (4.12) or (4.13) held. 

If we have tested all the solutions of (4.10) without finding a solution of (4.5), then 
no such solution exists. 

In our complexity analysis in the next section it is necessary to be able to prove 
that there exists a value of e such that one of (4.12), (4.13) or (4.14) must hold 
whenever xl and x2 satisfy (4.7). We do this in 

PROPOSITION 4.1. There exists a constant C2 independent ofX2 such that if and X2 
both satisfy (4.7), E < c2D-29/2, and 8 is defined by (4.8), then (4.5) is true if and 
only if 

(4.15) ly~i)(A ) 12 < 
I A(i)( -2 

12 /f2 - i=1, 2). 
Proof. If (4.15) is true, then by (4.9), 

+ I 2)( I) 12/_2 - ( I _ ) 12 I (i)( ) 2 
- l2 i)( ) I 

< 8 + I /(i)(X2) If2 
_ 

1L(1)(1)2 
and (4.5) follows. 

If (4.5) holds, let 

- I= L(i)(X) 12 
- ,.(i)(x2) I/f2 (i = 1,2). 

Now yi belongs to the product of the extension ideals b(i)/f - {I(')I/f l /3 E b } and 
b(i)/f in the field Y-= ..(i)(p(i)). This product ideal is of norm (N(b/f ))2k, where 
k = [:2 '(')] < 3; therefore, by (4.3) we get 

( N( b/f ))2k 
_ 

|NO (y1) I 

- |I| |-|(i 2) 12/f 2 (3WJ2)4k-lf 2-8k ()2k-1/2 
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because each of the 4k - 1 factors in the norm of yi different from yi must be 
bounded by 32W2N( b)1/2/f 2. Hence, 

(4.16) , X(i)(x) 12- p(i)(x2) 2 > sN(b)1/2 

where 

5 f6k-2/(32W2)4kl < 1. 

If we put r = s/(214W3W*2), then by (2.2) and (2.3) we have r > C2D-29/2, 

where c2 is a constant which is independent of Y. If we select any E < r, then from 
(4.8) and the fact that W > 1, we get 

28 < sN(b )12. 

It follows from (4.5) and (4.16) that 

28 < 1y(i)(x2) 22 - x 2 

12 If 2 12 
12If2 I ^(i)(_ 12 

+1 1U(i(2) /f j- (i'( 2) + j 2/f2 - 

<8 + f(I)(x ) 2/f2 
I 

A 

(j)( -) 
12 

by (4.9). C1 

5. The Complexity. By using the results of [6] we see that the complexity of the 
computation of bases for all reduced principal ideals in C9, is O(RDe), where R is 
the regulator of Y and by O(D8) we mean O(DE) for all E > 0. The computation of 

a generator of any of these reduced ideals also requires that O(RDE) binary 

operations be performed. By [15, Proposition 1.26] the running time for the 

computation of an LLL-matrix of b is O(logIBIOO). 

We must now analyze Algorithm 4.1. Since the norms of all elements of b are at 

least N(b), it follows from the bound in (4.3) on the initial values of Ju(i)(x2) 
(1 < i < 2) that the number of iterations when f = 2 is O(log D). When the convex 

body M described by (4.5) with f = 2 contains no nonzero point of the lattice, the 

algorithm changes f to 1. Now the corresponding convex body with f = 1 can be 

covered by 0(1) bodies congruent to k. Also, each of these covering bodies can 

only contain one lattice point; for, if it contained two, then the difference of these 

points would be a nonzero point in k. Hence, after Algorithm 4.1 changes f to 1, 

there can only be 0(1) possible solutions of (4.5); thus, the number of iterations 

needed by this algorithm is 0(log D). 
It remains to analyze the complexity of the search for xj in Algorithm 4.1. Since 

det(bkj)I = N(b), we see by (4.1), (2.2) and (2.3) that, if x satisfies (4.7), then there 

exists a constant C3 independent of ?' such that 

(5.1) x I< c3D6. 

It follows from Proposition 4.1 that we can search the convex body described by 

(5.1) and (4.15), which has rational constraints, rather than the one described by 

(4.5), which has irrational constraints. Though the algorithm of Fincke and Pohst 
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[10] has turned out to be very efficient in practice, we cannot use the complexity 
analysis provided in [10] for this algorithm. Therefore, we replace this method by a 
procedure of Lenstra [18] which, unfortunately, is too complicated for practical 
implementation. Lenstra proves that the search for a lattice point in a convex set 
which is solvable in the sense of [11, Sections 1 and 3] can be carried out in 
polynomial time in the binary length of the input data; cf. [18, Section 10, Remark 
(d)]. It can be easily verified that the convex set described by (5.1) and (4.15) is 
solvable. In view of (2.2), (4.1), (4.3), (5.1), and Proposition 4.1, the input data length 
is O(log D); hence, Algorithm 4.1 computes a minimum in b in terms of the Z-basis 
{ 1 / 2/ /31, /4 ) in O(D6) operations. 

The computation of a basis of a reduced ideal in the class containing b takes 
another O(De log N(b)) operations. Finally, we can compare the reduced ideal 
equivalent to b to all the principal reduced ideals in O(RD6) operations; and, if b is 
a principal ideal, a generator of b can be computed in O(RD8 log N( b)) operations. 
We have proved 

THEOREM 5.1. (i) A reduced ideal in the class containing b can be computed in 
0 (log B I o + De log N( b)) binary operations. 

(ii) It can be determined whether or not an ideal b is principal in 

O(logL loo + De log N( b ) + RDI) 

binary operations. 
(iii) If b is principal, a generator of b can be computed in 

O(logl o1, + RD' log N(b)) 

binary operations. 

6. Application: The Computation of Certain Cyclotomic Constants. Let p be a 
prime such that p = ef + 1. A central problem in the theory of cyclotomy is that of 
determining values for the cyclotomic numbers (h, k), where (h, k) is, for a given 
primitive root g of p, the number of solutions s, t of the congruence 

(6.1) 1+ ges+h g et+k (mod p), 

where 0 < s, t < f - 1. Note that if h hl, k k, (mod e), then (h, k) = (hl, kj). 
It must, of course, be emphasized here that one cannot define the numbers (h, k) in 
terms of p alone, because they also depend for their values on g, and there are 
p( p - 1) choices for g. Indeed, if g' is another primitive root of p, then g' = gm for 
some m such that gcd(m, p - 1) = 1. The values for (h, k)' (using g' for g in (6.1)) 
are (mh, mk) = (h', k'), where h' mh, k' -mk' (mode). 

In [8] Dickson showed how the problem of evaluating the cyclotomic numbers for 
p when e = 5 could be related to that of finding integer solutions to the Diophantine 
system (1.1). In this section we will show how the methods developed in the previous 
sections can be used to provide a very efficient method for solving (1.1). Further, we 
show how the cyclotomic numbers can be computed for a given g. 

Since p 1 (mod 5), there must exist four distinct solutions of the congruence 

(6.2) X4 ?X3 =X2 + 1-0 (modp). 
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If r is any one of these solutions, then r2, r3, r4 are the others. If we know in 
advance a quintic nonresidue n modulo p, then 

r= -(n-l)/5(mod p) 

is a solution of (6.2). If we know any quadratic nonresidue of p, we can use Shanks' 
[22] algorithm to solve 

X2 = a (modp) 

when (a/p) = 1. This algorithm will find a value for x in O((log p)2) binary 
operations. Thus, we can find a value for r by solving the sequence of linear and 
quadratic congruences 

x2- 5 (modp), 
2y - x - 1 (modp), 

z2 -y - 3 (mod p), 

2r y + z (mod p), 

in O((log p ) 2 ) binary operations. 
In practice, the problem of determining a quadratic or quintic nonresidue of any 

prime p is simply solved by trial (3/4 of all p have either -1 or 2 as a quadratic 
nonresidue); however, in general it is very difficult to show theoretically that this 
process will succeed in finding a nonresidue in polynomial time. Lenstra [17] has 
pointed out that under the Extended Riemann Hypothesis (ERH) we would have a 
least quadratic nonresidue q < 70 (log p)2 and Bach [1] has recently improved this 
to q < 2(log p ) 2. Indeed, Bach shows that if G is any proper multiplicative subgroup 
of the integers (mod m), then the least positive integer x outside G satisfies 

x < 2(logm)2 (m > 1000), 

assuming the ERH. Hence, under this assumption, we know that if p > 1000 there 
must exist a quintic nonresidue n < 2(log p)2. It follows that, under the ERH, we 
can solve (6.2) in O((log p)3) binary operations. (It requires O(logp) binary 
operations for each of O((log p)2) trials.) 

Let D be a primitive 5th root of unity, let Y = 9(D) be the (totally complex) 
cyclotomic field formed by adjoining ' to 2, and let r be any fixed solution of (6.2). 
It is well known that the ideal 4 with Z-basis {p, - r, ( - r)2, (t - r)3} is a 
prime ideal of Z(') (= C9.) and P l(p). Since Y has class number 1 and (we found 
that) there is only one reduced ideal of Z(D), we see by our previous results that we 
can compute a generator for p in O(log p) binary operations. 

Let r = r(t) = al + a2 '2 + a3 '3 + a4 '4 be this generator of p. We note that 
since 7 E p, we must have 

(6.3) 7(r) = alr + a2r2 + a3r3 + a4r3 (modp). 

Also, (p) = r1,r2,r3,r4, where vi is the prime ideal generated by s'). 
There are 4( p - 1)/4 primitive roots g of p such that g(P1- )/5 =r (mod p). Let 

g be any one of them and define the Gauss sum 
p-2 

T(P) = : 13jig, 
j=O 
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where /3 is a primitive 5th root of unity and ( is a primitive pth root of unity. It is 
well known (see [8]) that the Jacobi function 

Am(t) -T()T(~m) (5 + m(m + 1)) 

can be written in terms of D only. Indeed, 

p-2 

'PJm(t) - E Dind(j)-(m+1)ind(j+1) 
j==1 

where gind(k) - k (mod p). Thus, E=-) E Y (i = 1,2,3,4) and we also have p = 

= Ai(D2)4i(D3). In fact, by (6.3) and a theorem of Kummer (see, for 
example, Smith [23, Art. 60]), we know that 

where ? ts is selected such that 

A()--1 mod(l - t2 

If we put 

= bjd + b2 '2 + b3 3 + b4'4, 

the values of x, u, v, w can be computed [8] by using 

-x = b1 + b2+ b3 +b4, 

5u = b1 + 2b2- 2b3 -b4 

5v = 2b, - b2 + b3- 2b4, 

5w = b, - b2- b3 + b4. 

Furthermore, we can compute the cyclotomic numbers for any value of g such that 
g(p - 1)/5 =r (modp) by using (see Whiteman [24, pp. 95-111]) 

25(0,0) = p - 14 + 3x, 

100(0, 1) = 4p - 16 - 3x + 50v + 25w, 

100(0,2) = 4p - 16 - 3x + 50u - 25w, 

100(0, 3) = 4p - 16 - 3x - 50u - 25w, 

100(0,4) = 4p - 16 - 3x - 50v + 25w, 

100(1,2) = 4p + 4 + 2x - 50w, 

100(1,3) = 4p + 4 + 2x + 50w. 

The remaining 18 cyclotomic numbers can be computed by using the symmetry 
property (h, k) = (k, h) and the result that (h, k) = (5 - h, k - h). 

The solution sets { x, u, v, w } of the system (1.1) are very important in cyclotomy. 
For example, they can be used for deriving the coefficients of the period equation 
(Lehmer [13]) and its discriminant (Lehmer [14]), and for determining certain quintic 
residuacity conditions (Lehmer [12], Williams [26], [27], [28]). We now know that 
they can be efficiently computed. In fact, a FORTRAN program was written to do 
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this and run on a VAX 11/785 in the Electrical Engineering Department at Ohio 
State University. In a total of about an hour of CPU time we were able to compute a 
solution set for each of the 18347 primes p with 50,000 < p < 1,000,000. 

We conclude this section by pointing out that we can now determine the number 
of solutions of 

(6.4) ax5 +by5 = c (modp) (p + xyabc) 

in polynomial time when we are given a solution r of (6.2). We let g be any primitive 
root satisfying r - g(Pl)/S. Put A - ac , B - b1 and let mdg A = k, mdg B = 

h (mod p). Then (6.4) can be transformed into 

(6.5) g 5s+h + 1 gSt+k, 

and the number of solutions of (6.5) is (h, k). The difficulty here is that we cannot 
compute h and k; however, we only need to know k and h (mod 5) and this we can 
easily do by observing that 

A(p -1)/5 = k B -1)/5 - h (o A rk B(- rh (mod p). 

Hence, h and k may be easily computed modulo 5 and we can enumerate the 
solutions of (6.4). 
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