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Class Groups of Quadratic Fields. II 

By Duncan A. Buell * 

Dedicated to Daniel Shanks on the occasion of his 70th birthday 

Abstract. A computation has been made of the noncyclic class groups of imaginary quadratic 
fields Q( - D) for even and odd discriminants - D from 0 to - 25000000. Among the results 
are that 95% of the class groups are cyclic, and that - 11203620 and -18397407 are the first 
discriminants of imaginary quadratic fields for which the class group has rank three in the 
5-Sylow subgroup. The latter was known to be of rank three; this computation demonstrates 
that it is the first odd discriminant of 5-rank three or more. 

1. Introduction. In [2] is described a computation of class numbers and class 
groups of imaginary quadratic fields Q( - D) for even and odd discriminants - D 
from 0 to - 4000000. This computation has been used in various contexts [1], [3], [4], 
[7]. Due to interest in a new factoring technique which utilizes the nature and 
structure of imaginary quadratic class numbers and class groups [8], a further 
computation and statistical analysis was made of these numbers and groups [5]. To 
further define the nature of class groups, we have rewritten the programs of [2] and 
computed all noncyclic class groups of imaginary quadratic fields Q( - D) for even 
and odd discriminants - D from 0 to - 25000000. This computation and its results 
are summarized in this paper. 

We have followed the convention of [2] with regard to the 2-Sylow subgroup. 
Since the rank of that subgroup is determined by the number of prime factors in the 
discriminant - D (theorem of Gauss) for the purposes of our computation, the 
2-Sylow subgroup of a class group is called "noncyclic" if the 2-Sylow subgroup of 
the subgroup of squares in the class group is noncyclic. 

All programming was done in C on a VAX 11/780** owned by the Computer 
Science Department, Louisiana State University, running 4.2BSD UNIX**. Some of 
the statistical summaries were obtained using S. 

2. The Computation. 
2.1. General Description. The basic computation is similar to that of [2]. Even and 

odd discriminants were dealt with separately. Separate computations were done for 
discriminants in ranges of integers in blocks of 200000, using one long array. (Thus, 
one such computation would be for odd discriminants between -600000 and 
- 800000.) A first pass through the array removed integers which were not discrimi- 
nants of quadratic fields by flagging integers with odd prime squares as factors or of 
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the wrong congruence class modulo 4. Then, for each remaining discriminant, a 
triple loop counted the binary quadratic forms of that discriminant, obtaining the 
class number, the class number of the group of forms and of the field being identical 
for imaginary fields. 

The class numbers having thus been computed, a list was made of discriminants 
with "possibly noncyclic" groups by removing from the existing list those discrimi- 
nants whose class numbers were not divisible by the square of at least one odd prime 
(or, for the 2-Sylow subgroup, the discriminants with fewer than 4 genera or without 
a factor of 4 in the number of norms per genus). Each of the possibly noncyclic 
p-Sylow subgroups of the remaining groups was then tested. The maximal order of 
any element in a class group being FPG/p, where FPG is the number of forms per 
genus for the discriminant, forms were generated "at random" and their FPG/pth 
powers computed. If any of these was not the identity, the group was known to be 
cyclic. If, in testing 15 "randomly generated" forms, only the identity was found for 
the FPG/pth powers, the group was determined to be "probably noncyclic" and the 
p-Sylow subgroup explicitly computed. Data for groups determined to be noncyclic 
were written to a disk file, and statistics and summaries produced after the 
computation was completed. 

The "random generation" of binary quadratic forms was this: A form (a, b, c) of 
discriminant - D exists if the congruence X2 = -D (mod4a) is solvable. For odd 
primes a, this is equivalent to having the Jacobi symbol [ - D/a] equal to + 1. Our 
program simply ran through the primes in sequence as possible first coefficients a 
and found and reduced the possible forms for the discriminant in question. 

We mention that in this computation all "probably noncyclic" groups were 
completely determined. This was not the case in the previous computation [2]. In 
that computation, a "probably noncyclic" group with a p-Sylow subgroup of order 
pkwas declared to be noncyclic of the form C(p) X C(pk-1) if a form of order 
pk-1 was found. Similarly, "probably noncyclic" p-Sylow subgroups of order p2 

and p3 were simply declared to be C(p) X C(p) and C(p) X C(p2), respectively. 
No differences were found between the results of the previous computation and the 
results of this one, however. 

2.2. The Group Computation. The algorithm for computing class groups is derived 
from that of Shanks [10], is essentially the same as that of [2], and is given as 
Algorithm A below. The decomposition of an Abelian p-Sylow subgroup (written 
multiplicatively) begins as follows. 

a. Obtain a form, fl, of order a power of p. 
b. Compute the p-exponent ord1 such that pordi is the order of element fi. 
c. Save the penultimate p-powers {<fjPrdl 1) 1 ? i < (p - 1)) of f 
d. Obtain a form f2 and compute ord2 similarly. 
e. If ord2 > ord1, exchange f, and f2 and store the penultimate p-powers of the 

new fl. 
f. If 

f ord2-1 i(pordl-1) 

for some i, then a dependence exists between f, and f2. This is removed by 
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replacing f2 with 

f2 * 
faPrl 

-~ 1 ) 

and recomputing ord2, repeating the test for dependence in this step until we find 
we have independent elements. 

g. Having found two independent elements, if the p-orders sum to the p-power in 
the order of the group, we are, of course, done. If not, we find a third element, 
remove the dependence of this element on elements fi and f2, and continue until we 
have exhausted the p-Sylow subgroup. We note that removing dependence requires 
comparing the third elements's penultimate p-power against the penultimate powers 
of the first and second elements of the cross products of those powers. 

For quadratic class groups, several facts were taken into account in implementing 
the algorithm. First, our previous computation showed that 95.74% of the class 
groups for discriminants from 0 to -4000000 were cyclic. Further, those noncyclic 
groups were in general "almost" cyclic, in the sense that the noncyclic p-Sylow 
subgroups were usually C(p) x C(pk). Very few groups had rank three. Thus, we 
assumed that it would be normal for the groups to be easily computed and to be of 
rank two. Once the program established the fact that a group had rank three, 
therefore, it simply wrote this fact to the disk file, and went on to the next 
discriminant. In a very few cases, the entire decomposition had not at this point 
been found, and we performed a separate computation to finish the decomposition 
and "patch" the disk file of data on noncyclic groups. This happened for about 40 
discriminants. No groups were found of rank larger than three for an odd prime 
Sylow subgroup. Although a detailed analysis was not undertaken, it is our general 
impression that this decomposition algorithm works well on quadratic class groups 
of this size. 

3. Results. We present in Tables 1-4 a summary of the frequencies of occurrence 
of noncyclic p-Sylow subgroups and the first occurrences of those groups. In Table 1 
we include counts of both noncyclic class groups and noncyclic subgroups, although 

TABLE 1 

Summary of noncyclic groups 

A B C D E F 
Even 2533009 1084644 142224 143833 13.1 5.61 
Odd 5066042 1758766 239409 241845 13.6 4.73 
Total 7599051 2843410 381633 385678 13.4 5.02 

A-number of discriminants 

B-number of possibly noncyclic discriminants 
C-number of noncyclic class groups 
D-number of noncyclic subgroups 
E 100 *C/B 
F-100 *C/A 
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TABLE 2 

Summary for individual p-Sylow subgroups 

A B C D E F 
2-Even 670838 26.48 103036 4.07 15.36 
2-Odd 859385 16.96 157523 3.11 18.33 
2-Total 1530223 20.14 260559 3.43 17.03 
3-Even 372238 14.70 34992 1.38 9.40 
3-Odd 749306 14.79 72211 1.43 9.64 
3-Total 1121544 14.76 107203 1.41 9.56 
5-Even 118144 4.66 4462 0.18 3.78 
5-Odd 242187 4.78 9365 0.18 3.87 
5-Total 360331 4.74 13827 0.18 3.84 
7-Even 54338 2.15 1096 0.04 2.02 
7-Odd 113926 2.25 2162 0.04 1.90 
7-Total 168264 2.21 3258 0.04 1.94 
11-Even 16883 0.67 142 0.01 0.84 
11-Odd 40007 0.79 339 0.01 0.85 
11-Total 56890 0.75 481 0.01 0.85 
13-Even 10531 0.42 71 0.00 0.67 
13-Odd 26737 0.53 160 0.00 0.60 
13-Total 37268 0.49 231 0.00 0.62 
17-Even 4302 0.17 17 0.00 0.40 
17-Odd 13252 0.26 44 0.00 0.33 
17-Total 17554 0.23 61 0.00 0.35 
19-Even 2783 0.11 12 0.00 0.43 
19-Odd 9756 0.19 28 0.00 0.29 
19-Total 12539 0.17 40 0.00 0.32 
23-Even 1206 0.05 3 0.00 0.25 
23-Odd 5475 0.11 10 0.00 0.18 
23-Total 6681 0.09 13 0.00 0.19 
29-Even 320 0.01 2 0.00 0.63 
29-Odd 2634 0.05 1 0.00 0.04 
29-Total 2954 0.04 3 0.00 0.10 
31-Even 239 0.01 0 0.00 0.00 
31-Odd 2063 0.04 1 0.00 0.05 
31-Total 2302 0.03 1 0.00 0.04 
41-Even 22 0.00 0 0.00 0.00 
41-Odd 638 0.01 1 0.00 0.16 
41-Total 660 0.01 1 0.00 0.15 

A-prime p 
B-number of possibly noncyclic discriminants 
C-possibly noncyclic discriminants as a % of the total 
D--number of noncyclic p-Sylow subgroups 
E actually noncyclic p-Sylow subgroups as a % of total 
F-actually noncyclic p-Sylow subgroups as a % of possible 
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TABLE 3 
Count of possibly noncyclic p-Sylow subgroups 
(for primes p with no noncyclic groups found) 

p Even D Odd D Total 

37 69 1050 1119 
43 19 556 575 
47 5 367 372 
53 0 213 213 
59 0 102 102 
61 0 97 97 
67 0 59 59 
71 0 36 36 
73 0 23 23 
79 0 25 25 
83 0 9 9 
89 0 4 4 
97 0 1 1 

TABLE 4 
First occurrences of noncyclic p-Sylow subgroups 

A B C D E 
3 3896 3 x 12 3299 3 x 9 
5 17944 5 x 10 11199 5 x 20 
7 159592 7 x 14 63499 7 x 7 

11 580424 22 x 22 65591 11 x 22 
13 703636 13 x 26 228679 13 x 26 
17 4034356 17 x 34 1997799 34 x 34 
19 3419828 19 x 38 373391 19 x 38 
23 11137012 23 x 46 7472983 23 x 46 
29 16706324 58 x 58 20113607 29 x 116 
31 11597903 31 x 62 
41 6112511 41 x 82 

A-prime p 
B -first even discriminant with noncyclic p-Sylow subgroup 
C-decomposition of class group 
D-first odd discriminant with noncyclic p-Sylow subgroup 
E-decomposition of class group 

only a very small fraction of class groups turned out to be noncyclic in more than 
one p-Sylow subgroup. In Table 5 we list all the class groups found with a noncyclic 
p-Sylow subgroup for p > 19. In Tables 6-8 we detail information about noncyclic 
groups with p3 I h for p > 5. 

The most unique groups found were those for discriminants - 11203620, with 
class group C(10) x C(10) x C(10), and -18397407, with class group C(5) x C(10) 
x C(40). The latter was given in a list of rank-three groups by Schoof [9], but the 
former is apparently new. 
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TABLE 5 
Groups noncyclic in a p-Sylow subgroup for p > 19 

Disc Group Disc Group 

6112511 41 x 82 14969711 2 x 46 x 46 
7472983 23 x 46 16706324 58 x 58 
7814559 46 x 46 18359043 23 X 46 

11137012 23 x 46 20113607 29 x 116 
11597903 31 x 62 20859463 23 x 69 
11836723 23 x 23 21360324 46 x 446 
12919471 23 x 92 22287687 46 x 46 
13034696 23 x 92 23855464 29 x 58 
14115151 46 x 46 24482399 23 x 207 

TABLE 6 
Noncyclic groups for which 125 1 h 

Group First odd D First even D Total number 

5 x 25 258563 - 11 
5 x 125 1287491 33 
5 X 625 258563 - 7 

5 x 50 50783 178004 78 
5 x 250 1287491 2189204 74 
25 x 50 258563 - 2 

10 x 50 309263 702456 243 
10 X 250 2177951 9059636 68 
50 x 50 - 9623444 1 

5x10x40 18397407 - 1 

2 X 10 x 50 1337479 2340680 236 
2 X 10 x 250 15945095 3 
10 x 10 x 10 11203620 1 

2 x 2 x 10 x 50 4798335 10865256 55 

TABLE 7 
Noncyclic groups for which 3431 h 

Group First odd D First even D Total number 

7 X 49 480059 13 
7 x 343 4603007 4 
7 X 98 1984715 890984 55 

14 x 98 2249295 3617480 73 
2 X 14 X 98 9599159 13944644 12 
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TABLE 8 

Groups with p3 l h with p > 11 

D Group D Group 

7948999 11 x 121 19461503 11 x 242 
9055019 11 x 121 24557096 11 x 121 
9670583 11 x 121 14127343 13 x 169 

12139691 11 x 121 17803439 19 x 361 
19380719 11 x 363 

TABLE 9 

Groups with high powers of 2 in two cyclic factors 

Disc Group Disc Group 

6342959 16 x 256 21025623 32 x 64 
12993671 32 x 128 22128095 64 x 64 
13263095 32 x 192 22209799 16 x 256 
14060036 32 x 64 22947695 16 x 256 
16834223 16 x 256 23144495 32 x 192 
17317119 16 x 256 23429156 32 x 64 
18961895 16 x 256 24475919 32 x 256 

One question which occasionally arises is that of which groups appear as class 
groups of quadratic fields. Although an exhaustive search did not seem worthwhile, 
we did consider the groups of odd order (which correspond to prime discriminants) 
of order less than 1000. Of these, the only groups of rank two which did not appear 
were C(p) x C(p) for p = 11, 19, 29, and 31, and C(25) x C(25). The only groups 
of rank three which did occur were C(3) X C(3) X C(33), C(3) X C(3) X C(69), 
C(3) x C(3) x C(99), and C(3) x C(3) x C(105). 

We present in Table 9 the groups for which the 2-Sylow subgroup (of the 
subgroup of squares) had order at least 512 and the first cyclic factor was of order at 
least 8. And finally, in Table 10, we present all class groups which were noncyclic in 
two different p-Sylow subgroups for odd primes p. 

It is to be noted that the frequency of noncyclic 3-Sylow and 5-Sylow subgroups 
(1.14% and 0.18%, respectively, from Table 2) are not substantially different from 
the heuristically conjectured frequencies of Cohen and Lenstra [6], which are 1.167% 
and 0.158%, respectively, for subgroups C(3) x C(3) and C(5) x C(5), to which 
must be added percentages of lower order for more complex subgroups. 

Remark. In our computation, we called a class group "noncyclic" in the 2-Sylow' 
subgroup if the 2-Sylow subgroup of the subgroup of squares was noncyclic. In all 
our tables, however, when groups are explicitly presented, the group that is pre- 
sented is the full class group, not just the subgroup of squares. 
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TABLE 10 

Groups noncyclic in two odd-Sylow subgroups 

Group 1st even D 1st odd D Group 1st even D 1st odd D 

15 X 15 119191 21 X 84 24924488 
15 X 30 3358427 21 X 126 4620215 
15 X 45 2403659 21 X 147 24565367 
15 X 60 7773124 3072743 21 X 168 24594884 
15 X 75 10064191 21 X 189 20532511 
15 X 90 11044456 7153015 21 X 231 24294143 

15 X 105 3150391 21 X 378 21657191 
15 X 120 4587656 7932539 30 X 30 2766392 2075343 
15 X 135 12057919 30 x 60 6006356 4425351 
15 X 150 11358104 21307739 30 X 90 11912984 6567311 
15 X 165 10181471 30 X 120 24481784 17414135 
15 X 180 5046527 30 X 150 9763511 
15 X 210 18016831 30 X 180 16911191 
15 X 225 8396639 30 X 210 23996759 
15 X 240 8196191 33 X 33 22479739 
15 X 270 14348903 33 X 66 22297448 
15 X 285 9609071 33 X 99 14898623 
15 X 300 13017119 35 X 35 19399067 
15 X 360 19260095 42 X 42 16053944 7192015 
15 X 450 23224151 70 X 70 21428391. 
15 X 480 17896199 126 X 126 8209319 
15 X 525 23906711 2 X 30 X 30 11905176 5486327 
21 X 21 8847427 2 X 30 X 60 21140216 7814015 
21 X 42 16574248 6481447 2 x 30 x 90 17535791 
21 X 63 3561799 2 X 42 X 42 19701647 

4. Note. The data which form the output of the group computation currently exist 
online on the 1 computer Science Department's VAX computer. The author is willing 
to respond to limited requests from interested parties, or to provide copies of the 
data if supplied with a magnetic tape. 

Computer Science Department 
Louisiana State University 
Baton Rouge, Louisiana 70803 
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