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Hecke Operators and the Fundamental Domain 
for SL(3, Z) 

By Daniel Gordon*, Douglas Grenier**, and Audrey Terras*** 

Dedicated to Daniel Shanks 

Abstract.We report on a detailed study of the fundamental domain for the special linear group 
SL(3, Z) of 3 X 3 integral matrices with determinant one. Graphs of points coming from the 
action of Hecke operators are considered. 

1. SL(2, Z). The modular group r2 = SL(2, Z) consists of all 2 X 2 integer matrices 
of determinant one. An element y E F2 acts, as does any element of SL(2, R), on the 
Poincare upper half-plane 

H = {z = x + iy Ix, y e R, y > 0) 
via fractional linear transformation: z - yz = (az + b)/(cz + d), for 

=(ic d) 
A fundamental domain D for F2 is a connected closed subset D c H behaving like 
the quotient space r2 \ H, at least up to boundary identifications. Thus, for every 
z E H, there is a y E r2 such that yz E D. Moreover, if z and w lie in the interior 
of D and z = yw for y E 12, then y = ? I, where I is the identity matrix. 

It is easily seen (cf. Terras [17]) that the region 

(1.1) F2 = {z E HI -I < Rez < 2, zJ> i} 

is a fundamental domain for SL(2, Z). The usual method of moving z E H to F2 is 
called the "highest-point method ", i.e., you choose -y E 12 to maximize Im(yz). The 
process of moving z to yz E D is called a reduction algorithm. It can be done by a 
sequence of flips by 

S- ? 18 

and translations 

T ( n) neZ. 
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This gives a continued fraction type algorithm, and the maps 
z "--1/z and z z + 1 

generate the projective linear group PSL(2, Z) = SL(2, Z)/ + I. 
In Figure 1, we picture F2 using coordinates v = 1/y,x = x. These coordinates 

are chosen, since we will use analogous ones for SL(3, Z). They have the advantage 
of giving us a bounded region to graph. On the other hand, the coordinates are still 
Euclidean. One would have to take log y to obtain noneuclidean coordinates. For 
the details of the results mentioned above, as well as background for the rest of this 
paper, see Terras [17]. Our goal here is to come to an understanding of the 
fundamental domain for SL(3, Z) which is as good as that for SL(2, Z). 

There are many applications of the study of SL(2, Z) \ H. For example, one can 
use the fundamental domain to give an easy algorithm for the computation of class 
numbers of imaginary quadratic number fields, and Sarnak has used Selberg's trace 
formula for SL(2, Z) (which is a noneuclidean analogue of the Poisson sum formula) 
to obtain asymptotic results on units in real quadratic fields. There are also 
applications in physics (cf. Gutzwiller [5]). Discussions of the fundamental domain 
for SL(2, Z) and some of its applications can be found in Terras [17, Sections 
3.3-3.7]. Similar applications are envisioned for 13 = SL(3, Z). 

0 00 

0. 5 0 0.50 

FIGURE 1 

The standard fundamental domain F2 for SL(2, Z) transformed by v = l/y 
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Hecke operators T7 have been investigated since the times of Hecke, Hurwitz, 
Mordell, and Ramanujan. They are important for the derivation of Euler products of 
L-functions corresponding to automorphic forms. Here we consider the Hecke 
operator T7 acting on functions f: SL(2, Z) \ H - C via 

T1 f(Z)- Y f (Oz) 
lA72\M2(n) 

where 

M2(n) = { E Z2X2 deta = n} 

It is not hard to find representatives for the quotient F2 \ M2(n) and show that 

(1.2) Tnf(z) = L f((az + b)/d). 
ad=n, d>O, 

h mod d 

We have left out the normalizing factors which are usually introduced here. They are 
not of interest for our discussion, and we are thinking of forms f of "weight 0" in 
the usual parlance. 

Hecke operators are very useful in the study of automorphic forms (i.e., F-in- 
variant functions on H satisfying certain partial differential equations). Stark [16] 
uses these operators, for example, to obtain an algorithm for the computation of 
Fourier coefficients of Maass wave forms; i.e., eigenfunctions f of the noneuclidean 
Lapiacian 

A = y2(a21/aX2 + a2/ay2) 

such that f is F-invariant on H (and satisfies a certain growth condition). 
Here we are interested in images in F2 of Hecke points for T2, p a prime: 

(1.3) SP ( zO) = { ( Zo + )/p 0 -<- j < p - I } , 

for fixed z0 E H. One looks at various examples (see Figure 2) and quickly becomes 
convinced that images of the points in SVz) become dense in H as the prime p 
approaches infinity. 

The density of the Hecke points in F2\H is connected with the Ramanujan 
conjecture on the size of the Fourier coefficients of automorphic forms-a conjec- 
ture which remains unproved in the Maass wave form case (see Stark [16] and 
Sarnak [14]). 

One obvious consequence is that these Hecke points can be used for numerical 
integration and differentiation. The Hecke points are particularly nice for the 
solution of Af = Xf, where A is the noneuclidean Laplacian defined above, for 
F-invariant functions f on H, since eigenfunctions of A can also be assumed to be 
eigenfunctions of the Tn (because AT,, = T1A). And the Fourier coefficients of such 
f(z), considered as a periodic function of Rez, are basically the eigenvalues of the 

Tn 

The multiplicative properties of the Tn are given by 

TnTm = Tml if g.c.d.(n, m) = 1, 

E ix'r = ( 1 p1/2TX+pX2>- 
r>O 
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These show that the L-functions corresponding to automorphic forms f with 
Tjf = nj and defined by 

Lf(s) = E n s for Re s sufficiently large, 
n l1 

have Euler products. 
A horocycle in H is a horizontal line 

(1.4) CY = {z = x + iy I x e R}, 

or an image of some CY under an element g in SL(2, R). Note that the Hecke points 
Sp(zo) are in the horocycle Cy, y = yo/p. The Hecke points (zo + j)/p, 0 < j < 
p - 1, give an equally-spaced set of points on the segment of the horocycle with 
x E [0,1]. We are seeing in Figure 2 that the images of these points in the standard 
fundamental domain become dense as p approaches infinity. Stark has made an 
interesting movie using an Apple 2e computer, showing what happens to the images 
in the standard fundamental domain F2(1.1) for SL(2, Z) of points zj(y) = iy + j/N, 
] = 1, 2, .. ., N, holding N fixed and letting y approach 0 from above. At first, you 
see points on a horizontal line segment of length 1 and height 2. Then, as y 
approaches 0, the line reflects from the boundaries of the fundamental domain when 
y passes through 1. Then more reflections occur and the picture begins to look very 
chaotic. The maximum amount of chaos appears to occur near y = 1/N. After that, 
the picture begins to become less random. Ultimately, the points move on vertical 
line segments (one for each divisor of N) as the points go to the cusp. 

;~~~~~ X 

0 ~~~~~~~X )6(X 

>~'x *~ Nxx)XX))~X X ~ X 

X X XXX % Xv X XX 
AIC * )~~~)8 XXX w&X~8x 
S > X )~XX : , * X xX XX x X 
X :~~yx X X~ Xx *~X )%, 
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FIGURE 2 

Images of Hecke points Sp (z0) from (1.3) in the fundamental domain for SL(2, Z) 

z= 1.4i, p - 997 
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It is also of interest to consider the images in r2 \ H of geodesics in H. These are 
curves minimizing the SL(2, R)-invariant arc length on H given by 

ds2 =y-2(dx2 + dy2). 

It is easily verified that such geodesics are straight lines and circles in H which are 
orthogonal to the x-axis. This gives a geometry violating Euclid's 5th postulate. 

Artin [1] showed in 1924 that almost all geodesics in H induce densely wound 
lines in the fundamental domain r2 \ H. This is a nice noneuclidean version of the 
familiar result that lines in R2 with irrational slope induce densely wound lines in 
the torus R2/Z 2. 

Very general results from ergodic theory include the special cases we are consider- 
ing here (cf. Zimmer [20]). 

2. SL(3, Z). Next we consider a higher-dimensional analogue of the topics in 
Section 1. To find the analogue of the Poincare upper half-plane, note that the 
action of the special linear group G = SL(2, R) is transitive on H and that K = S0(2), 
the orthogonal group of 2 x 2 rotation matrices, is the subgroup fixing the point i. 
Thus we can identify H with G/K via gK -* gi E H. It follows that a natural 
analogue of H is the symmetric space SL(3, R)/SO(3). We will often identify this 
symmetric space with the space of positive determinant-one quadratic forms: 

SP3= {Y C R3 YI Y = tY, Y > O, det Y = 1 } . 

Here Y > 0 means that Y[x] = txYx > 0 for every column vector x G R3 - 0. We 
use the notation tx = transpose of x. Then we have the identification 

S0(3) \ SL(3, R) -- SP3i, Kg -I [ g ] = tgg. 

The right action of g e SL(3, R) on Y e SP3 is via Y[g] = 'gYg. Recall that we had 
a left action of SL(2, R) on H. We prefer a right action of SL(3, R) on SP3 following 
Maass [8] and Siegel. Hopefully, this will not cause too much confusion. 

To make SP3 look like an upper half-space, recall that we can map z = x + iy E H 
to a 2 X 2 determinant-one positive matrix via 

('/Y [0 - ]. 

So to make SP3 into an upper half-space we use Iwasawa coordinates: 

YI ? 0 -1 XI X2 
(2.1) Y ? Y2 ? 0 1 x3 

O O Y31 0 0 1 

where y. > 0, X1 e R, Hj1Yj = 1. We will set 

v(Y) = v = Y,, w(Y) = w = V1-2Y2. 

So we end up with two "y-coordinates": v, w and three "x-coordinates": X1, X2, X3. 

We write Y - Y(v, w, x) if Y has the decomposition (2.1). 
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A horocycle Cy in SP3 has the form 

1 1 X2 

(2.2) Cy= {Y[n(x)] IxER3}, where n(x)= 0 1 X3. 
0 0 1 

Here Y E SP3 is fixed. We also call any image Cy[g] for g E SL(3. R) a horocycle. 
A geodesic (or distance-minimizing curve) G, in SP3 has the form 

(2.3) G, = (diag(ealt,ea2t,ea3t) I t E Rc 

where diag(u) means the diagonal matrix with diagonal entries u E R3. And here a 
is a fixed vector in R3. And any image of G, under g E SL(3, R) is also a geodesic. 
See Maass [8] or Terras [17, Vol. II] for the details of the proof that the arclength 
ds2 = Tr((Y-'dY)2) is minimized by Ga. 

Fundamental domains for SP3/J13, where J3 = SL(3,Z), have been studied for 
over 100 years. Minkowski [10] obtained fundamental domains for GL(n, Z) for all 
values of n and gave the defining inequalities very explicitly for n < 6. Tammella 
did the case n = 7 more recently. In particular, Minkowski's fundamental domain 
for T3 = SL(3, Z) is 

(Ye SP3 Y11 -Y22 -Y33, 0 Y12 Yi11/22, 

(2.4) SM3 = Y=(y,,) 0?Y23 Y22/2,IYl3Y3l//2,}. 

t ~~Y[e] I>Y331 'e = 
(+1, +1, +1) 

Using the Iwasawa coordinates (2.1), we find that 

0 x < 12 _<, X212, 0 <yXIX2 +y2x3 (yx + Y2). 

It follows that 

-4Y1/Y2 < X3 < 2 + (3/8)Y1/Y2. 

This means that Minkowski's fundamental domain has only an approximate box 
shape at infinity. We prefer an exact box shape, that is, we prefer to see the 
inequality 0 < x3 1 4, particularly when computing the integrals of Eisenstein 
series over truncated fundamental domains which arise when one seeks to generalize 
Selberg's trace formula to J3 = SL(3, Z). 

Minkowski's version of the fundamental domain for SL(3, Z) does not make use of 
Iwasawa coordinates-except in the proofs. Grenier [4] describes a fundamental 
domain for GL(n, Z), the general linear group of n X n integral matrices with 
determinant + 17 and Grenier's domain makes essential use of the Iwasawa coordi- 
nates. Moreover, Grenier's domain has an exact box shape at the boundary. And 
Grenier develops a reduction algorithm to move Y E SP3 into this fundamental 
domain via a "highest-point method". Here we consider only the case n = 3. The 
results are analogous to those of Siegel for Sp(n, Z) (see Maass [8] and Gottschling 
[3]). Other fundamental domains and reduction algorithms are considered in [6], [11], 
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[12], [13], and [19]. Note that GL(3, Z)/SL(3, Z) has order 2 and the nontrivial coset 
is represented by -I which does nothing to an element Y E SP3. So the fundamental 
domain for SL(3, Z) is the same as that for GL(3, Z). 

Grenier 's fundamental domain for SL(3, Z) is 

0 < x1 < , Ix21 <- ,0 < x 3 -< A 

1 W-2 + X3, 

(2.5) F3= Y E SP3 v < v (a +tXC)2 + V-1/2W[c] 

for a = 0, tc = (1, 0), (0,1),(1, -1) 

a = Itc= (-1,1) 

Here, 

(2.6) w ( I 
1/ W)[0 ( I x]' 

where Y has the Iwasawa coordinates (2.1), meaning that 

v ~~vx1 vx2 

Y= vx vx2/2 w vx x + V-1/2WX3 

VX2 VX1X2 + V 1/2WX3 VX 2 + V-1/2WX2 + V-1/2w -1 2 vx1 ? v 372 2xx2+3 

If we list our inequalities for F3 more explicitly, we obtain 

(i) v3/2 < V3/2(1 -X1 + X2) + w(1 - + w2 , 

(ii) v3/2 < V3/2(X1 - 2 + w(- X3)2 + W', 

(iii) V3/2 < V3/2X 2 + W. 

(2.7) (iv) v3/2 < v3/2 x2 + wx32 + w-1 
(v) _ Wx1 3, 

(vi) 0 < XI < 12 

(Vii) 0 1< X 3 < 12,I 

(Viii) -12 < X2 < 2 

Inequalities (v) and (vii) say that the 2 x 2 matrix W is in our standard fundamental 
domain for GL(2, Z), the general linear group of all 2 x 2 integral matrices whose 
inverses are also integral. This is the group generated by SL(2, Z) and the matrix 

(-1 O) 

So a fundamental domain is half of that for SL(2, Z); e.g., z = x + iy with 0 < x 2 

and X2 +y2>1. Here we take x = x3 and y = w1. 
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Boundary identifications for the fundamental domain F3 come from the matrices: 

I I I 0 11 0 O 
T1= 0 1 T2= 0 1 0 T3= 0 

/ 0 1 \ 0 1 / 0 1 
0 0 1 0 1 0 0 1 0 

S1= 1 0 0 ) S2= 0 0 1 ) S3= 1 0 -1, 

2.8 0 1 0 1 0 0 -1 0 0 

(.8) ~~1 0 01 0 0 
S4= -1 1 0, S5= 0 0 

I 0 1 0 -1 0 

-I 0 1 0 0 
U= 0 -1 ) U2= 0 -1 09. 

0 0 1 0 0 -1 

Note: This gives more than enough generators for SL(3,Z)/?I, but we do not 
appear to be able to get rid of any of the inequalities in (2.7). 

Grenier's reduction algorithm from [4] is a "highest-point method" where the 
height of Y is 1/v, for v = the entry Yl, which is the coordinate v in (2.1). 
Grenier's algorithm goes as follows: 

Step I. Set SO = I = the 3 X 3 identity matrix. Pick i to minimize v(Y[Si]), for 
i0, 1, 2, 3, 4 and replace Y by Y[Si]. 

Step II. Let W(Y) denote the element of SP2 defined by (2.6). Put W(Y) in our 
standard fundamental domain for GL(2, Z) using 8 E GL(2, Z). Replace Y by Y[y] 
for ( 0 ) ( ) for ~ ~ ~ ~ (?1 

~~~)e~SL (3, Z). 

Here y = S5, Ul or (T3)n, for some n e Z. 
Step III. Translate the x1, x2-coordinates of Y in (2.1) by y = (Ti)P, i = 1,2, 

pi = [I - xi]. Here [x] denotes the greatest integer < x. Replace Y by Y[y]. 
Step IV. Make x1 >? 0 by replacing Y by Y[U2], if necessary. 
Keep doing these steps until the process converges. 
Jeff Stopple suggested that we use the last test (i.e., see whether the process has 

repeated) to stop the program. This idea was useful since it allows us not to test all 
the inequalities at each step, as some might be tempted to do. On the other hand, 
one might worry that the program would get into an infinite loop. This does not 
happen if one is careful in writing the code. 

Grenier proves in [4] that F3 is a fundamental domain up to boundary identifica- 
tions and that Steps I-IV above constitute a reduction algorithm. Let us just sketch 
the arguments here. 

First, note that one obtains a fundamental domain by considering the set of all Y 
in SP3 such that Y satisfies the inequalities: 

v < v (a +tXC)2 + V-1/2W[C], for all matrices 

(a b) in = SL(3,Z), a E Z, c E Z2, 

(2.9) W ( 0 1 ] W11 W2 
0 I/W -0 1 W12 W22 

x3 + iw1 in the standard fundamental domain for GL(2, Z) \ H, 
i.e., 0 2 + W-2 > 

0%xl%2vlX~l< X3 - 
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We now prove that it suffices for Y to satisfy (2.9) for a E Z, c E Z2 such that 
a/ < 1 and Ic11 < 1, i= 1,2. These inequalities include the special cases a = 0, 
'c= (1,0)or(0,1): 

(2.10) V3/2 v3/2X2 + w V3/2 < V3/2X2 + W 

These inequalities imply that 1 < x2 + v-372w12 and thus, since 0 < x < 2, we 
have 

(2.11) v -3/2 W1. 

By a standard argument in this business, if an inequality (2.9) is really necessary 
to define the boundary of the fundamental domain, it must occur with equality. So 
then we have 

(2.12) v = v(a +txc)2 + V-Y"2W[c] for some Y in F3. 

It follows that since x3 + iw'- E F2 (and, in fact half of this fundamental domain 
for SL(2, Z)), we have 

1 ? v-312W[C] > V-3/2Wii(IciI -Ic I?Ic21 1 2)- 

Then (2.11) implies 

j> (1c1 -IC21) +?1clc21 

It follows that since the c, are integers, 1c'12 < 1, i = 1, 2. To obtain the bound on 

lal, use (2.12) again to see that 

1 > a +txc ? a +xc >a - ltxck. 

Therefore, 

jalI 1 + 2-1/2 and a E Zimplies laI <1. 

Thus we have proved that only the inequalities (2.9) with Icil < 1 and lal < 1 are 
necessary. 

Next we want to prove that we can leave out the inequalities with 
(a) a 0, c= +(1,1), 
(b) a =1, tc= (I, 1), (1, 1), 

(c) a =-1, tC = (-I, 1), (-1, -1), 
(d) a = 1, tc = ? (1, 0), ? (0, 1), (0,0 ), 
(e) a = -1, tc = (1, 0), ? (0, 1), (0, 0), 

(f) a = 1, tc = (-1, -1), 

(g) a = -1, tc= (1,1). 
If we count the inequalities here, plus those in (2.5), plus that for t(ac) = 0, we get 
the required 27 inequalities. 

To prove that we can omit the inequality corresponding to (a), note that this 
inequality is 

(2.13) v < V(x1 + x2)2 + v-1/2(w1l + 2w12 + W22). 

Using (2.10), we see that this inequality follows from 

0 < v + 2vx1x2 + 2v-12w12 = v(l + 2xlx2) + 2w12v-12. 

But '12 > 0 and 1 + 2xx2 > 2 follows from the other inequalities in (2.9). 
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Now we want to drop the inequalities (b) with a = 1, tc = (1, -1) or (1, 1). These 
inequalities look like 

(A) v < v(I + xI + x2)2 + v-'/2(w11 + 2w12 + w22), 
(B) v < v(1 + xI - x2)2 + v-'12(w11 - 2w12 + w22). 

We can use the inequality (2.7), part (ii), to show that for (B) to hold we need only 
know the inequality 

v(I + 2(x1 - X2)) > V(1 - 2X2) > 0- 

Now similarly (2.7), inequality (ii), implies (2.13) which gives inequality (A) in the 
same way. Clearly, we can also drop the inequalities (c). 

Now we want to show that we can omit the inequalities (d). These inequalities are 

v3/2 v3/2(1 + X? ) + W. 

v3/2 <V3/2(1 +x2)2 + WX2 + W- ~ 3'(1 ? 
+2 3x 

' 

3/2< 3/2 

The last inequality is clearly true. The first follows from (2.7), parts (iii) and (vi). The 
second follows from (2.7), parts (iv) and (viii). One proves similarly that the 
inequalities (e) can be eliminated. 

The argument to leave out the inequality (f) goes as follows. We need to show that 

1)3/2 < v3/2( - 1-X)2 + W -1. 
:1 v3'(1 - 

XI- +2- 

Note that W[-z] = w11 + 2w12 + w22> 2w1j > (3/2)v3/2 by (2.11). Similarly, one 
proves that the inequality (g) can be omitted. 

We have thus completed our sketch of a proof of the following theorem. 

THEOREM [4]. The set F3 defined by (2.5) is a fundamental domain for SP3/SL(3, Z), 
up to boundary identifications. And a reduction algorithm is given by Steps I-IV listed 
following Eqs. (2.8). 

Note that we need to complete the matrices 

( C 
)--I((? 

( ( (- 

to a 3 X 3 matrix 

(a b) E SL(3,Z) 

to obtain the matrices Si, i = 1, 2, 3, 4 in (2.8). This can be done in a number of 
ways -each differing by matrices of the form 

(I tq) 
0O R} 

with q E Z2 and R E Z2X2. The choice of Si will affect the later steps of the 
reduction algorithm, but not the final result that the point lands in the fundamental 
domain. 

3. The Figures. We want to use Hecke points to help us visualize the fundamental 
domain F3 for SL(3,Z) which was considered in Section 2. Since F3 is 5-dimen- 
sional, we will take the easy way out and look at graphs of 2 coordinates from 



HECKE OPERATORS AND THE FUNDAMENTAL DOMAIN FOR SL(3, Z) 169 

(v, w, xl, x2, x3). So there are 10 possible graphs. The most interesting is that of 
(w, v) showing the shape of the cuspidal region, where v or w approach 0. 

We quickly see that (2.7), formulae (v) and (vii), imply that 

(3.1) w < 2/V-- 1.154701. 

And (2.11) implies that 

(3.2) v < 4/3 _ 1.333333. 

Hecke operators for I3 = SL(3, Z) are described in many places (see, for example, 
Bump [2], Shimura [15], Terras [17, Vol. II] and [18]). For f: SP3/F3 C and 
m E Z , define the Hecke operator Tm by 

(3.3) Tmf (Y) = A (Y[A]), 
A e Mm/F3 

1 .4 

is ~~~IGR 3 i 

defne in ; (25 an (36 withl jO asj in(.) 

311 163 

0 0 0 1.6 

FIGuRE~ 3 
(v, w) coordinates of images of the fixed point Y45 under transformation by 
Hecke matrices M( p; a, b) in the fundamental domain F3 for SL(3, Z) 
defined in (2.5) and (3.6) with Y0 as in (3.7). 

p = 163 ' 
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where 

Mm= {AEZ3x3 IdetA=m} and YO=(detY) /Ye SP3. 

It is easily seen that one can take representatives of M3(m)/T3 of the form 

[ d1 d12 d13 3 

(3.4) 0 d2 d23, d > 0,Hd=m, d1 < d,. 
0 . d 

1~ ~ ~ ~ ~ ~~p 101 

115 low 

I..~~~~~~~~~~~~~~~~I 

*1 i 
Jll 

3 ; ~ ;.. .3. *t *I * : :1 *5[3 

0 0 0~~~~ ?*~ . ~ 3 

defined n (2.5) nd 3: 6 with)oasi *3.7 . 

p 0 

The loer cuve isthe gap of8 / W 

~~ : I *~~ 
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Maass [9] studied Hecke operators for the Siegel modular group Sp(n, Z) in 1951. 
We are imitating his version of the theory. It is a theory which is basic to the study 
of automorphic forms on higher-rank symmetric spaces G/K and it connects with 
many questions in representation theory, p-adic group theory, combinatorics and 
number theory. Applications of Hecke operators to numerical integration on spheres 
are given in [7]. 

, ., 4 ." 
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X 3~~~~~~~~~~, 0 00~~~~~~~~~~~~~~~~~~~~~~~4 
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FIGURE 5 

(x3, w) coordinates of images of the fixed point Y0 under transformation by 
Hecke matrices M( p;a, b) in the fundamental domain F3 for SL(3, Z) 
defined in (2.5) and (3.6) with Y0 as in (3.7). 

p = 163 
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It is not hard to see that the Hecke operators for SL(3, Z) have the following 
properties: 

(i) TnTm=Tmn if g.c.d.(m,n)= 1; 

(3.5) (ii) for p = prime 

y Tpx = (ITpX + (TP) - Tp2 X2 - p3X3) 
r ?0 

It follows that L-functions associated with eigenforms f of the Hecke operators 
must have Euler products. 

0 5 0 O*. O . ...... t * *-. . ' ' v-* -* *- '' 

x,~~~ 1 . I ' ... 

10 .4~~~~~~~~~~~ 

0 0 0 

0 0 0 0.5 0 
x3 

FIGURE 6 

(x3, A) coordinates of images of the fixed point Y under transformation by 
Hecke matrices M( p; a, b) in the fundamental domain F3 for SL(3, Z) 

defined in (2.5) and (3.6) with Y0 as in (3.7). 
p- - 101 
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Here we intend to graph points from the operator T1, p = prime. We use only the 
matrices 

p a b 
(3.6) M(p;ab)=p-1/3 O 1 O < a,b < p-1. 

O 0 11/ 
The other matrices in Tp do not appear to be necessary. 

Figures 3-9 show plots of pairs of coordinates of F3-images in F3 of points 

YoJM(p;a,b)], O < a,b < p -1, 
for M(p; a, b) as in (3.6) and fixed YO equal to 

4i ? 0' I 0 0~ 
(3.7) Y ? 2 0 1 4. 

O 0 8 -0 0 1 

0 5 0 * O.- s4o .... 0,** . . ,.?*........ . ,. . ,*,* 

* *r, ~~* .. 3 ' 2's ;*' gt 

1... 

. . .s . *, . ^ -+ ,'. - * ;.. '3.# * *+ 

** * {w' ''. ., ''../ , ,.. 

0.~~~~~~~~~~~~~~~. 

-0.50 0.5 0 
x2 

FIGuRE 7 

(x 2, Al) coordinates of images of the fixed point Y0 under transformation by 
Hecke matrices M(p; a, b) in the fundamental domain F3 b~r SL(3, Z) 
defned in (2.5) and (3.6) with Y, as in (3.7). 

p = 101 
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In Figure 3, p = 163 and the graph shows v versus w. The lower curve fits well with 
the curve 3/4v3/2 - w, as might be expected from Eq. (2.11). Figure 4 shows v 
versus w for the prime p = 101 as well as the curve 3/4V3/2 = w. Note that the 
values of w get close to the bound 1.154701 of (3.1) while the values of v do not 
come so close to 1.333333 (the bound of (3.2)). There are points with v closer to 
1.333333 than the value 1.16 seen in Figure 3. For example, take v = 2'1/ _ 1.25992, 
w = 3/(2F2I), X1 = X2 = 4, X3 = 4. It is likely that taking larger p will fill out the 
region more. The problem then becomes one of storing and plotting huge numbers 
of points. Here we needed more storage than the standard quota and the laser 
printer was not happy having to plot 26569 points. This is the reason that we have 
stopped at p = 163. But this is only a temporary phenomenon. More experiments 
are in order. 

1 .1 5 

*~ ... 

w ~. . . 

0 0 0 0 0 

FIGURE 8 

(xl, w) coordinates of images of the fixed point YO under transformation by 
Hecke matrices M(p; a, b) in the fundamental domain F3 for SL(3, Z) 
defined in (2.5) and (3.6) with YO as in (3.7). 

p = 101 
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Figure 5 shows x3 versus w for the prime p = 163. These are the variables in the 
copy of the Poincare upper half-plane in our matrices Y. The figure shows a good 
approximation to half of Figures 1 and 2, as expected. 

Figures 6 and 7 give plots of (x3, xl) and (x2, xl), respectively. Here the prime 
p = 101. The plots look like randomly placed points in [0, _]2 and [0, -] x [--, 2], 
respectively. 

Figures 8 and 9 give graphs of (xl, w) and (x2, w) for p = 101. The result should 
be compared with Figure 5. If we do so, we see that now the top curve of Figures 8 
and 9 cannot be that of Figure 5. The variables in Figures 8 and 9 are less closely 
related. 

1~~~~~~~~~~~~~~~~~~~~. .. 5 

:~~~~~~~~. 5. .> p '" i. -; X , * i ., 

0 . 0. . _ 

-0 .50 0 .50 
x 2 

FIGURE 9 

(x2, w) coordinates of images of the fixed point YO under transformation by 
Hecke matrices M(p; a, b) in the fundamental domain F3 for SL(3, Z) 
defined in (2.5) and (3.6) with YO as in (3.7). 

p = 101 
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Figure 10 shows the points that result from M(997; a, 0) for a = O,. . . , 996. Many 
of the plots of points from M(a, 0) tended to be uninteresting since v was essentially 
constant. It is interesting to compare Figures 10 and 8. 

One might complain that our graphs still do not give a real 5-dimensional feeling 
for the fundamental domain. We hope to make "F3 THE MOVIE" some day, 
making use of motion and color. This would be a noneuclidean analogue of 
Banchoff's movie of a rotating 4-dimensional cube. For you may view our region F3 
as a 5-dimensional noneuclidean crystal. It would also be nice to produce a figure 
representing the tessellation of the 5-dimensional space SP3 corresponding to 
SL(3, Z) images of F3. These would be 5-dimensional analogues of pictures that 
inspired the artist M. C. Escher. 

1.11 . ** 

. . .* . . 

0.0 * coriae of ' * 'J 

FIGURE 10 

(xl~) cordiate ofimages of the fixed point Y0 under transformation by 
Hecke matrices M( p; a, b) for b = 0 in the fundamental domain F3 of 
SL(3, Z) defined in (2.5) and (3.6) with Y0 as in (3.7). 

p = 997 



HECKE OPERATORS AND THE FUNDAMENTAL DOMAIN FOR SL(3, Z) 177 

The figures (except Figure 2) were produced by Dan Gordon using one of the 
U.C.S.D. VAX computer (sdcc6) and a laser printer. A. Terras did Figure 2 using a 
U.C.S.D. VAX and plotter. 

There are various ways of understanding why the Hecke points should be dense in 
F3. One could imitate an argument of Zagier using Eisenstein series (cf. Terras [17, p. 
248]) for the SL(2, Z)-version of the argument) to show that the image of a horocycle 
CY in (2.2) becomes dense as F3 in Y approaches the boundary of SP3. 

This result is also related to standard results in ergodic theory for connected 
noncompact simple Lie groups G with finite center (e.g., G = SL(3, R)), saying that 
if H is a closed noncompact subgroup of G and F is an irreducible lattice (e.g., 
F = SL(3, Z)) then H acts ergodically on G/F. Here we are closest to looking at an 
equally-spaced finite set of points in 

H = 1 0 jx, y G R,. 

For we are looking at points from T7 acting on a fixed Y0 E SP3 via 

p 2/3 ? 1 alp b/p 

Yo 0 p-1/3 0 0 1 0 0 ?< a, b < p -. 

O o p-1/3 0 0 1 

For the ergodic theory result, see Zimmer [20, p. 19 ff]. 
Ultimately, one would hope to be able to use the points M( p; a, b) to generalize 

the results of Stark [16]. This will require programs for the computation of matrix 
argument K-Bessel or Whittaker functions. 
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