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Abstract. It is proved that any finite extension of a finite field has a normal basis consisting of 
primitive roots. 

Introduction. Let q be a prime power, q > 1. We denote by F9 a finite field of q 
elements. It is well known that for every positive integer m there exists a normal 
basis of F m over F9, i.e., a basis of the form 

q~~~~ 
q 

2 qP 
(aaq aq2 a9"1)- 

with a E F m. It is also well known that the multiplicative group F? of Fqm is cyclic, 
i.e., that for some a E PQ we have 

F? = (an: n E Z}. 

Such an element a is called a primitive root of Fqm. Following Davenport [4] we call 
qq2 rn-i) a normal basis (a, a', a9 , .a a, a9 ) of Fq. over Fq a primitive normal basis if a is a 

primitive root of Fq. 
Carlitz [2], [3] proved in 1952 that for all sufficiently large qm there exists a 

primitive normal basis of F m over Fq. Davenport [4] proved in 1968 that a primitive 
normal basis exists for all m if q is prime. In the present paper this result is 
extended to the general case. 

THEOREM. For every prime power q > 1 and every positive integer m there exists a 
primitive normal basis of Fqm over Fq. 

Section 1 contains an exposition of certain results due to Ore [7] concerning the 
Galois module structure of finite fields. These lead to an alternative formulation of 
the theorem. In Section 2 we describe an improved version of the method of Carlitz 
and Davenport, which handles all but finitely many pairs (q, m). In Section 3 we 
determine which are the remaining pairs, and they are dealt with in Section 4. 

We denote the cardinality of a set S by #S, and the group of units of a ring R 
with 1 by R*. If f, g are polynomials in one variable, we mean by g I f that g 
divides f and is monic, i.e., has leading coefficient one. The same notation for 
divisibility is used for positive integers. 
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1. The Cyclic Structure of Finite Fields. Let q be a prime power, q > 1, and 
denote by Fq an algebraic closure of Fq. Let a: Fq 

-* 
Fq be defined by a(a) = aq for 

all a E Fq. For f= L0 aX' Fq[X] and a E Fq we define 

n 

f o a= E a/a'(a) 
i=O 

This makes the additive group of Fq into a module over Fq[X]. We shall see that 
many well-known properties of the multiplicative group of Fq have analogues for the 
additive group when considered as an Fq[ X]-module. 

For a positive integer m, let Fqm be the unique subfield of Fq of order qm. For 
a E Fq* we have 

a Fq F am(a) = a < --* = 1. 

It follows that the multiplicative order ord(a) of a is finite and relatively prime to q, 
for each a E Fq*. Also, we have 

a e Fqrn c ord(a)Iqm - 1. 

Let the degree deg(a) of an element a E Fq be the degree of the irreducible 
polynomial of a over Fq. Clearly, deg(a) is the smallest m with a E FqM , which, for 
a # 0, is the smallest m with qm_ 1 mod ord(a). This proves 

(1.1) Let a E Fq*, ord(a) = n. Then deg(a) equals the multiplicative order of 
(q nlod n) in the group (Z/n Z) *. 

To obtain the additive analogue, we start from 

a E Fqm <* am(a) =a-- (Xm-I)oa = O. 

for a e Fq. It follows that for any a E Fq the annihilator of a in Fq[X] is nonzero. 
Let the unique monic polynomial in Fq[ X] generating this annihilator as an ideal be 
called the Order of a; notation: Ord(a). We have 

(1.2) a E Fq. Ord(a) I Xm- 1, 

so that Ord( a) is relatively prime to X. As above, we obtain 
(1.3) Let a e Fq, Ord(a) = f. Then deg(a) equals the multiplicative order of 

(Xmod f ) in the group (Fq[ X]/f Fq[X])*. 
We give a picturesque application. 

(1.4) LEMMA. If XP + X + 1 is irreducible in F2[X], and 2P - 1 is prime, then 
X2P-1 + X + 1 is irreducible in F2[X]. 

= a e F2 
~~~2P-1 

+ = I 
Proof. Take q = 2, and let a E F2 satisfy a + a 1 = 0. It suffices to show 

that deg(a) = 2P - 1. We have (XP + X + 1)o a = a(a2P-1 + a + 1) = 0, so 
Ord(a) divides XP + X + 1. But XP + X + 1 is irreducible, and l o a + 0, so in 
fact Ord(a) equals XP + X + 1. By (1.3) the degree of a equals the order of the 
residue class of X in the group (F2[X]/(XP + X + 1)F2[X])*. Denote by 3 a zero of 
XP + X + 1 in F2; then this order is just ord(f3). The group F2(13)* = F2*, has prime 
order 2P - 1, and /3 * 1, so we conclude that deg(a) = ord(/3) = 2P - 1, as re- 
quired. r11 
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Starting from the observation that X2 + X + 1 is irreducible over F2, we find by 
successive applications of (1.4): 

since 22 _ 1 = 3 is prime, X3 + X + 1 is irreducible over F2; 

since 23 -1 = 7 is prime, X7 + X + 1 is irreducible over F2; 

since 27 - 1 = 127 is prime, X127 + X + 1 is irreducible over F2; 

and finally, since 

2127- 1 = 170141183460469231731687303715884105727 
was proved to be prime by Lucas in 1876 (see [5, Section 2.5]), the polynomial 

,29222 I - I _I 

X2I - + X + I 

is irreducible over F2; cf. [10]. We conjecture that the next polynomial in this 
sequence is also irreducible over F2, but that its degree is not prime. 

It is well known that for any positive integer n that is relatively prime to q the 
number of a E Fq* with ord(a) = n equals p(n), where p denotes the Euler 
function. In particular, with n = qm - 1 one finds that elements a with order 
qm - 1 do exist; these are precisely the primitive roots of Fqm. The additive analogue 
is as follows. 

For a monic f E Fq[X], let 

??(f) = #(Fq[X]/fFq[X])*, 

the analogue of the Euler function. With 

N(f ) = #4(Fq[X]/fFq[ X]) = qdeg(f) 

we have the following analogues of well-known properties of the Euler function: 

(1.5) E ?(g) = N(f), 
gilf 

(1.6) 41(f) = N(f) gFijrr. (IN g) ) 

the product ranging over the irreducible monic factors g of f in Fq[ X]. The proofs of 
(1.5) and (1.6) are left to the reader. 

For a polynomial f = Y270aiX' E Fq[X] we define 
n 

(1.7) f*= EaXq. 
I=0 

Clearly, f *(a) = f o a for any a E Fq, so the number of a E Fq having an Order 

dividing f is equal to the number of distinct zeros of f * in Fq. Assuming that 
gcd(f, X) = 1 we have df */dX = ao # 0, so that f * has only simple zeros; their 
number is then deg(f*) = qdeg(f) = N(f ), and we obtain 

? #{a e Fq: Ord(a) = g} = N(f). 
gif 

Comparing this with (1.5) and applying induction on deg(f) we find the expected 
result, due to Ore [71: 

(1.8) Let f E Fq[ X] be monic and relatively prime to X. Then the number of a e Fq 
with Ord(a) = f equals 0I(f ). 
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For a E Fqm the family (a, a ..., ) is a basis of Fq. over Fq if and only if 
there is no nonzero f E F [X] of degree less than m with f o a = 0. With (1.2) this 
leads to 

(1.9) Let ao E Fq. Then (a, aq, . . ., aq' 1) is a basis of Fq. over Fq if and only if 
Ord(a) = X - 1, and if and only if the Fq[X]-submodule of Fq generated by a 
equals Fqm. 

Combining (1.8) and (1.9) we see that normal bases of Fqm over Fq do exist. This 
may also be expressed as 

Fqm - Fq [ X/( Xr 1) Fq[ X as Fq [ X]-modules, 

which is analogous to 

Fq? _ Z/(qm - 1)Z as Z-modules. 

The theorem stated in the introduction may now be reformulated as follows. 

(1.10) THEOREM. For every prime power q > 1 and every positive integer m there 
exists an element a E Fq? with Ord(a) = Xm-l and ord(a) = qm- 1. 

In the proof of this theorem, which occupies the rest of this paper, we use the 
following notation. For given q, m, let 

A = {e a (Fqm: Ord(a) = Xm 1}, B= {a e Fqm ord(a) = qm - 1}. 

We have #A = 1(Xm - 1), #B = cp(qm - 1), and the theorem is equivalent to the 
statement that A A B 0 0. 

We define the subgroup C c Fq? by 

C = {y E Fq1: e- q - I 
(y Fq} { F (q1)2 - 

One easily proves that #C = (q - 1) . gcd(m, q - 1). We denote the index of C in 

Fq? by P, 

(1.11) P= #F?/= -)q P #qC = (q - 1) gcd(m, q -1) 

Alternatively, we can define C by C = { y ( Fqm: deg(Ord(y)) = 1). 
Let M be an Fq[ X]-submodule of Fqm, and let y E C. Then the Fq-vector space 

yM= {y: , E M) is in fact an Fq[X]-module. To see this, note that Xoyu = 
(ypu~ = y .yql . (XotL) E yM for any u E M, since yql e Fq*. It follows that 

the submodules of Fq- are permuted by C. Since A consists exactly of those elements 
of Fq m that do not belong to any proper submodule, we conclude that 

(1.12) CA =A, 

where CA = {ya: y C C, a E A). 
If a e A, / c B, y e C are such that a= fly e A n (BC), then =y-laa E 

(CA) n B = A n B. Hence A n B is nonempty if and only if A n (BC) is non- 
empty, and 

(1.13) Theorem (1.10) is equivalent to the assertion that A n (BC) 0 0 . 

Concerning the set BC we note that 

(1.14) BC = { /3 E Fq?: /C generates the group Fq/C }. 
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This is a direct consequence of the fact that any surjective group homomorphism of 
finite cyclic groups, such as F *' -3 FP/C, induces a surjective map on the sets of 
generators. Since the cyclic group Fq* /C of order P has exactly 9p(P) generators, we 
find that 

#BC = T(P) * #C = p(P) * gcd(m,q - 1) .(q -1). 
Without proof we remark that C is the largest subset of F ' satisfying (1.12). More 
generally, one can prove the following result. 

(1.15) Let K C L be a finite Galois extension of fields, with Galois group G. Let 
A = { ar E= L: ( T(a))T E is a basis of L over K }, and denote by w the number of #Gth 
roots of unity in K *. Then for y E L* the following four assertions are equivalent: (i) 
yA CA; (ii) yA = A; (iii) T(y)/y E K* for all TAd= G; (iv) yW E K*. The set C of 
all y E L* satisfying these conditions is a subgroup of L* containing K *, and C/K * 

is isomorphic to the group of all group homomorphisms G -* K *. 

2. The Method of Carlitz and Davenport. Let G be a finite Abelian group. By a 
character of G we mean a group homomorphism G -* C *, where C denotes the field 
of complex numbers. The characters form an Abelian group G A, the dual of G. We 
denote the neutral element of G A by 1. For the basic properties of characters see [8]. 

Suppose that G is cyclic of order n. Then the same is true for G A. For a E- G we 
define 

@(a)- E~d X (a), d~n T'(d) A 

XEGA, ord(X)=d 

where ord(x) denotes the order of X and ,i the Moebius function. We have 
(2.1) X (a) = 0 if a does not generate G. 
To see this, we write 

@(a)= H (1 1 1 (a) 
II n, I prime AE G A, XrG'XX11 

II n, I prime (A EG.X~ 

If a does not generate G, then a = /3' for some (3 E G and some prime 1 dividing n. 
Then X(a) = x'(Il) = 1 whenever X' = 1, so EXEG'X=I1X(a) = 1 and the lth 
factor in the above product vanishes, as required. 

We apply this result to G = Fq'7/C, n = P, using the notation of the previous 
section. In view of (1.14) we then find 

(2.2) Define c: Fq* - C by 

o)= A 4(d) E (a), 
dIP T(d) Xord(X)=d 

with X ranging over F7 A. Then 
X (a) = O for a X BC. 

The additive analogue to (2.2) presents no difficulties. Let Fq be the dual of the 
additive group of Fq l. We write Fq multiplicatively, and we make it into an 
Fq[ X]-module by defining 

( Xf)( oa) = X ( f o a) for X E- Fq , f E Fq[ X], a E Fqrn. 



222 H. W. LENSTRA, JR. AND R. J. SCHOOF 

The Order Ord( X) of a character X is defined to be the monic polynomial generating 
the annihilator of X in Fq[X]; it clearly divides Xm - 1. Conversely, let f be a 
monic divisor of Xm - 1 in Fq[ X]. We claim that precisely 4D(f ) characters X E Fq 
have Order f. As in the proof of (1.8) it suffices, by (1.5), to show that 

E #{X: Ord(X)-g} = N(f) 
gif 

Here the left-hand side equals the order of the subgroup { X: f = 1) of Fq'l. This 
subgroup may be identified with the dual of Fqn/f o Fqm, which indeed has order 
N( f ), as required. 

Denote by M the analogue of the Moebius function for Fq[ X]; so for f E Fq[ X], f 
monic, we have M(f ) = (-1)' if f is the product of r distinct monic irreducible 
factors, and M(f ) = 0 if f is divisible by the square of an irreducible polynomial. 

We now have the following analogue to (2.2). We omit the proof, which is 
completely analogous. 

(2.3) Define Q: Fqm C by 

9(a) = E <>(g) E (a) 
gjXm 1 4I(g) X,Ord(X)=g 

with X ranging over FqA. Then 

Q(a)=0 foraZA. 

From (2.2) and (2.3) we see that 

(2.4) co(a) 2(a) = 0 for a 0 A n(BC). 

We extend the characters of Fq'm to all of Fqm by putting X(0)= 0 for X 0 1, and 

1(0) = 1. Then o(O)R(O) = 0. 

(2.5) PROPOSITION. Let s be the number of distinct prime factors of P (see (1.11)) 
and t the number of distinct monic irreducible factors of Xm - 1 in Fq[X]. Suppose 
that 

(25 _ 1)(2' - 1) < qm'/2. 

Then there exists an element a e Fq'm with Ord(a) = Xm- Iand ord(a) = qm- 1. 

Proof. Suppose not. Then A n (BC) = 0, by (1.13), so (2.4) implies that 

o(a)Q(a) = O for all a E F M and 

t @(at) Q(a) = O. 
a GE Fq- 

We have 

? w(a)Q(a) = 
- (d) M(g) ?? (X A, 

aEFq- dIP gIX--1 T(d)>(g) X, ord(X)=d X,Ord(X)=g 

where T(X, A) is the Gauss sum 

T (X, A) x(a)X(a). 
aeFqm 
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It is easily checked that 

T(1,1) = qo 

T(1, X) = 0 for X * 1, 
T (X,1) = for X * 1 

and it is well known [2, pp. 375-376] that 

ITXXA) I= q m2 if X = 1, Xd1 

We find that 

_qm = E E pl(d)M(g) LL T(XA 
dIP,d*1 glXm-1,g:*1 p(d)O(g) X,ord(X)=d X,Ord(X)=g 

There are exactly T(d) characters X of order d, and exactly ?(g) characters X of 
Order g. Hence, taking absolute values, we obtain 

q m < Ad E jti(d)M(g) I q m12 = (25 _ 1)(21 - 1) q m/2' 
dIP,d*1 gjXm-1,g*1 

contradicting our assumption. This proves Proposition (2.5). [ 
To apply (2.5) we need upper bounds for s and t. The upper bounds that we give 

below are refinements of those given by Davenport [4]. We begin with s. 

(2.6) LEMMA. Let P be a positive integer and s the number of distinct prime factors of 
P. Let further I > 1 be an integer, A a set of prime numbers < I such that every prime 
factor r < I of P belongs to A, and put L = H r E A r. Then 

log P - logL + #L . 
log + 

Proof. Let M be the set of prime divisors of P. Then #M = s and each 
r E M - A satisfies r > 1. Therefore, 

P,> H r= ( r) ( r )/(H ) 
reM rcA reM-A reA-M 

>(r 7k r) . #(M-A)/7#(A-M) = L . I#M-#A = L . 1-#A 

and the lemma follows. This proves (2.6). El 

The following lemma gives a formula for t. 

(2.7) LEMMA. Let q be a prime power > 1 and m a positive integer. Then the 
number t of monic irreducible factors of Xm - 1 in Fq[ X] is given by 

t = E 
q9 

(d) 
dlmgcd(dq)=1 k(d) 

where k(d) denotes the order of (q mod d) in (Z/dZ)*. 

Proof. If pn denotes the largest power of the characteristic p of Fa dividing m, 
then Xm-1 = (Xm/Pn - 1) P". Therefore we may assume that p does not divide m. 
Then Xm-1 = I11d I mod, where 

Od= _H (X- a). 
aeFqord(a)=d 

The degree of ad equals tp(d), and by (1.1) each irreducible factor of Dd has degree 
k(d). Since Xm - 1 has no repeated factors, this implies (2.7). Ml 
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We note the following additive analogue of (2.7), which is proved in a completely 
analogous way. It generalizes a theorem of Zierler [6], [9]. 

(2.8) Let f E Fq[X] be monic, andf * as defined in (1.7). Then the number of monic 
irreducible factors off * in Fq[ X] equals 

E ?D(g) 

gjf,gcd(g,X)=1 K(g) 
where K(g) denotes the order of (Xmodg) in (Fq[X]/gFq[X])*. Moreprecisely, we 

can write 
qn 

gI f, gcd(g, X) = 1 

where n is the degree of the lowest-degree term of f, the polynomials "'g are pairwise 
relatively prime, and each "ig factors as a product of F(g)/K(g) distinct monic 
irreducible factors of degree K(g). 

We next derive upper bounds for t. 

(2.9) LEMMA. Let q, m, t be as in (2.7), and e a positive integer. Let further D be a 

set of positive divisors of m such that every d E D is relatively prime to q, and such that 
D contains allpositive divisors of gcd(m, qe - 1) for allpositive integers e' < e. Then 
we have 

e de 
(d k(d) e 

with k(d) as in (2.7). 

Proof. We may clearly assume that gcd(m, q) = 1. Then the hypothesis on D 

implies that k(d) > e for all d I m with d 0 D. Hence, by (2.7), 

dt m~d~D E p (d) + E 9(d) < E 9,(d) + 9(d) 
dlm, dD k(d) deD k(d) demd?D deD k(d) 

- 99c(d) cpE (d) _ c(d) m + 99(d\( 
1 

dim e deD k k(d) e ) e deD ( k(d) e 

This proves (2.9). l 
With e = 1, D = 0, one obtains from (2.9) the trivial bound 

t < m . 

With e = 2, and D equal to the set of divisors of gcd(m, q - 1), one finds 

(2.10) t < 2 (m + gcd(m, q - 1)) 

The following lemma gives better estimates for t for small values of q. 

(2.11) LEMMA. Let q, m, t be as in (2.7). 
(a) Let q = 5. Then 

m 
t - + 6; 3 

t < j + y if m # 0 mod3; 

m 4 
t ?< =+ -Z if m =A0mod 4, m#:6. 
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(b) Let q = 4. Then 

t.?'j + 2 if m # 15; 

m 2 
tA - + 

2 
if m Omod3,m#5; 

tA < + 
3 

if mis even. 

(c) Let q = 3. Then 

tA - + 
4 

if m :04, 8,16; m4 

t 6 +1 ifm=Omod3. 

(d) Let q = 2. Then 

m 5 
tA 4 +4; 

m 4 
tA5 +5 if misodd, m# 3,5,7,9,15,21; 

m 5 
tA8 +4 if m -Omod2; 

m1 
tA8 +2 if m -Omod4. 

Proof. Since the proofs are all similar, we only do (a) as an example. Let q = 5. 
We apply (2.9) with e = 3 and D equal to the set of divisors of gcd(m, 24). This 
yields 

m 1 jcm,)~ +6 
t + gcd(m,24) + gcd(m,4) < + 6, 

as required. If m = 0 mod 3 we have gcd(m, 24) < 8, and the same estimate now 
gives t < "' + lo-. Suppose finally that m = 0 mod 4. If m is odd, then t < 3 + - - 
3 + 2 * 1 = P3' + 1. If m 2 mod4, m # 0 mod3, then t ? n + - 2 + 2 2 = 

+ 3. We are left with the case m 6 mod 12. If also 311 m we apply (2.9) with e = 4 
and D = {d: d 12 *3* 31) to obtain t < - 2. If 31 does not divide m we take 
e = 4and D = {1,2,3,6} in(2.9)andfind t < m + 2whichis < m + 4 form- 6 
mod 12, m # 6. This concludes the proof of (a). l 

Combining our inequalities we obtain the following result. 

(2.12) LEMMA. Let q > 1 be a prime power, m a positive integer, P as in (1.11), s 
and t as in (2.5), and 1, A, L as in (2.6). Suppose that 

(2s - 1)(2t - 1) > qm/2. 

Let further 8 be an integer with 1 < 8 < gcd(q - 1, m). Then we have 

(2.13) log2log(2,_1 + I < 1 log( 1 log(L) + #A. 

If moreover a, /3 E R are such that t < am + /3, then 

(2.14) m log q og _a < oq + #A - log(8L (q - 1)) 
log,4 logl aJ01 log 
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Proof. The first inequality is obtained by writing (25 - 1)(2t - 1) > qm/2 as a 
lower estimate for s and applying (2.6). For the second one, note that 4s+ > 
((2s - 1)(2t - 1))2 > qm, so m(logq/log4) < s + t, and next apply the upper bound 
from (2.6) for s, the upper bound P < qm/(3(q - 1)) for P, and t < am + /P. This 
proves (2.12). U1 

3. Determination of the Exceptional Cases. In this section we determine all pairs q, 
m to which (2.5) does not apply. 

(3.1) PROPOSITION. Let q > 1 be a prime power, m a positive integer, and P, s, t as 
in (1.11) and (2.5). Then we have 

(2s - 1)(2t - 1) > qm/2 

if and only if (q, m) is one of the nine pairs 

(2,3), (2,6), (2,15), (3,2), (3,4), (3,8), (5,4), (5,8), (7,6). 

Proof. Table (3.2) contains, for 31 pairs (q, m), the value of t, the prime 
factorization of P, and the values of (2s - 1)(2t - 1). For these pairs the proposition 
is readily checked; the nine cases in which (2s - 1)(2t - 1) > qm/2 are indicated by 
stars in the last column. 

TABLE (3.2) 

q m t P (2 - 1)(2t -1) q m /2 

2 3 2 7 3 2.83 * 

2 4 1 3 5 3 4 
2 6 2 32 7 9 8 * 

2 9 3 7 73 21 22.6 
2 10 2 3 11 31 21 32 
2 12 2 32 5 7 13 45 64 
2 14 3 3 43 127 49 128 
2 15 5 7 31 151 217 181.0 * 

2 21 6 72 - 127 337 441 1448.2 
3 2 2 2 3 3 * 

3 4 3 22 5 21 9 * 

3 6 2 2 7 13 21 27 
3 8 5 23 5 41 217 81 * 

3 10 4 2 112 61 105 243 
3 16 7 24 -5 - 17 -41 -193 3937 6561 
4 5 3 11 31 21 32 
4 6 3 5 -7 - 13 49 64 
4 9 5 3 7 19 73 465 512 
4 15 9 7 11 31 151 331 15841 32768 
5 4 4 3 13 45 25 * 

5 6 4 32 7 31 105 125 
5 8 6 2 3 13 313 945 625 * 

5 12 8 32 7 13 31 601 7905 15625 

7 4 3 23.52 21 49 
7 6 6 22 19 43 441 343 * 

7 12 9 23 52 13 19 43 181 32193 117649 
9 4 4 5 41 45 81 
9 8 8 5 17 41 193 3825 6561 

11 4 3 22 3 61 49 121 
11 10 10 2 3 3221 13421 15345 161051 
13 4 4 57 - 717 105 169 
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In the rest of this proof we assume that (q, m) is a pair not occurring in the table 
for which (25 - 1)(2t - 1) > qm/2 We shall derive a contradiction from this. 

Clearly, our inequality implies s > 0, so P # 1 and m # 1. If m = 2 and q is even 
then t = 1, and since P = q + 1 is odd, we have q = P - 1 > 3s- 1 > (2s - 1) = 

(2s - 1)(2t - 1). If m = 2 and q is odd, we have 2t - 1 = 3, and applying (2.13) 
with / = 3, A = {2}, 8 = 2 we find that 

log(' q + 1) _ log(q + 1) 1 log 4 
log 2 log 3 log3' 

so q < 3; but the pair (3,2) is in the table. We have proved 

(3.3) m > 3. 

Next we prove that 

(3.4) m is not a power of the characteristic p of Fq. 

Suppose not. Then t = 1. If p is odd then each prime r dividing P is 1 mod 2p, so 
> 7, hence P > 7s, and (2s - 1)(2t - 1) < 7s/2 < pl/2 < qfl/2 If p = 2 then (2.13) 

with 8 = 1 yields 

__ _ log L 

log(ql)( 4 log 1 logl 

With 1 = 5, A = {3} this implies qm < 24, so by (3.3) we have (q, m) = (2,4), 
which is in the table. This proves (3.4). 

(3.5) P is not a prime power. 

If not, then s = 1 and 4t > (2t - 1)2 > qm, so t > m(logq/log4), which by t < m 
implies that q = 2 or 3. If q = 3 then by (3.3) and (3.4) we have m > 4, so (2.10) 
leads to the contradiction t < 4m + 1 < m(logq/log4). If q = 2 then m >? 5 by 
(3.4) (since (2, 3) is in the table), so (2.11)(d) gives t < ' + 5 < m(log q/log 4), also 
a contradiction. This proves (3.5). 

Suppose now that m is prime. Then m is odd, by (3.3), and this easily implies that 
each prime divisor of P is 1 modulo 2m. Hence, we can take 1 = 4m + 1 and 
A = {r: r prime, r 1 mod 2m, r < 4m + 1) in (2.6); clearly either #A = 0, 
L = 1 or #A = 1, L = 2mn + 1. Inequality (2.14) yields 

1 1 

log 4 log(4m + 1)loq 

< a + 1 +1 _ log(8(2m + 1)(q- 1)) 
ma log(4m + 1) 

If q 1 mod m, then with a = 1, /3 = 0, 8 = m, q - 1 > mn, this yields q < 7 for 
m > 7; and q < 8 for m = 5; and q < 11 for m = 3. For q 1 modm this leaves 
only the pairs (4, 3) and (7, 3), which both contradict (3.5). If q -1 mod m we can 
take a = /3 = 4, by (2.10), and with 8 = 1, q - 1 > m - 2 the above inequality 
yields q < 4 for m > 5 and q < 9 for m = 3; this leaves only the cases (4, 5), (2, 3), 
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(5, 3), (8, 3), of which the first is in the table and the other three contradict (3.5). If 
q # ? 1 mod m, then m > 5 by (3.4), and using e = 3, D = {1} in (2.9), we see that 
we can take a = 4, / = 3 in the above inequality; for q # 2 this yields q < 2 for 
m > 7 and q < 3 for m = 5, leaving only the pair (3, 5), which contradicts (3.5) 
because P = 112. Finally, let q = 2. Then m > 11 by (3.5), and we can take ac = 
/ = 5 in the inequality (choose e = 5, D = {1} in (2.9)), which leads to the 
contradiction m < 9. We have proved 

(3.6) m is not prime. 

If m = 4, q -1 mod4 we have t = 3, and applying (2.13) with 8 = 2, 1 = 7, 
A = {2,3,5} one finds that q < 15, so q = 3, 7 or 11, which are all in the table. If 

m = 4, q Imod4wehavet = 4,andapplying(2.13)with8 = 4, 1 = 7, A = {3,5} 
(P is odd) one finds that q < 16, so q = 5, 9 or 13, which are also in the table. In 
view of (3.4) we conclude that m # 4, and with (3.3) and (3.6) this implies 

(3.7) m > 6. 

Next suppose that q 1 mod m. We apply (2.14) with a = 1, /3 = 0, 8 = m. In 
order to make the coefficient log q/log 4 - log q/log l - 1 in (2.14) positive we have 
to take l fairly large. For q > 23 we choose A = {2, 3, 5,7, 11, 13, 17), 1 = 19; this 
leads to a contradiction with (3.7). For smaller q we observe that P is relatively 
prime to 2q(q - 1), because m divides q - 1, and change A, l accordingly. With 

A= {2,5,7,11}, 1=13 forq= 19, 

A= {3,5,7,11,13}, 1= 19 forq= 17, 

A = {7,11}, 1=13 forq=16, 

A= {5,7,11,17,19}, 1=23 forq= 13 

we find in all cases the contradiction m < 3. For q < 11, the condition q 1 mod m 
forces by (3.6) and (3.7) that (q, m) is one of (7, 6), (9, 8), and (11, 10), which are all 
in the table. The conclusion is that 

(3.8) q # 1 modm. 

The proof of (3.1) is now concluded by another series of applications of (2.14), as 
indicated by Table (3.9). Every line of the table corresponds to one application of 
(2.14). The first two columns, headed "q" and "im ", indicate for which values of q 
and m the inequality (2.14) is applied. The next two columns give values for a and 13 
for which t < am + /P. These are either derived from (2.10) (note that gcd(q - 1, m) 

2 'm, by (3.8)), or from (2.11) (the exceptions to (2.11) are dealt with in the last 
column). The fifth column gives a lower bound 8 for gcd(q - 1, m). Next one finds 
A and 1. To check that these satisfy the conditions of (2.6), it may be necessary to 
use the information on m in the second column; e.g., if q = 7, 3 + m, then 7m = 1 
mod 9, so 3 does not divide P. In the final column one first finds the upper bound 
for m that is obtained by applying (2.14); next a complete list of all m > 6 (see 
(3.7)) that satisfy this upper bound (or are exceptions in (2.11)) and also meet the 
condition in the second column; and finally how to deal with these remaining values. 

This concludes the proof of (3.1). L 



PRIMITIVE NORMAL BASES FOR FINITE FIELDS 229 

TABLE (3.9) 

q m a A 8 A l m 
> 16 all m 3 0 1 2,3,5,7,11,13 17 < 5; - 

13 all m 3 0 1 2,3,5,7,11,13 17 < 7; 6,7; (3.8),(3.6) 

11 2 + m,5 + m 2 2 1 2,3,5,7 13 < 5;- 

11 2jm,5 Am 1 1 2 2,3,5,7 13 < 5;- 

11 2 + m,5jm 2 2 5 2,3,5,7 13 < 9; - 

11 2jm, 5m 1 5 10 2,3,5,7 13 < 17; 10;(3.8) 

9 2 Am 1 1 1 2,5,7,11,13 17 < 4;- 

9 2jm,4 + m 2 1 2 2,5,7,11,13 17 < 5; - 2 

9 41m,8 + m 2 2 4 2,5,7,11,13 17 < 8; - 

9 818M 1 4 8 2,5,7,11,13 17 < 13; 8; (3.8) 

8 7 m 1 - 1 3,5,7,11,13,17 19 < 5;- 2 2 

8 71m 2 27 7 3,5,7,11,13,17 19 < 13; 7; (3.6) 

7 3 m 1 1 1 2,5,11 17 < 7;7;(3.6) 

7 2 m,3jm 1 3 3 3 19 < 4; - 2 2 

7 2jm, 3jm 2 3 6 2,3,5,11,13 17 < 17; 6,12; (3.2) 

5 4 m 1 4 
1 3,7,11 19 < 7; 6,7; (3.2),(3.6) 

1 10 
5 3 m,4 m 3 10 4 2,3,11,13 17 < 15; 8; (3.2) 

5 3jm,41m 3 6 4 2,3,7,11,13,17,19 23 < 23; 12; (3.2) 

4 3 m _ 2 1 5 11 < 6;- 

4 2 m,3jm 1 2 3 3,7 11 < 20; 9,15; (3.2) 
13 

4 2 m,3jm 1 3 3 3,5,7 11 < 9; 6; (3.2) 

3 3 jm 6 1 1 2,5,7 11 < 11; 6,9; (3.2), (3.4) 

3 2 + m,3 + m 1 4 1 11 23 < 12; 7,11; (3.6) 3 3 

3 2 m,4+m,3+m 3 3- 2 2,11,23 47 < 13;10;(3.2) 

3 41m, 3 + m 3 
4 2 2,5,11,17,23,29 41 < 19; 8,16; (3.2) 

2 2 Am 1 4 1 7 23 < 14;7,9,11,13,15,21; 5 5 

(3.6), (3.2) 
2 2jm,4 + m 8 4 1 3,7,11 19 < 17; 6,10,14; (3.2) 

1 1 
2 41m 8 2 1 3,5,7 11 < 18; 8,12,16; 

(3.4), (3.2) 

4. Completion of the Proof. In this section we prove Theorem (1.10) for the nine 
pairs (q, m) listed in Proposition (3.1). Davenport [4] handles these cases by 
explicitly giving an element of F M of Order Xm - 1 and order qm - 1. Alterna- 
tively, one can consult the tables of Beard and West [1]. We employ two methods. 
The first depends on a refinement of Proposition (2.5), the second is a counting 
argument. 

We denote by q a prime power, q > 1, and by m an integer, m > 1. As before, we 
write P = (qm - 1)/((q - I)gcd(q - 1, m)) and we let s be the number of distinct 
prime divisors of P. By t we denote the number of distinct irreducible factors of 
Xm-1 in Fq[ XI. 

(4.1) PROPOSITION. Suppose that m is a power of 1, where 1 is a prime dividing 
q - 1. Let Q = (qm - 1)/(1(q mr/- 1)). Suppose that Q is a prime number and that 

(251 - 1)(2t - 1) < qm/2 

Then Fqrt has a primitive normal basis over Fq* 
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Proof. One readily checks that Q divides P and is larger than P/Q, so that the 
prime Q divides P exactly once. Let C' be the subgroup of Fq4m of order /(qr/l - 1) 
and index Q. Then C' contains C, and the cyclic group Fq/C of order P is the 
direct product of the cyclic group C'/C of order P/Q and a group of prime order 
Q. Hence, for any a e Fqt, the coset aC can in a unique way be written as a1a2 with 
a1 E C'/C and aQ = 1. Moreover, we have a E BC if and only if aC generates 

FitlC, and if and only if both a, generates C'/C and a2 * 1; here we use (1.14) 
and the fact that Q is prime. 

For a E Fqm we define 

( = E 
A 

Ed) X (a) 
dIP/Q 

T (d) X, ord(X)= d 

with X ranging over F A. Applying (2.1) to the cyclic group G = C'/C of order 
n = P/Q we find that o'(a) = 0 if a E Fqt is such that a, does not generate C'/C. 
We now claim that 
(4.2) w'(a) 0 (a) = 0 for a 0 A nA(BC) 
with Q as in (2.3). To prove this, suppose that w'(a)Q(a) / 0. Then a E A and a1 
generates C/C. Hence to prove that a E A fl (BC) it suffices, by the above, to 
show that a2 / 1. Suppose that a2 = 1. Then a E C', so the l(qn'! - 1)th power of 
a equals 1, and therefore 

aqM1/-1 

for some lth root of unity t E Fq*. This implies that (XI/' - t) o a = 0, contradict- 
ing that a E A. This proves (4.2). 

To complete the proof of (4.1) one now copies the proof of Proposition (2.5), with 
X replaced by a' and (2.4) by (4.2). The role of P is then played by P/Q, which has 
one prime divisor less, so that s is replaced by s - 1. This proves (4.1). U 

It follows that Fqn has a primitive normal basis over Fq if (q, m) is one of the pairs 
(3, 2), (3, 4), (5, 4), (5, 8). In these cases, Proposition (4.1) applies with 1 = 2 and 
Q = 2, 5, 13, 313, respectively. 

(4.3) PROPOSITION. The field FqK, has a primitive normal basis over Fq if 
O(xm - 1) + ,p(qm - 1) > E u(m/d)qd. 

dim 

Proof. The right-hand side is the cardinality of the set of elements of Fq. that are 
not contained in any proper subfield. Since A and B are contained in this set, and 
have cardinalities 4D(Xm - 1) and q(qm - 1), respectively, the inequality clearly 
implies that A and B have a nonempty intersection. This proves (4.3). U 

Proposition (4.3) implies that Fq. has a primitive normal basis over Fq if (q, m) is 
one of the pairs (2, 3), (2, 6), (2, 15). We leave the calculations to the reader. 

The remaining two cases (q, m) = (3, 8) and (q, m) = (7,6) we treat with a 
refinement of this method. 

First let q = 3 and m = 8. Let D E F9 c F38 be a primitive 8th root of unity. The 
group C has order 4, so D = C U DC is a group of order 8, and DA = A U 'A. We 

claim that A and TA have empty intersection. To prove this, we note that for any 
a E A the trace T(a) of a to F9 has Order X2 - 1; i.e., T(a) is a zero of X9 X 
but not of X3 + XX so T(a)4 = -1. If now also ca Ee A, then T(Ta)4 = -1 as well. 
Since T is F9-linear, this leads to the contradiction ,4 = 1. This proves our claim. 
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It follows that DA has cardinality 2 4#A = 4096. Since B has cardinality 
(38-1) = 2560, and 4096 + 2560 > 6561 = 38, the sets DA and B have an 

element in common. Also BD = B, because 16 divides 38 - 1, SO A and B have an 
element in common as well, as required. 

Next, let q = 7 and m = 6. As before, we denote by ' E F49 C F76 a primitive 8th 
root of unity, and by D the group generated by g. Since '2 E C we again have 
DA = A U tA. We calculate #(A n 'A). 

For any cube root of unity q E F7 let Vn be the set of elements of Order dividing 
X2- 7, and define the "trace" Tq: F76 -Y Vq by Tq(a) = (X4 + 7q2X2 + q)?o a; this 
is an F49-linear map. From X6 - 1 = Hq(X2 - 7q) it follows that the combined map 
F76 --* q VH . is an isomorphism of F7[X]-modules. Also, a belongs to A if and only 
if each Tq(a) has Order X - q; i.e., Tq(a) is a zero of X49- _7X but not of 
X7 + q2X. Furthermore, we have ha e A if and only if each T,(Ta) = gT,(a) 
satisfies the same condition. From 

X8 - 
q = -(x6 

- 2)(X6 + -2)(ax)6 _q2)(qX)6 + q2)(X24 + 2) 

we now see that both a and Ta belong to A if and only if each Tq(a) is a zero of 
X24 + 2. Consequently, A n TA has cardinality 243. 

We conclude that #DA = 2 #A - 243 = 2 66- 243 = 79488. Also, #BC= 

q(P). #C = 54432 and 79488 + 54432 > 117649 = 76, so DA and BC have an 
element in common. From CA = A and BD = B it follows that A and B have an 
element in common as well, as required. 

This completes the proof of the theorem. 
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