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Abstract. In order to implement the continued fraction algorithm on a highly parallel 
computer, like the Massively Parallel Processor, it is necessary to be able to compute certain 
numbers which occur at widely-spaced intervals within the continued fraction expansion of AN, 
where N is the number to be factored. In this paper several properties of the continued 
fraction expansion of a quadratic irrational are developed. These results are then applied to 
the development of a very simple algorithm for finding the widely-spaced numbers referred to 
above. 

1. Introduction. The continued fraction algorithm (CFRAC) [8], [11] is a general 
factoring method which has received a great deal of attention in recent years. If we 
denote by N the integer which we wish to factor, the CFRAC algorithm is one of a 
class of factoring techniques which determine integers X and Y such that 

X2 = Y2 (mod N). 

If 1 < gcd(X - Y, N) < N, then we have a factor of N; if not, then we must 
generate another (X, Y) pair and try again. 

One way to calculate a pair (X, Y) is to first generate sequences {Z(i)} and 
{Q(i)} such that 

Z Q(i) (mod N). 

If we can find a set 2 = {Q(i1), Q(i2), Q(i3), ..., Q(UX)} such that 

(l~~~~l) n~f Q(ij) = y29 
J=1 

where Y is an integer, then we have 

X2 = Y2 (mod N ), 

where 

X Hl z(ij) (mod N). 
J=l 
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Leaving aside for the moment the problem of producing the sequences { Z(i)} and 
{Q(i)}, we are left with the problem of determining a set 9. To do this, we can first 
establish a factor base 9 = { PO, P1, P2'*-*- Pk 1} where PO = -1 and pi (i = 

1, 2, 3,. .., k-) are, distinct primes. We then trial divide the Q's by the elements of 9 

and consider only those which completely factor over gA; that is, those Q(i)'s such 
that 

k 

Q(i) = Pa i'. 
j=o 

We associate with such a Q(i) a binary vector ej = (aiO, ail, .. ., aik), where ai1 a,, 
(mod 2). Clearly, we can use as a set 2 a set of Q(i)'s which corresponds to a set of 
linearly dependent (over GF(2)) ei vectors. Both the continued fraction algorithm 
and the quadratic sieve (QS) [10], [3] are examples of this type of factoring method. 
They differ only in how the residues are computed and how they are factored. 

In the case of CFRAC we make use of some properties of the continued fraction 
expansion of quadratic irrationals + = (P + VD )/Q, where P, Q. D E . (the ra- 
tional integers) and D is positive and not a perfect square. If we put** 4O (A, 

qi [(i], 4ji+ = 1/(4i - qi), i = 0,1,2,3,..., m, we get 

= qO ? 

q1 + 

q2 + 

q fm + 
1 

If we let C, = (qO, q1, q2, * -, qm), then it is well known that C, = Am/B,,,, where 
we compute Am and B,,, by the recurrence formulas 

(1 2) Ar+ = qr+,Ar + Ar-i, Br+, = qr+lBr + Br l (r = -1,0,1,2,...), 

together with the boundary conditions A 2 = 0, A 1 = 1, B 2 = 1, B 1 = 0. 
In the case of P = 0, Q = 1, we know that o>r = (Pr + 5 )/Qr (Pr, Qr e ff) 

(1.3) 0 < Qr < 2V , 

and 

(1.4) A2- - DBr1 = (-1)rQr. 

If we put D = N, we see by (1.4) that 

Ar_1 -(-1)rQr (mod N), 

and (1.3) suggests that the quadratic residues (-1)rQr might be small enough to be 
factored over a small prime base. Thus we can put 

Z(r) = Ar-1i Q(r) = (1)rQr 

** We use the symbol [x] to denote that integer such that x - 1 < [xl S x. 
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The second author has been attempting an implementation of the continued 
fraction algorithm on the Massively Parallel Processor (MPP) built by Goodyear 
Aerospace at Goddard Space Flight Center. This computer consists of 16,384 
processors in which arithmetic operations can be performed simultaneously on 
different data. Since the operation of attempting to factor the quadratic residues 
consumes most of the computer time in this algorithm, an obvious way to exploit the 
parallel architecture of the MPP is to perform the trial divisions in parallel. A batch 
of 16,384 different quadratic residues can be computed and they can be factored 
simultaneously by dividing by successive primes in the prime base. This procedure 
succeeds in dramatically reducing the computer time necessary to factor the Q's but 
we still have the problem of generating the Q's and their corresponding squares A2. 
It was originally believed that the host computer to the MPP, a VAX 11-780, could 
serially compute the ((_1)kQk, Ak-l) pairs rapidly enough for the MPP to factor 
them in parallel; however, recent timings indicate that the host computer would not 
adequately keep up with the MPP for values of N much in excess of 60 decimal 
digits. Daniel Shanks has suggested that by extending the ideas described in [13], it 
should be possible to develop a procedure for generating the successive values of Q 
and A themselves in parallel, thereby removing the need for a fast serial host 
computer in implementing a parallel version of CFRAC. In this paper we explain 
how this can be done. 

2. Some Results Concerning Continued Fractions. In order to solve the main 
problem of this paper, we shall require a number of results concerning the continued 
fraction expansion of an expression of the form (P + VDh)/Q, where P, Q, D E _ 
and D ( > 0) is not a perfect square. Most of these results are well known and are 
presented here for the convenience of the reader. For a more detailed discussion of 
this material the reader is referred to Perron [9] or Chrystal [1]. 

We assume with no loss of generality that Q I D - p2 (if not, simply replace Q by 

QIQI, P by IQiP and D by Q2D). If we put d = [VDh], Po = P, Q0 = Q, q0 = [k0I 
= o= (Po + V)h/QO then rn? = (P,, + V)I/Qn,, where P,,, and Q,, may be 

computed by using the formulas 

Pk +1 =qkQk Pk,9 

(2.1) Qk+1 = (D - P2)/Qk k = 0,1,2,3,. 

qk+l = [(Pk+l + d)/Qk+lI, 

If we put Q-1 = (D - Po2)/Q0, Ro = Po + d - q0Q0, it is a simple matter to show 
that we can generate {Q,1,Q,1,P?1 ,q,1 R ,i1' A ? (mod D), A,, (mod D)} 
from { Q 1, Q,, P1, q,1 R,1, A,, (mod D), A ,1I (mod D)} by using Tenner's algo- 
rithm [4, p. 372]. We will call this algorithm 

ALGORITHM 1. (Single-Step Algorithm) 

Pt,+ I d -RWa 

Qn?+ 1 Qn-1 -q(P,1+1 - ) 

is?=+ [(Pt,+, + d)/Qn+ 1], 
R +1 =n+1 + d- qs+lQn + 1 

- remainder on dividing P,+ I + d by Q,+ 1, 
An1 qn1+A,1 + A,_ l (mod D). 

We exemplify this procedure for D = 103, P = 0, Q = 1 in Table 1 below. 
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TABLE 1 

P.R j P1 Qj qj Aj 1 

-2 - - 0 
-1 103 - 0 1 

0 0 1 10 2 10 
1 10 3 6 2 61 
2 8 13 1 5 71 
3 5 6 2 3 100 
4 7 9 1 8 68 
5 2 11 1 1 65 
6 9 2 9 1 35 
7 9 11 1 8 100 
8 2 9 1 3 32 
9 7 6 2 5 61 

10 5 13 1 2 93 
11 8 3 6 0 1 
12 10 1 20 0 10 
13 10 3 6 2 61 

Now since 4m~i = 1/(4m - [m]) we have 41 > 1 for n > 1. Thus, we see that 

qn > 1 for n >? 1, and from (1.2), Bn > FJ+1 (n > 0). Here Fk is the kth Fibonacci 
number (Fo = 0, F1 = 1). Since 

Fk+2 >r (T ((1? + )/2), 

we have 

(2.2) Bk > T k-1 

We also note that 

(2.3) AnB__1 -BnAn-1 = (-1)n-1 (n = -1,0, 1,2, ...). 

Now 

4pmAm~ + Am2 
(2.4) (A= 40o = 

M1 

?Bi2' (2.4) f~~~~~mBm-l + Bm_ 2 

hence, 

(2.5) m =Am-2 - 
OmB2 (A 

(Bmi, 
- iA 

Replacing m by m + 1, putting 40 = (P0 + VDh)/Q0, m = (Pm+1 +Fi)IQ"I+ 
in (2.5), and equating rational and irrational parts, we get 

(2.6) Gm = Pnm+iBm + Qm+1Bm -,1 DBm = Pm +?1Gm + Qm + lm-1 

where G., = QOAm - PoBm. 
Put 4m = (11D - Pm)/QM- = 1/4m. We have 0 < im < 1. Define 

k-i 

(2.7) 91 , =k=H4', (k>1). 
i=l 
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Let Q(xD ) denote the quadratic field formed by adjoining D to the rationals Q. 
Let a- denote the conjugate of a E Q(VD) and N(a) = aai. We now give a 
generalization of (1.4) in 

THEOREM 2.1. For Ok defined as above, we have 

(2.8) N(ok) = (_l)k Qk - l/Qo 
and 

(2.9) k= (-1) (Ak-2 -oBk-2)- 

Proof. (2.8) follows easily from (2.7) and (2.1); (2.9) can be easily deduced by 
using induction on k and (2.5). [1 

In much of what follows we shall be concerned with the problem of when (A < 0. 
We first give 

THEOREM 2.2. For m >? 1, we have m < 0 if and only if Pm < VD and Qm > 0. 

Proof. Clearly, m = (Pm- )/Q,,, < 0 when Pm < D and Qm > 0. If km < 0, 
then since p,,, > 1, we have 2vK /Qm = 4 - 4m> 0. Hence Q,, > 0 and P,,, < 

VD. o 
Note also that since ,,, > 1, we have Pm > Qm - F > - AD; thus, if on, < 0, 

then IPmI < IiD and Q,, < Pm + Vii < 2FD. Note further that if 4,,, < 0, then 

on, + 1 1 /(I - [k In, ]) < 0. 

The question of whether 0m is ever negative is answered in 

THEOREM 2.3. If jlf - k01 > 1/Bmi1Bm-2 (m > 2), then kt < 0. 

Proof. From (2.5) and (2.3) we get 

(2.10) Om = (-Bm-2 +(-1)?PniBm-i)/Bt,-1 

where P"? = An?-i/Bm1 - k0. If we put e = IA,,2/B,,21 - p00, then it is well 
known that Am 1/'Bm- - 0 = (- 1) " and E < 1/Bm B,,2 - ; also, 

(-1)t Pm = (-~1 ) '(Am-1/Bm-1 - 'ko + 0ko - -o) = (-1)"'(0o - + C. 

Now if (Al)mpm < 0, then Om < 0. Suppose (-l)2p,,, > 0. If (1)n2(4O - (PO) < 0, 
then 

(A) 'pm < -l/Bnz IBm-2 + 1/Bm-iBm < 0, 

a contradiction. If (-1)"2(ko - 40) > 0, then (-i)m(4O - (P) > 1/B,,11B,,,2 and 

(1 ) 2P1 > 1 /Bm - 1 Bm - 2. It follows from (2.10) that O., < 0. aI 

COROLLARY 2.3.1. If B$2,-2 > 1Q0/2ViD1 (m > 2), then (P,, < 0. 

Proof. We have kko - 0oI = 2i/1Q01 > Bn -2 > 1/B,,-2 B,-1. a 

COROLLARY 2.3.2. If m > max[l, 3 + log(IQO1/2VD )/(2logT)], then (,,, < 0- 

Proof. If m > 3 + log(jQ0j/2Vi)/(2l0gT), then T2(1- 3)> !Qo0V2Vi and by 
(2.2) we have Bn2-2 > 1QO1/2VD and m > 2. M 

Hence, we see that for some m (> 0) we must eventually have kr < 0. By 
Theorem 2.2 we have Qm > 0 and IPm!l < FD. If Qm, > Di, then 0 < Qm-, - 

(D - P,2)/QQ < VW. In fact, we have 

THEOREM 2.4. Let t be the least integer (>0) such that 4t < 0. If s is the least 
integer (>0 ) such that 0 < Qs < Vii thent = sort = s + 1, unless (t.s) = (0,1). 
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Proof. If t > 1, then 0 < Qt < D or0<Q.1< D; hence, s t. If t=0O 
then k1 < 0 and s = 0 or 1. Now 

qs =(P? JD )/Q -e (O < - < 1) and 2rIQ, > 2 > 1 +E 

hence, qQs > P5 - D + Qs. It follows that P,+1 > - AD + Qs and -4'_? 

Io + 1 > 1; thus, Os+1 < 0 and t < s + 1. Thus, if (t, s) =A (0,1), we have t = s or 
I=s+1. 0 

We close this section with 

THEOREM 2.5. If m > 3, 4,-, > 0, then 0 < 0-1 < IQ0/Qnl-B1,13. 

Proof. If p,,, is defined as in the proof of Theorem 2.3, we see by (2.9) that 
0,, = (-1) "'-B1,. 2Pm 11. If f > 0, then by (2.10) we have 

-Bm - 3 + I/#n > 0. 

It follows that 0 < Am < 1/BI,13. By (2.8) we have 0n1rn = (-1)s7 -1Q 1-1/Q0 By 
(2.7) we know that 0,,, > 0, and since 0,6n' = 10,-,' = IQO/QmiIO16,,,, the result follows. 
El 

3. The Ideals in C,,. Let Do be a square-free positive integer and put 

fI when Do - 2or3 (mod4), r= 
2 when Do 1 (mod 4). 

Define w = (r - 1 ? yI1/r, A,0 = 
(Coo - _o)2 = 4DO/r2, X = naoy + h, where 

n,h EB 2. Let [a.] denote the module {xa + yl3Ixy ( s9} and note that [a,3]= 
[y, 8] if and only if 

(8) =(3 
where X E GL2(2), the group of all 2 x 2 matrices with entries from 2 and 
determinant + 1. 

Put 0P,, = [1,nwo] = [1,w], A = (W _ ZI)2 = n2A0. For g = gcd(r,n), a = r/g, 
put D = (n/g)2DO; then A = 4D/a2. Of course, 0,, is an integral domain and 

(O C (01, the set of all algebraic integers of Q(1/D). 
Now a is an ideal in 0id if a C 0,, and a possesses the following properties: 
(i) if a, 3 Ee a, then a + f3 E a, 
(ii) if a c a and q (=- 0, then aj Ee a. 

In this section we shall summarize several properties of the ideals in 0,, Most of 
these can be found in any standard text, for example Cohn [2]. Those that are not 
explicitly in [2] can be easily demonstrated. Another useful source for some of this 
material is Ince [5]. 

THEOREM 3.1. If a is an ideal in 0,, and a X A22, then a = [a, b + co], where 
a,b,c ed, a > 0, b > 0, cIbandcla. 0 

COROLLARY 3.1.1. For a given a in 0,,, the integers a and c are unique. Indeed, a is 
the least positive rational integer in a. 0 

We will denote the least positive rational integer of a by L (a) and we will denote 
the value of cL(a) by N(a). 

THEOREM 3.2. Let a = [a, b + cw]. a is an ideal in 0,, if and only if c I a, c I b. and 
acIN(bA c ). 0 



CONTINUED FRACTION FACTORING ALGORITHM 411 

Definition. If a = [a, b + w] and a I N(b + c), we say that a is a primitive ideal 
of C,. Note that if a is primitive, then N(a) = L(a). If we denote by 

(a1, a2, a3, .a,) the set 

a = { E ma1z1, : 6i, i = 1,2,3,...,m I 

then clearly a is an ideal in C,,; indeed, we say that a is the ideal generated by 
a1, a2, a3. .. aar and call a1, a2,a3 .a.. a., the generators of a. If a (= (a)) has a 
single generator, we say that a is a principal ideal of C,. It is an easy matter to show 
that (a1, a2) = [a,, a2]; thus, any ideal of C,, need have at most two generators. 

Definition. If ca = (a1, a2, a3,-. . .a,,,), b = (013 2, 93, - A Ah) are ideals of 0,) we 
define the product ideal a b to be that ideal generated by the mk generators af,3 
(i= 1,2,3,...,m; j= 1,2,3,..., k). 

THEOREM 3.3. Let a E (l,, and let a be any ideal in C9,S. If b = (a)a, we have 
N(b) = IN(a)IN(a). 

COROLLARY 3.3.1. If a = (a), then N(a) = IN(a)I. El 

If a = [a, /3] is an ideal of (Si we call { a, f3 4 an integral basis of a. We partially 
address the problem of finding an integral basis of the product of two ideals in 

THEOREM 3.4. If a1 = [a1, b1 + c] and a2 = [a2, b2 + w] are primitive ideals of 

C9,, and gcd(a1, a2) = 1, then a3 3=a1a2 = [a3, b3 + ], where a3 = aja2 and 

f b1 (mod a1), 
3 b2(moda2). [ 

We can, of course, obtain a more general result than Theorem 3.4 (see, for 
example, Lenstra [6] or Schoof [12]), but this particular result will be adequate for 
the purposes of this paper. 

The concept of a reduced ideal and the properties of such ideals will be very 
important in subsequent work. We first give the following 

Definition. We say that a = [L(a), /] is a reduced ideal in C,, if a is primitive 
and there does not exist any nonzero a E a such that both Ila < L(a) and 
IaI <L(a) hold. 

THEOREM 3.5. a is a reduced ideal in C9,, if and only if there exists some /3 E a such 
that a = [L(a),/3], S > L(a), and -L(a) < / < 0. 

Proof. Suppose a is a reduced ideal in 0O, and a = [L(a), y], where -y = b + W 
(b E (2'). There certainly exists an infinitude of pairs (x, y) E g2 such that 

Ixa + Yy- < a, 
where a = L(ac). (For example, x = [-y-/a], y = 1,2,3....) Let (t, s) be one such 
pair and put v = ta + sy; let /3 be that element of a such that 1IB1 < a, /3 > 0 and /3 
is least. Since there can only be a finite number of elements a E a such that Ila < IvI 
and I a- < a, we see that /3 is well defined. Since I/PI < a and a is a reduced ideal of 

(en, we must have / > a. Now 0 < /3-a < /; hence, by selection of /3 we have 

113-al > 1I. 

It follows that /3 and a have different signs and /3 < . 



412 H. C. WILLIAMS AND M. C WUNDERLICH 

Let /3 =pa + qy, where p, q E S. If Iqj > 1, let p s (mod jqj), where Isl < 

JqJ/2. Then (3 - sa)/q = y + xa eC a (x c f). If we let [i = I(/B - sa)/ql e ai, 
we have 

1i1 = 1( -sa)/ql < l1/3/q + Isa/qj < a/2 + a/2 = a. 
Also, [ > 0 and 

[i < lplBql + Isalqj < ,B/2 + a/2 < P?. 
But such a t E a is impossible by the selection of /3; hence, lqj < 1. Since q 0 0, we 
have q = +l and a =[L(a),/P]. 

Next, suppose a = [a,/P], where a = L(a), / > a, -a < / < 0. If a is not a 
reduced ideal of (9, there must exist p E a such that p * 0, IpI < a, and 1PI < a. 
Also, p = xa + yf3 (x, y C 2r). Now since Ixa + y#/3 < a and Ixa + y131 < a, we see 
that if x = 0, then y = 0; and, if y = 0, then x = 0; thus, xy 0 0. If xy > 0, the 
first inequality cannot hold; if xy < 0, the second inequality cannot hold. It follows 
that a must be a reduced ideal in 0, [ 

COROLLARY 3.5.1. If a is a reduced ideal in (9,, then L ( a ) < F. 

Proof. By the theorem, a = [L(a),/P], where P > L(a) and -L(a) < < 0. 
Thus, L(a) <,B-,= - = . 1 

We have a simple sufficient condition for an ideal in (9, to be reduced in 

THEOREM 3.6. If a is a primitive ideal in (,, and L(a) < A/\ /2, then a is a 
reduced ideal in (9,. 

Proof. Let c = [L(ca), y], where y = b + c (b C f). Put B=y + 
[-y/L(cai)]L(a).Then a = [L(a), P], where -L(a) < B < 0. Since PB-,B=w- 
and / > -L(a), we get / > c - W -L(a). Also, w - = A > 2L(a); thus, 
/3> L( a ) and our result follows immediately from Theorem 3.5. [ 

If a is any reduced ideal in 60,, then a = [L(a), b + w] and we may certainly 
assume that 0 < b < L(ac). Since L(ac) < A, we see that there can only be a finite 
number of reduced ideals in (9,. 

We say, as usual, that two ideals a, b of (9, are equivalent (written a - b) if there 
exist nonzero a,/3 E (9, such that (a)ac = (P3)b. Now if a (0 0) e (9, and (a)c = 

(a)b, then (aa-) c = (aa-)b and (a)ac = (a)b, where a = a1 e f. Thus, ca = b. 

LEMMA 3.1. If ca and b are equivalent ideals of (9,, there exists some y &i ca such 
that 

(3.1) (y) b =(L( )) a 
and 0 < y < L(ca). 

Proof. Since (a)a = (/3)b where a,/3 (# 0) e (,,, then I P3IL(b) = IalA for some 
A e a. Let r1 (> 0) be any unit of (9,. There must exist some power -q of rj such 
that rqkX < L(a). Put y = rj"X. If we put c = (y)b = (X)fb, then (L(b)/3)b = (a))c 
and (L(b)a) c = (a)c; hence, c = (L(b)) c and (y)fb = (L(b)) c. [] 

We also point out that if ci, b + (0) are ideals in (9, and a e (,,, s E ff, a, s 0 0. 
and 

(a) b = (sL(fb)) c, 
then there exists y E ca such that sL(b)y = L(b)a; hence, y = a/s e ca. 
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4. Ideals and Continued Fractions. In this section we will draw together the results 
of the last two sections in order to show the connection between the ideals in 0,, and 
the continued fraction expansion of 4 = (P + D )/Q. We first suppose that 
[a, b + c] is any primitive ideal in 0, If we put 4 = (b + w)/a, we see that 
0 = (P + D)/Q, where 

(4.1) P = (rb + n(r - l) + hr)/g E( , Q =ar/g E( , 
and r, n, g, h are defined at the beginning of Section 3. Since a I N(b + w), it is a 
simple matter to deduce that aQ I P2 - D; hence, QIP2 - D. We also have P 
-n/g (mod a), a 12, and gcd(n/g, a) = 1; thus, P 1 (mod a). We now see that 

al = [Qla, (P + rD)/af]. 
If we have Q, P E 2 such that a I Q, P 1 (mod a) and aQ I D P2, then 

n=[Q/a,(P+ D)/a] 

must be an ideal in 0, For, if we put 
a = IQI/a, b -- (P - 1)/a - n - h +(n + g)/r EA, 

we have a = [a, b + w] and a I N(b + w). 
In the following theorem we see that if we are given a primitive ideal ai1 in ,d, the 

continued fraction algorithm can be used to find a sequence of ideals al, a 2 ' 3 
suchthat ak - al (k= 1,2,3,...). 

THEOREM 4.1. Let a1 = a = [a,b + w] (a,b E f) and define PO = P, Q0 = Q. 

0( = (PO + D)/Q0, where P, Q are given by (4.1). If 

a"r = [Q1_,1/a, (P1,11 + ? )a], 

where 4- = (Pt,,-, + rD)/QQ,,- is found by expanding 40 into a continued 
fraction by using (2.1), then a,, is an ideal in 0,, and 

(4.2) (Q0o1,)a1= (Q"=_1)a 
where 6,1, is defined by (2.7). 

Proof. Certainly a, is an ideal in d, a IQ_, Po 1 (mod a), and aQ0 ID - P2. 
Suppose a k is an ideal in do; we have a I Qk -1, Pk - 1-1 (mod a), and aQ- DI - 

P- 1 Since Pk = qk-lQk-1 - Pk-1 we see that Pk 1 (mod a). Further, 

Qk = (D - Pk )/Qk-1 = (D - Pk-l)/Qk-1 qh-1Qk--1 ? 

thus, since aI(D - P2_1)/Qkl, aIQ l, and a12, we have aIQA. Also, aQID - 
Ph2. Hence, a + 1 is an ideal in d, It follows by induction that a,,, is an ideal in (9,. 

Now by (2.9) we have 

where 

X 1 m-2 B -2 

and IXl = ?1 by (2.3). Thus, 

(011)[1, )1nl = 1011'0n1+1] [I, 0] 

and 

(Q00"l)a1n (Q1,I1) al. [1 
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Note that we can write (4.2) as 

(4.3) (L(a1)6,l) a, = (L(a)) a1. 

We will now describe conditions which are sufficient for a,, to be a reduced ideal 
in 0,1. 

THEOREM 4.2. If bil < 0, then a,,?1 is a reduced ideal in 6,,. 

Proof. Put y = IPrn + DI/a. Since ,,, > 1, we have y > IQn,/aI = L(a ,+1). 
Also, N(y) = f0,4mL(an,?+)2 < 0; hence, y < 0. Put 

/3 = [-i/L(at?+1)] L(a11+i) + y. 

We have 

ally I = [L(am+i),-y] = [L a,1),i13] 

and / > L(am +), -L(a+ 1) < /3 < 0. It follows by Theorem 3.5 that a,,, + is a 
reduced ideal of (,. El 

COROLLARY 4.2.1. If a = a1 = [Q0/a, (PO + D )/a] is any primitive ideal in 0n,, 
then am is a reduced ideal in 0n when 

m > max(2,4 + log (1Q01/2 D)/(2log T)). 

Proof. Follows easily from the theorem and Corollary 2.3.2. C 

THEOREM 4.3. If, by developing l0 = (PO + D)/QO into a continuedfraction, we 
find the least m (>1) such that 0 < Qm-i < D, then am is a reduced ideal in 0, 
and 

00nt < 2Q0/Qm-1- 

Proof. Since L(am) = Qm-i/a < D/l = F/2, we see by Theorem 3.6 that 
a,,, is a reduced ideal in (n. If m = 1, then 0. = I < 2Q0/Q0. If m = 2, then since 

Q0 > 0, we must have Q0 > D. Also, O.-' = 5p1-(P1 + D)/Q1. Since D -p2 

= Q0Q1 > 0, we have O.-' < 25D /Q1 < 2QO/Q,- 1. Suppose m > 3. 
Let k be the least integer ( > 0) such that Ok < 0. If k = 2, then from the proof of 

Theorem 2.5, we get Q1 < 0. Since IP21 < D, Q2 > 0 by Theorem 2.2, and 
Q2Q1 = D - P22, this is impossible; hence k 0 2. By Theorem 2.4 we have k = m or 
k = m - 1. If k = m > 3, then .m-, > 0 and 

oI < Q0/Qm-1Bm-3 < Qo/Qnm-l 

by Theorem 2.5. If k = m - 1 > 3, then 0,,-2 > 0. Also, we must have Qmni > 0, 

IP,^_11 < D; thus, we find that Qm-2 = (D - Pm2-l)/Q,,, > 0 and, as a conse- 

quence of the definition of Qm-i we get Qm- 2 > D . By Theorem 2.5 we have 

otm-1 < Q01Qm-2Bm-4; 

hence 

Om = Kr-lIm-1 < (Q0/Qn-2Bm-4)(2 D/Qnl-,) < 2Qo/Qm-- ? 

Thus, the continued fraction expansion algorithm applied to any primitive ideal 
a = a1 in 0,, will ultimately yield an ideal am equivalent to a1 such that a.. is a 
reduced ideal in 0, We now show that if the continued fraction algorithm is applied 
to any reduced ideal a in (9,, it will produce all of the reduced ideals in 0,t which 
are equivalent to a. 
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THEOREM 4.4. If a = a1 is a reduced idealin On, then -1 < < 0. 

Proof. Since a, is a reduced ideal in On, and L(a1) = Q0/a, we have Q0/a < F 
= 2 D/a by Corollary3.5.1. Also, -y = L(a 1)41 = (PO + D)/a - q0Q0/a; hence, 
' E a1. Since y = Q0/a4l and 01 > 1, we have 0 < y < Q0/a and 7> Q0/a (a1 

is a reduced ideal in (WI); thus, 0 < D - P1 < 2AD and P1 + D > 0. Since 
= (-P1 -D )/QO and 41 = 1/4k, we get our result. C1 

COROLLARY 4.4.1. If a1 is a reduced ideal in C9n, then so is a,,, for any m > 1. 

Proof. Follows easily from Theorem 4.2 and the fact that if -1 < 01 < 0, then 
-1 < 1< O for any m > 1. [ 

THEOREM 4.5. If a = a1 and b are two reduced, equivalent ideals in On and y E a 
such that 

(y)b = (L(b))a 
with 0 < y < L(a), then there must exist some m > 1 such that b = a,, and 
S = y/L(ca). 

Proof. By Lemma 3.1, we certainly know that such a y E( a exists. We also know 
(Theorem 4.1) that 

= [ IQA-11/0, Q 06kb ] 

for any k > 1. Since a1, is a reduced ideal of Onn, we have 4, < 0 for any i > 1 by the 
previous theorem; hence, 0k-1 and 6k have different signs. Since y < L(a) and the 

k s decrease as k increases, we must have either 

0. = y/L( a), or On,+I < y/L( ( a) < 0, 
for some m, or y/L(ca) < Oi for all 01. Since 

Iorm/Bmr21 = lAmr2/Bn-2 - k1 < IIB,,-,B,1-2, 
we see that 0 < 0,, < 1/Bm-1; hence, by (2.2) we cannot have the latter case. 
Suppose 

Om+I < y/L(a) < Om 

for some m. Since y E a, we have -y/L(a) = X6nm + Y6Rm,+ for some x, y E 2Y 
Since y > Om+iL(a), we must also have 1yj < I6m+jiL(a). For, if 1I- > I~m+jiL(a), 
and A = L(a)m0i, then A c a and L(b)X = yp for some p 

- b (p O 0). Further, 

IpI = L(b)IA/YI < L(b) and I-I= L(b)IX/YI < L(b). 
Since this contradicts the fact that b is reduced, we can only have I< 1+ 1L (a). 
It follows that 

IxO,, + y6Oj,+l < Om and Ix1,l + YO,+, 1 < 10?11. 
Since #M and #,,+I have different signs, both of these inequalities cannot hold; 
hence, we must have y = OmL(a) for some m > 1. Since (y)b = (L(b))a and 
(L(a)0m)a,,1 = (L(a,,e))a by (4.3), we get IN(y)IN(b) = L(b)2N(a) and 
L(ca)2IN(,)I N(cai )= L(am)2N(a). Since N(y) = N(Om)L(a)2, N(b) = L(b) 
and N(a)= L(a), we have L(b)= L(atn,). Since (y)b = (L(at1))ca = 

(L( a)Om) ac= (y) am,wehave b = aL. 
Thus, we have shown that if aI is any primitive ideal in On to which the 

continued fraction expansion of a corresponding 40 is applied, we must ultimately 
produce a reduced ideal am (- a1), and once this has occurred, the subsequent 
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ideals determined will be all of those which are reduced ideals in (9,, and equivalent 
to al. As there are only a finite number of such ideals, this continued fraction 
expansion must (as is well known) become periodic. Incidentally, we have also 
shown that the preperiod of the continued fraction expansion of any quadratic 
irrational of the form 0 above corresponds to the process of finding a reduced ideal 
equivalent to an ideal in some (i,. By Corollary 4.2.1, we can even bound the length 
of this preperiodic part of the continued fraction expansion of '. 

5. Distance Between Ideals. Let al = a and b be any two reduced and equivalent 
ideals in 0, By Theorem 4.5 we know that b = am, for some m > 1, and by (4.3), 

(L(ai)Gm) an, = (L(an)) a,. 
We will define the distance, d( a, b), from a to b to be -log 6,. We note here that 
d(an, a1) > d(an-,, a) >? 0 and d(a, a1) = 0 if and only if m = 1. The notion 
of distance was first discussed by Shanks [13] and later refined by Lenstra [6] and 
Schoof [12]. We are essentially using Shanks' definition of distance here. Notice that 
distance is only defined between ideals of (9,, that are equivalent and reduced. 

A connection between d(am2, a,) and m is furnished in the following result of 
Levy [7]. 

THEOREM 5.1 (LtvY). Let 

O= [qOqjq2.*qk-1 Ok]- 

For almost all irrationals ' we have 

lim 102'3 ... PA = e 

where X = 7T 2/(12 log 2) - 1.1866. 0 

Since 

cl= H A and n1 H'P- 

we expect that d(a a1) = -log 6,,, ( m - 1)X. 
Let a1 (= (1)), a2, a3,. a, a,,... be the sequence of reduced principal ideals in 

(9,, and suppose that b is any reduced ideal in (9,. Let (u)c = a, t, where u C 9 
and c is a primitive ideal in (,,. Let c,, be a reduced ideal equivalent to c = cl, 
which we find by using the continued fraction algorithm on c 1, with m defined as in 
Theorem 4.3. Since 

CM - C1 - a A bt b 1 (as is principal), 
and c n is reduced, we must have c M, = b k for some k > 1. We can now prove 

THEOREM 5.2. If 

dt'=fbt~ l), da = d(bkI bl), 
and do = d(a' a ), then 

= dt' + d1 + 8 
where 0 < 8 < log 8D. 

Proof. Let (q,)as = (L(as)) (L(a1) = 1, a1 = (1)), (L(b1)O')bt= (L( bt))bj, 
(L(c1)O,[),Cn, = (L(c,,))cl. Since (u)cl = a~bt, we get L(bt)L(as) = u2L(cl) by 
Theorem 3.3. Also, 

(uL(bI)6,.II')c1 = f )) 
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hence, 

(L( cn,)L(cj)Ot,')cj = (uL( c1)L(c1))b 

and 

L( b ( tl)OO,'61/u ) cm = (L( crm )) b1. 

Now u v> and O < 0, G', Ot< 1; hence, 

0 <y = L(b1)Gst~',1'/u L(b1) and ye bc 

By Theorem 4.5 we must have y/L( b 1) = OS. It follows that 

d' = d5 + d ' + 8, 
where 8 = log(u,/0',). By Theorem 4.3 we have 

( ,)1 < 2Qo/Q"-l- ~< 2Qo 
" 

where L(cl) = QU/u and Qs1Q _17a2 = u2L(c1). Since as and bt are reduced 
ideals in (9,i we must have L(as), L(bt) < VA by Corollary 3.5.1; hence, Qs-1, 

K 2rD and 8 < log8D. Also, since Gn' < 1, we have u(O,$1)-1 > u > 1 and 
8 >. w 

Thus, if s and t are large, the value of 8 would be small compared to Xx and Xt. 
It follows that we would expect to have 

k t + s 

by Levy's law. 
We will also require 

THEOREM 5.3. If 
cnz 

b u', G3 ' OSt a, have the meanings assigned to them in 
Theorem 5.2, then b k+1 = C,,1l and G' = 

Proof. Since cm = bk, we get 

[Qm-1/a, (I1'-1 + )/u] [Q /, (Pj1 + )D ]; 

consequently, 

= Q>_1 and '- 1 _>1 (mod Qn>l). 

Thus, 

() "1 + D)/Q > i?(PI + D)/QIQ1 =J + (X2-1 

where E A, and 4 " = 4k. It follows that c,, 1 = A + 1. 
Now O +i = = = 6R/'pk; hence, 

0t 
1 u t m /Otm - 's tnil U. El 

6. The Algorithm. In order to describe our algorithm for the parallel generation of 
((_1)kQk , AkO) pairs, we make use of certain sets b,. If N is the number which we 
wish to factor by using CFRAC, we may assume that N = ef2, where e is 
square-free and e > 1. We put Do = e; n = rf, g = r, a = 1, D = N, h = -f(r - 1). 
and we get X = D and ,, = [1, D]. If al = (1), then PO = O and Q( = 1. We use 
the same notation as in Section 3. 

We require two lemmas. 
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LEMMA 6.1. If, in the continuedfraction expansion of 40 = 4, we have -1 < <1 < 0, 
then 

qk = [(Pk+l + d)/QkI 

for all k >? 1. 

Proof. Since -1 < 4) < 0, we have -1 < Ok < 0 for all k > 1. Also, 4)k+1 = 

/(Ok - qk); hence, 
0 <(l/ok + l) -qk <1. 

It follows that 

qk = [ Ij k+l= [4k?I] [(Pk+l + d)/Qk] * ? 

LEMMA 6.2. If-1 < 01 < 0 and Tk Pk (mod Qk), then 

Pk+1 =qQk Tk, qk= q + [(d- Tk)/Qk], 
where q = [(7Tk + d)/Qk ]- 

Proof. Let Tk = Pk + mQk. We have q = [(Pk + d)/QkI + m = qk + m and 

qQk -Tk = (qk + m)Qk - 
Pk- mQk = qkQk -Pk =Pk+1- 

By Lemma 6.1, we also have 

qk= [(Pk+, + d)/QkI q + [(d Tk)/QkI O 
Thus, if we are given values for Qk, Tk, Ak (mod D), Ak1 (mod D), where 

Tk Pk (modQk), we can compute Pk+,, qk by using Lemma 6.2. By using 
the formulas in Section 2, we can also determine Pk = qkQk - Pk+1' Qk+1 = 

(D Pk- 1)/Qk' Qk-1 = (D - 
k)/Qk' -Ak-2 qkA1 -1Ak (mod D). Let SkO 

tk be integers such that s2 = t2 = 1 and define the quadruples 
tk1 

O&= ((-1) Qk+l Pk+?1 SkAk (mod D), SkAk-1 (mod D)), 

rk = ((1) klQk-1, Pk, -tkA k-2 (mod D), tkAk-1 (mod D)). 

Suppose X = ( X, Y, Z, W) is either Ok or YFk. We now describe 

ALGORITHM 2. (Forward or Backward Single-Step Algorithm) Compute q= 

[(Y + d)/IXI] and put 
Y = qX- Y, X' = Y,2 - D)/X, 

Z' = qZ + W, W'= Z, 

'= (X',Y',Z',W'). 
This algorithm is very useful because of 

THEOREM 6.1. Suppose that in the continued fraction expansion of 4)0 = 4) we have 
-1 < l1 < O. If X = wk, then ' = /k +1 with sk+1 = Sk; if _= 5"k, then = 

Yllk-1 with tk-1 = -tk. 

Proof. By the results given in Section 2, the theorem follows easily when X= =k' 

If X= 7k, then q = [(Pk + d)/Qkl1] = qk-1 by Lemma 6.1. Hence 

Y= qk-lQ-1- Pk Pk-1 

= = 
()k 1(pk2 D)/Qk-I = (-1)k-2Q 

Z' = -qk-ltk~k- ? tkAk-l =- - Ak-1) -tk(-Ak_3) (mod D), 
W'--tk -k- 2 (mod D). 

If we put tki u = -tk, we have the theorem when U = k 
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Hence, we see that, depending upon whether we start with a quadruple of the 
form OPk or 5",, we can go forward or backward in the continued fraction expansion 
of 4) by repeated application of Algorithm 2. 

We define 

= ((-)kQk, Tk, cAk (mod D), cAk-l (mod D)), 

where Tk Pk (mod Qk) and e2 = 1. By using the formulas above we can determine 

ok and <Y,. If we can generate 8192 = 16384/2 different widely-spaced "t,, and X,, 
quadruples and place each in one of the 16384 processors; by using Algorithm 2 we 
can then generate quadruples / l, ? -1' -& +2' Y-2' etc., and from these extract 
pairs ((--1) kQk, uAk-1 (mod D)), where 

k 2_ -Ak -1 - -)Qk (mod D). 

To ensure that we do not get duplication of the pairs ((_1)kQk, uAkl (mod D)) 
in the various processors, we must compute initial quadruples 

5Yh, Yh2' Yh9 *,192 

such that 
h1 > x/16384 and h,1 - h, > 2x/16384, 

where x is the number of quadratic residues of the type (-1)'Q, needed to factor N. 
The problem of generating the "Yh's is easily solved by making use of the 

Large-Step Algorithm, which we will now develop. Given Y, and 5?, this algorithm 
will rapidly find Y.k where k = i + j. Notice also that any Y, can be reached in 
O(log2 t) operations by a combination of large-step and single-step iterations. 

By Theorem 3.4, if gcd(L(ac+1), L(aQ+1)) = 1 and c = a,+1a,+1, then 

c= [Q', P' + D] 

where 

(P, (modQQ, 

o < P' < Q'. Put M = (Q')-1 (mod D). (We assume here, as is most likely, that 
gcd(Q', D) = 1.) 

We now expand 4' = (P' + D )/Q' into a continued fraction until we find the 
least m such that 0 < Q', < D. Since [Qu,, Pn ? D] = vD c? 1 +- a, 1 a is 
reduced, we must have c2+1 = Ck+1 = [Qk Pk + D]; hence, Qk = Qni PAk Pn 

(modQk). 

Now 

(6.1) 0k+1 = ?11, +10,+li?1 

and 

(6.2) Ok+2 = 
+11+1 ?1rn?+2 

by Theorems 5.2 and 5.3. Further, by Theorem 2.1 and the definition of G,,1 in 
Section 2, we have 

.+1= (-1)'(A1-1 - DBI1), 0J+1 = (-1)'(A,1 -DBI-1), 

8 1= (-1) ' DB'(G?- - 1D)/Q', 6+2 = (-1) "1I(G,;, R- B' )IQ 

0k+1 = (1) k(Ak-1 - DBkl). 
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Thus, from (6.1) and (6.2) we derive 

Akl (l)k?i?J~r MAi- A 

Ak (_l)k+?+?+nzMA,.1A 1G61 (mod D), 

where 

G-1 = Pm B1-1 + Qm Bm-2 = QIB -- P'l 1 B-1 

GQ, = Pm+ B'I + Q'rm 1 Bm 

By Theorem 2.4 we must have Om-i > 0 (m > 1), and by Theorem 2.3 and 
Corollary 2.3.1 we see that 

B3 < VQ'ID < 2D (m > 3) 

and 

Bili2 < Q'/2DBm3 < 2D (m > 2); 

thus, the B"s up to Bm_2 do not get large and therefore need not be reduced modulo 
D as they are calculated. 

We now give our Large-Step Algorithm (LS) for going directly to YA where 
k = i + J, given SY, and 9YJ. We denote this by 51k = LS(Y,, A,). 

ALGORITHM 3. Large-Step Algorithm (LS). We first assume that for our given S, 
and YJ we have gcd(Q,, Qj) = 1. If gcd(Qi, QJ) 0 1, we would compute ?Y+1 by 
Algorithm 1 and try again. If, as in our case, the same Y, (i = 2x/16384) is to be 
used several times, it is best to find i initially such that Q. does not have small prime 
factors. In practice, of course, this happens relatively frequently; otherwise, the 
CFRAC algorithm would execute much more rapidly than it does. 

1. Compute QO = QQj and M such that 

MQ 1 (mod D). 

Solve the linear Diophantine equation 

XQ1 - YQ, = P. - P, 

and put PO' P, + XQ, (mod Q'), where 0 < PO < Q'. 
2. By using Algorithm 1 with A' 2, Al 1 initialized to 1, 0, respectively (this will 

actually compute the Bh's for h = 0,1, 2, 3,...), develop the continued fraction 
expansion of 40? = (PO + D )/Q0 until an m is determined such that 

0<Q M d. 

3. Put Qk = Qn1, Tk =P 

Fk-l MA- 1A 1(PA 1 ? QJ AMM 2) (mod D), 

=k-MA -Aj-,(P,,+,A' + Qm+ A'l-l) (mod D). 

If F,2_1--Qk (mod D), put (I)k = 1; otherwise, put (1)k = -1. Put y = I, 
Fk_ 1 ,,_k 
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Examples. We give an example of the Large-Step Algorithm with D = 103. Of 
course, no one would consider using this procedure to factor the prime number 103, 
but we will discuss the simple continued fraction expansion of 103 as an illustra- 
tive example. By referring to Table 1, we see that tY2= (13,8,71,61}, 5?3= 

(6,5,100,71}. 
We will apply the LS algorithm to 5?2 and 9'3 so that at the beginning of Step 1, 

i = 2 and j 3. 
Step 1. Q4 = 78, 

Pl= 47, 
M = (QO1 (mod D) = 70. 

Step 2. The reduction in Step 2 requires four iterations of the simple continued 
fraction process before Q satisfies the required relationship. These are 
given in Table 2 below. 

TABLE 2 

i P.' Q. q1 RI A' 

-2 - 1 
-1 - -27 0 

0 47 78 0 57 1 
1 -47 -27 1 -10 1 
2 20 11 2 8 3 
3 2 9 1 3 4 
4 7 6 

Step 3. We have m = 3, Qk = 9, Tk = 2, 

PtA,,I + Q Al 1 2 -23 + 9 * 1 = 15, 

Pm~1Al + Q2,+,Af 7 - 4 + 6 + 3 = 46, 
Fkl = 100, Fk = 32, (_l)k = 1. Notice that we cannot evaluate k by using the LS 
Algorithm. However, if we compare our results with those in Table 1, we see that 
k = 8. 

7. Some Remarks Concerning Implementation of the LS Algorithm. The LS 
Algorithm was implemented in extended precision using the Hanson package from 
Sandia Corporation. When it was executed on the VAX 11-780, which serves as the 
host to the MPP, it ran very slowly. To prepare the data required for a 60-digit N, 
nearly 2.5 hours of VAX time would be needed. This is excessive, since we estimate 
that only 20 minutes of MPP time would be needed to factor N. Better results were 
obtained by running the data preparation segment on a CDC 7600 where .52 hours 
were required for a 60-digit N. Much, if not most, of this time is due to the lack of 
assembly-coded routines in the Hanson Package. Had an assembler language pro- 
gram been used on the CDC, we estimate that less than 10 minutes would be needed 
to produce the required data. Another way to correct this mismatch would be to 
perform the entire LS operation on the MPP in parallel on 16384 items at once. We 
will explain in the remaining portion of this paper how this could be performed on a 
slightly expanded version of an MPP and give a speculative estimate of its running 
time. 
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The algorithm below assumes that if different quadruples Y of the simple 
continued fraction expansion are stored in each of the 16834 processors and a 
"constant" quadruple Y? of the sequence is stored in the MPP as a scalar, then the 
LS Algorithm can be used to multiply the scalar term with each of the Y quadruples 
in the processors simultaneously producing translated 5? quadruples in each 
processor. This operation would be difficult to do in the present MPP configuration 
because of the small amount of storage in each processor. However, with a larger 
version of an MPP it would be relatively easy to implement. Furthermore, we 
assume that if M = { bo, b1, b2, . . ., b16383 } is a sequence of mask bits, one for each 
processor, the parallel multiplication described above can be performed under the 
mask M. This means that the multiplication operation takes place only in those 
processors having the corresponding mask bit b, = 1. 

ALGORITHM 4. Generate 16,384 widely-spaced 5Y quadruples in parallel. 
Step 1. Preprocessing. Use the Single-Step and Large-Step Algorithm together to 

generate 5'Y, where v is sufficiently large that the number of (Q, A) pairs 
needed does not exceed 16384v. Place a copy of 9y in each processor. 
Also, let MO, MI,..., M13 be 14 masks defined as follows: Let I be the 
sequence of integers {0, 1, 2, ... , 16383}. Let MO be the sequence of least 
significant bits of I, M1 the sequence of second least significant bits of I, 
and so on, until we define M13 as the sequence of most significant bits of I. 
Thus, we have 

MO = {0,O. 1, O, 1 , O1, O, 1 , O1, 0, 1 , 0, 1, 0, 1, O, 1,...}, 

M1 = {O,0,1,,OO,1,1 ,,0,1,1,0,0,1,10.01,1 , . ... } , 

M3 = {O,,0,0,,0,0,0,,1,1, 1l,,11,1,1,0,,OO0, ... }, 

and eventually M13 consists of a string of 8,192 zeros followed by 8,192 
ones. 

Step 2. Set i -- 0 and repeat Step 3 fourteen times. 
Step 3. Replace 5? by LS(Y5, Y?). Under the mask M, apply the LS Algorithm 

on Y, and the 5" in each processor and then set i <- i + 1. 

Proof of Algorithm. Let Elj = Y' and 7 = LS(5717_, .Yl). It follows by induction 
on i that after Step 3 has been executed i times, the MPP will contain 214' 
collections of the 2'data items ElY 2 33 . * *2' ? 

Running Time Estimate. A careful cycle count of Algorithm 2, which generates the 
next term of a continued fraction expansion on the MPP, comes to .016 seconds per 
iteration for a 70-digit number. This includes all I/O times required for swapping 
back and forth between the auxiliary staging memory and the main memory. By 
Corollary 4.2.1, we see that no more than about 75 iterations of the continued 
fraction process would be needed to perform the reduction step (Step (2)) of the LS 
Algorithm when N is a sixty-digit number. In fact, the average number of these 
iterations seems empirically to be about 30. We can assume that the array time for a 
reduction iteration will take about as much time as an ordinary continued fraction 
iteration since, although the values of P and Q are large, the values of A are 
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correspondingly small. Assuming that 40 steps will be the maximum required for the 
longest example in a set of 16,384, and further assuming that reduction consumes 
one-half the total time for the LS Algorithm to execute (this is very conservative-it 
probably consumes as much as .9), we arrive at the following running time analysis. 

Running time for executing the LS Algorithm 14 times equals 

40 x 0.16 x 2 x 14 = 17.9 seconds. 

Thus, after using the LS Algorithm about twenty times to obtain SY such that v is 
in the neighborhood of 106 (a few seconds on the CDC 7600), an additional 20 
seconds on the MPP would produce 16,384 distinct paris (Q, A) which are spaced 
about 1,000,000 units apart. This represents a considerable improvement over the 
times required on the CDC 7600. 
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