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4120-00, 20C30, 20DO6, 20D08J.-J. H. CONWAY, R. T. CURTIS, S. P. NORTON, 
R. A. PARKER & R. A. WILSON, Atlas of Finite Groups-Maximal Subgroups and 
Ordinary Characters for Simple Groups, Clarendon Press, Oxford, 1985, xxxiii + 
252 pp., 42 cm. Price $45.00. 

This is indeed an atlas in which a "map", frequently of just one page, is devoted 
to each of 93 of the finite simple groups, starting with A5, the smallest simple group, 
of order 60, and ending with the exceptional group E8(2), whose order requires 75 
digits, and including all 26 of the sporadic simple groups. The main item on each 
map that is for the most part not readily available elsewhere is a complete character 
table of the group in question, but also included are: the order of the group, its 
Schur multiplier, its automorphism group, its principal occurrences in mathematics 
and in nature, its conjugacy classes and how they behave when powers are taken and 
how they, as well as the characters, relate to those of its Schur covering group and 
automorphism group, a presentation in terms of generators and relations, and a list 
of its maximal subgroups. 

The atlas per se is preceded by a long introduction, describing the set of all finite 
simple groups according to the recently completed classification and containing 
instructions for the use of the atlas, and it is followed by other fragments of 
information including a bibliography which is especially extensive for the sporadic 
groups. By putting much thought into not only the choice of their material, but also 
its arrangement, the authors have been able to present a great deal of concrete 
information about a representative collection of the finite simple groups. For this 
they are to be congratulated. 
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5110-04, 10A25, 10A15, 10HO8, 68CO05.-ERIc BACH, Analytic Methods in the 
Analysis and Design of Number-Theoretic Algorithms, An ACM Distinguished 
Dissertation 1984, The MIT Press, Cambridge, Mass., 1985, 48 pp., 232 cm. Price 
$ 15.00. 

Suppose N is an odd natural number and N - 1 = 2km where m is odd. Given 
an integer b, we say N is a "strong probable prime to the base b" if either 

(i) btm 1 mod Nor 
(ii) b2m = -1 mod N for some i E {0,1, .. .,- 1). 

If N is actually prime, it is an elementary consequence of Fermat's Little Theorem 
that N is a strong probable prime to every base b coprime to N. However, it also 
can occur that a composite integer N passes the test for some b. An example with 

b # 1 is N = 65, b = 8. Nevertheless, the terminology "strong probable prime" is 
justified on both empirical and theoretical grounds: Examples with N composite for 
a fixed base b # 1 are rare (see [11]). 
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In particular, it is known from [10] that for a fixed b # 1, the number of 
composite strong probable primes to the base b that are at most x grows much more 
slowly than the number of primes that are at most x. In addition, for a fixed odd 
composite N, the number of bases b in {1, 2, .. ., N - 1) for which N is a strong 
probable prime is always smaller than N/4 (see [7], [12]) and is both usually and on 
average much smaller (see [4]). Thus, Rabin has proposed the following random test 
for compositeness: Given an odd composite number N, the expected number of 
random choices of numbers b until one is found for which N is not a strong 
probable prime to the base b (and so N has been proved composite) is bounded. 
Such a number b is called a "witness" for N. 

To test if N is a strong probable prime to the base b where b E {1, 2,..., N - 1) 
takes only O((log N )3) bit operations if the naive multiplication algorithm is used. 
Thus, Rabin's test has expected running time O((log N)3) to prove N composite if it 
really is. A similar random compositeness test was also proposed in [14]. 

It has long been a goal of computational number theorists to use the Fermat 
congruence and its generalizations such as the one above as a test to prove primality. 
In his thesis, Miller [6] proved the remarkable result that if N is odd and composite, 
then there is a witness b for N that satisfies 

(1) 1 < b < c(logN)2 

for some explicit c > 0, provided the Extended Riemann Hypothesis (ERH) is true. 
Thus, by not choosing b at random, but rather exhausting the interval (1, c(log N )2), 

one has an ERH-conditional primality test for N with running time O((log N)5). In 
particular, the ERH implies that the prime recognition problem is in the complexity 
class P. 

Miller's proof was based on a result of Ankeny [2] which in slightly more general 
form (due to Montgomery [8]) states that if G is a proper subgroup of the 
multiplicative group of integers mod N, then some b in the range (1) is not in G. 

The main result in the monograph under review is that we may choose c = 2 in (1) 
for the Ankeny-Montgomery theorem and thus also for Miller's primality test. This 
represents a considerable improvement on an earlier result of Oesterle [9] who had 
shown we can take c = 70 in (1). Bach's proof assumes a working knowledge of 
some standard techniques of analytic number theory. It is written in an engaging, 
conversational style and is most pleasant to read. 

The fastest unconditional primality test is the APR test (see [1]) which has running 
time O((log N )ClogloglogN) for some c > 0. A practical variant of this test due to 
Cohen & Lenstra [3] can establish primality of numbers in the 200 decimal digit 
range in only a few minutes on a good mainframe computer. In this range, the Miller 
test, even with Bach's constant c = 2, should take longer. Thus a proof of the ERH 
will not automatically speed up primality testing in the feasible range. 

A very recent development in primality testing is a new test of Goldwasser & 
Kilian [5] that can be proved to run in expected polynomial time for almost all 
primes and is conjectured to do so for all primes. Although it is a random algorithm 
and the expected running time is a bit uncertain, when the algorithm halts with a 
proof that N is prime, this proof is valid and unconditional. The test is not based on 
the Fermat congruence, but rather the arithmetic of elliptic curves and in particular 
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the (nonpractical) algorithm of Schoof [13] for computing the order of the group of 
points on an elliptic curve over a finite field. 

The second half of the book is devoted to the provocative problem of giving a 
polynomial time algorithm for selecting an integer in the interval (N/2, N] with the 
uniform distribution and also producing the prime factorization of the selected 
integer. By first choosing an integer and then factoring it, we have a method that is 
usually too time-consuming, owing to the current intractability of factoring. Bach 
solves this problem by choosing the factorization first. That is, assuming primality 
testing as a primitive operation, primes are randomly chosen, with respect to a 
particular distribution such that their product lies in the interval (N/2, N]. The 
problem that must be solved is to choose the primes in such a manner that the 
products are uniformly distributed in (N/2, N]. This is roughly done as follows. 
Consider a random analog of Achilles and the tortoise, where you start with the unit 
interval and at each stage, instead of taking half of what's left, you take a fraction of 
what's left, where the fraction is chosen in [0, 1] with the uniform distribution. Bach 
chooses the primes for his random number similarly. The first prime p is chosen so 
that log p/log N is roughly uniformly distributed in [0,1]. The next prime q is 
chosen so that log q/log(N/p) is roughly uniformly distributed in [0, 1], etc. That 
this ends up giving uniformly distributed integers in (N/2, N] seems remarkable. 
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