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Local Error Estimates for Some Petrov-Galerkin 
Methods Applied to Strongly Elliptic 

Equations on Curves 

By Jukka Saranen 

Abstract. In this article we derive local error estimates for some Petrov-Galerkin methods 
applied to strongly elliptic equations on smooth curves of the plane. The results, e.g., cover the 
basic first-kind and second-kind integral equations appearing in the boundary element 
solution of the potential problem. The discretization model includes the Galerkin method and 
the collocation method using smoothest splines as trial functions. Asymptotic error estimates 
are given for a large scale of the Sobolev norms. 

1. Introduction. We study local convergence properties of some Petrov-Galerkin 
methods applied to the general class of strongly elliptic pseudodifferential operators 
given on smooth closed Jordan curves of the plane. This framework covers various 
types of problems such as periodic differential equations on the real line, boundary 
integral equations of the second kind or Symm's first-kind integral equations with 
logarithmic single-layer potential. These integral equations are of fundamental 
importance in solving interior or exterior boundary value problems of potential 
theory. Other applications are singular integral equations with Cauchy type singular- 
ity in the kernel. These occur, e.g., in elasticity. 

We are mainly interested in Galerkin and collocation methods. These methods 
seem to be those best analyzed from among the Petrov-Galerkin methods, and 
various global error estimates are given in [1], [2], [9], [13], and [14]. In particular, the 
collocation method is widely used in engineering applications. 

As far as we know, the literature concerning local or interior error estimates is not 
very extensive. In [11] some local estimates were proved for the L2-orthogonal 
projection on spline spaces. In [12] and [6] interior error estimates were derived for 
the Galerkin approximation of the solution of differential equations. 

In the case of integral equations no local error estimates seem to exist. The validity 
of such results is not obvious, since the local properties of the integral operators 
differ considerably from the local properties of the differential operators, the former 
being only pseudolocal, in contrast to the local nature of the differential operators. 

In the present article we derive local error estimates for general Petrov-Galerkin 
methods when smoothest splines are used as trial and test functions. In deriving the 
error estimates we adapt some techniques of [11] and [12]. The error estimates are 
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given for a full range of the Sobolev norms corresponding to the known global 
estimates. When the trial and test space coincide, we have the Galerkin method. We 
briefly describe our results. 

Let A: Hs - Hs-2' be an isomorphism between the Sobolev spaces Hs = HS(F) 
given by the strongly elliptic pseudodifferential operator A of real order 2a. 
Furthermore, let 

Sd = Sd(A) and Td' = Td'(A) 

be spaces of smoothest splines of degree d and d', respectively, and the meshes A 
and A be quasiuniform. Assuming essentially only that the Petrov-Galerkin method: 
Find uh E Sd such that 

(1.1) (Auh I v) = (Au I v), v E Td', 

is stable with respect to the norm II lx, there holds the optimal-order global error 
estimate 

(1.2) jju - UII,t < ch" t1u ljs 

for 2a - (d' + 1) < t < s < d + 1, t < d + 2, x < s. In Section 4 we prove corre- 
sponding local estimates of the following type. Let Fo and I1 be open subarcs of F 
such that ro c F1. We assume that the solution u satisfies local regularity u GE Hs(F1) 
together with global regularity u E Hr such that x < r < s < d + 1. By Theorem 
4.3 there holds 

(1.3) ||u 
- UhiIt(FO) < C(hs tIlUils(F1) + hd'+l+r-2aIUIlIr) 

for values 2a - d'- t <x and 

(1.4) ||U 
- Uhllt(To) < c(hstIluIls(IF) + hd'+1+r+x-2a-tIIU Ir) 

for x < t < d + 2. Let us take as a special case the Galerkin method where d = d' 
and x = a. Then one concludes from (1.4) that the optimal-order convergence for 
values a < t < d + 2 is achieved already by the requirement u E Ha, i.e., that the 
solution belongs to the energy space. On the other hand, if t < a, we need by (1.3) 
for the values s > t + d + 1 - a an additional global regularity to get optimal-order 
convergence. Results of a similar kind were obtained for differential operators in 
[12]. Also, other conclusions can be drawn from the above results. For example, it 
turns out (see Subsection 4.3) that for fixed trial functions the locality of the 
approximation increases by raising the degree of the test functions. 

The other application which is discussed in Section 5 is the collocation method. 
More precisely, we consider two different variants of the collocation method. First 
we analyze the local properties of the collocation in the case of smoothest splines of 
odd degree, when the nodes of the mesh are used as the collocation points. The other 
example uses smoothest splines of even degree collocating at the midpoints of the 
mesh. Our framework for Petrov-Galerkin methods is applicable to obtain results for 
these collocation methods, since these methods can be considered as perturbations of 
a Galerkin method (odd-degree splines) or of a Petrov-Galerkin method (even-de- 
gree splines). For example, with splines of odd degree d = 2j - 1 the result is 
formally included already in estimates (1.3) and (1.4) with the choice x = j + a and 
d' = -1. 
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2. Preliminaries. 
2.1. Strongly Elliptic Equations. We consider equations of the form 

(2.1.1) Au =f, 

where A is a strongly elliptic pseudodifferential operator of real order 2a on the 
smooth closed Jordan curve F c R2. For example, the logarithmic potential 

Au(x) = J u(y) lnlx - yl dy 

defines a strongly elliptic pseudodifferential operator of order -1. Since A is of 
order 2a, it defines for all s a Fredholm operator A: Hs -> H'-2, with vanishing 
index [15], [16]. Here, Hs is the Sobolev space of functions defined on F. We assume 
that Eq. (2.1.1) is uniquely solvable. This implies that the operator A is an 
isomorphism for all s. 

The extension of the results to cover the cases where the initial problem is not 
uniquely solvable, but becomes such by introducing auxiliary parameters and side 
conditions as in [1], [14], is straightforward and is omitted. The same remark is valid 
when considering strongly elliptic systems instead of single equations. 

2.2. Identification with Periodic Spaces. By means of the parametric representation 
t -* x(t) of the curve F we identify the functions on the curve with 1-periodic 
functions u(t) defined on the whole real line. The global scalar products and norms 
can therefore be given by means of the Fourier representation as 

(uIv)s= Ju- Jv + E 2rn| u(n)v(n), 

IIulis = (uIu))/2. 

For s = 0 we shall often omit the subindex. We have used here the Fourier 
coefficients 

u^(n)= fu(t)e-1n2rtdt 

and the mean value Ju = ui(O). Let A = {Xk}, Xk < Xk+1, k E Z, be a set of points 
on the real axis such that Xk+N = Xk + 1 for some N E N and all k E Z. We 
consider the space Sd = Sd(s) of 1-periodic splines p E Sd(A) such that p is a 
polynomial of degree at most d in every subinterval (xk, Xk+?) and the function (p 
has continuous derivatives up to order d - 1 for d > 1. The space S?(l\) means 
piecewise constants. 

2.3. Approximation and Inverse Properties. In deriving the asymptotic local error 
estimates we need the approximation and inverse properties for splines. We assume 
the sequence of meshes to be quasiuniform, which means that the ratio 

hA/hA 

remains bounded when N approaches infinity. Here, hA = max(xk+l - Xk) and 

hA = min(Xk+l - Xk). 

For periodic spaces the following approximation and inverse properties can be 
found in [8]. 



488 JUKKA SARANEN 

LEMMA 2.1 (Approximation property). If to < d + 2 and if to < s < d + 1, then 
for any u E Hs there exists a function ' E- Sd such that 

(2.3.1) ||u - ||t < c(t)hs-tjj U Ils for all t < to. 

LEMMA 2.2 (Inverse property). We have 

(2.3.2) 11(plls < cht-sll(p|It forall p E Sd, 

t < s < d + 2. 

The proof in [8] extends earlier results to cover the range of indices up to to < d + 2 

in Lemma 2.1, or to s < d + 2 in Lemma 2.2, from the previously known to < d in 
Lemma 2.1 or s < d in Lemma 2.2. 

A standard application of the inverse estimate combined with the approximation 
property yields the estimate (2.3.1) also for the higher-order norms. Thus we have 

(2.3.3) ilu - ||t < c(t)hs-tl| U Ils 

if t < s < d + 1, t < d + -. 
In addition to periodic splines, we shall need nonperiodic smoothest splines 

defined on a given interval I. The corresponding spaces are denoted by Sd(I). 
Furthermore, we shall need the Sobolev spaces Hs(I) for all s E R. In particular, 
the spaces with negative indices are given by the duality H-s(I) = (Ho(I))', s > 0. 
Here, Hos(I) is the Hs(I)-closure of the space CO'(I) of the infinitely differentiable 
functions which are compactly supported in I. Thus the norm of H-s(I) is given by 

(2.3.4) 0u u s ( ) = sup (u I .(I) 

It was proven in [3] that for the splines Sd(I) there exist inverse estimates 
covering also the negative Sobolev norms. However, the negative norms used in [3] 
are those which arise when one defines the negative spaces H-s(I) by means of the 
duality H-s(I) = (Hs(I))'. This yields the negative norms 

(2.3.5) |uK_s(i)= sup (ul(p)(i) 
0 =*-V eH'(I) 11(PlsI)M 

which, in general, are stronger than those defined by (2.3.4). 
With the weaker norm (2.3.4) we can prove the following 

LEMMA 2.3. We have the inverse estimate 

(2.3.6) 11(plls(I) < cht-sll(pllt(I) 
for all /p E Sd(I) andfor all t < s, s < d + 2, S # p + 2, p E Z, p < -1. 

Proof. For the fractional-order norms IIuILs, s = d + 8, 0 < 8 < 1, we have the 
Sobolev-Slobodetskii representation 

llls = lId + [ D U] 

where 

[V] j IV(X) - V(y)12 dxdy. 
An -i - ci1[2t 

An explicit calculation carried out in [8] shows that 
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for all piecewise constant splines 4 E S?(I), if 0 < T < 8 < 2. If (p E Sd(I), we 
have Ddcp E S?(I) and (2.3.7) implies 

11 (P 112 = 11 (P 112d+[D ( ]2^<| P |d+ c 2(T 
- 

) [Ddp]2S = + [ Ddcp] 1 (p12+ ch (~[Ddcp] 

c2(t -s) 1 
( 11l2 

for d < t < s < d + -, t = d+ T, s = d + 3. Since the inverse estimate holds for 
the values d < t < s < d + 1, it holds also for the values - ox < t < s < d + 2, if 
the negative norms are defined by means of (2.3.5) [3]. 

In particular, we have 

(2.3.8) 11plls(I) < cht-sllpllt(I), 0 < t < s < d + , 

and 

(2.3.9) 11pllo(I) < chtlplt(I), t < 0. 

For any s < 0 we define Xs to be the intermediate space (independent of m) 
Xs = [H?(I), Hm(I)]9, where m E Z, m < s, and s = Om. Apart from the excep- 
tional values s = p + 2, where p is a negative integer, the space Xs coincides with 
the Sobolev space Hs(I), and the interpolation norm 11 -I(Xs) is equivalent to the 
Sobolev norm 11 -ls(I). On the other hand, the norms defined by (2.3.4) and (2.3.5) 
are the same for- < S < 0, since for these values, H-s(I) = Ho s(I) [10, p. 55, 
Theorem 11.1]. Starting from the estimate (2.3.9), that is, 

Jj(pjj(X0) < cht|gpji(Xj, -2 < t < 0 , 
we obtain, again by means of the procedure in [3], 

(2.3.10) 11(pll(Xs) < ch`-sjj(pjj(Xj), t < s < 0 . 

For the exceptional values t = p + 2, p E Z, p < - 1, there holds 

(2.3.11) klgp l(Xt) < C1cp ,t 

since we have Xp+ = (HO-P1/2(I))', where the space Hop-1/2(I) is continu- 
ously embedded in H6P-p/2(I) [10, p. 66, Theorem 11.7]. Combining (2.3.8), 
(2.3.10), and (2.3.11), we have the assertion of the lemma. E 

We shall need the following form of inverse estimates without exceptional values. 
Let co E COO(I). 

LEMMA 2.4. For all t < s < d + 2 and4,ESd there holds 

(2.3.12) jjco) lis < chtsl s||Ilt(I). 

Proof. Since we have Io4Is < cI Is (I), we may, by Lemma 2.3, assume that 
s < 0. For fixed t < s we can choose by (2.3.3) an approximation ' of co , such that 

(2.3.13) 1K 4 - D Ilt < Cll + ||t(I), 

(2.3.14) || ko4 - ls < ch sll 4 I|o(I). 

But then we have by (2.3.14), Lemma 2.2, and Lemma 2.3, 

(2.3.15) 11 Co) Ils < 1K Co) - t Ils + jj Il's < c(ht-sll + Ilt(I) + ht-sll t Ilt). 

From (2.3.13) there follows IIDILt < cjj4uIt(I), and therefore (2.3.15) yields the 
assertion. El 
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We now choose a sequence of intervals Io C c Io C c I, c c I such that the 
length 1(I) < 1. Moreover, let c E Co&(Io). 

LEMMA 2.5. Assume that to < d + 2 and q E N. Then 
(a) For any 4 E Sd there exists a function ' E- Sd such that 

(2.3.16) jjco\ - t |t < chs+?-tI'1u1(Io(), 

(2.3.17) || - ~Ijt |< chs+' -t1 11s 
when -q < t < t0, s < d. 

(b) For any u E Hs, to < s < d + 1, there exists a function ' E- Sd such that 

(2.3.18) ||@u - ||t < chs-tu 1 is (Io) 

for all - q < t < to. In both cases (a) and (b) one can choose the function ' such that 

supp' C I, for 0 < h < ho. 

Proof. There exists a function q e Sd(I) such that v = o4 + q belongs to 
Hd+ 1(I). Moreover, in the set I\ Io, q is a polynomial of degree < d. We 
introduce the integration operator D - 1, 

D-1f(x) = f(T)dT, a < x < b, 

assuming I = (a, b). 
The function w = D-qv belongs to Hd+?1+ q(I) and, in I \ Io, is a polynomial of 

degree < d + q. We fix an interval I2 such that I1 c c I2 c c I. There exists an 

approximation 4 c Sd+q(J) of w such that for 0 < h < hog where ho is independent 
of w, the function 4 coincides with w in the set I2 \ I, and such that 

(2.3.19) Dk(w Chd+q+ -k) Dd+q+1W II(I) 

for 0 < k < d + q. 
The above approximation ( can be defined as in [4], [5]. Then the asserted 

property is a consequence of the locality of the approximation and the fact that the 
approximation reproduces polynomials up to degree d + q. Define cp = Dqt and 

E e Sd such that 

D(x) = f-(q((X) -(X)), X E I2' 

In the interval I2 one has c 4 - = D q(w - ), which upon integration by parts 
yields 

(Dq(W- ) If)('2) 

II'O'II-q(O2) 
sup Ilf lIq('2) 

(2.3.20) <11 - II(I2) < 1 

c chd+q+1ll |(' 

From (2.3.19) there follows also 

(2.3.21) I1' -lIId(I2) < chlI41d(I'). 

But since the function c' - ' is supported in I2 we have by (2.3.20) and (2.3.21) 

Io'+ - tIjt < cjIo - |IIt(I2) < chd+1t111 Ild(I) 
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for t =-q and t = d. Interpolating, we obtain 

(2.3.22) I4 - ' Ilt < chdll-tll4II(1t) 

for -q < t < d. 
Take d < t < to < d + . If was proved in [2] that there exists an approximation 
E E S" such that 

(2.3.23) IIco4 - Ilt < chd?d+l tIlII(I0). 

Thus we get from (2.3.2), (2.3.22), and (2.3.23), 

(A) - t < 11 (A - 11 t + 11n 
- - 

l11t 

< chd+ltII4id(16) + ChdtIIi - DII 

C chd+lt114,IId(16) + chd tIIo4 - iIld + chdtIIo - t IId 

< ch d+l-t||+lld(I 

This, combined with (2.3.6), proves the assertion (2.3.16). The estimate (2.3.17) 
follows from (2.3.16). The proof of (b) is a minor modification of the case (a) and is 
omitted. Ol 

We point out that Lemma 2.5 is very essential for obtaining local error estimates. 
Similar approximation properties have been used, e.g., in [11] and [12]. However, it is 
difficult to locate a proof in the literature which covers the smoothest splines of 
general order, even for nonnegative values of the indices s and t. The idea to 
regularize w4, as in the proof of (2.3.16) or (2.3.17), to obtain the "extra power" of 
h was already used in [7]. 

3. Petrov-Galerkin Method. 
3.1. Stability and Global Convergence. We assume that the principal symbol 

a(x, () of the pseudodifferential operator A satisfies 

(3.1.1) Rea(x,{) c > 0, x c I, = 1, f c R. 

This assumption implies the validity of the G'arding inequality [15]. Thus we have 
the representation 

(3.1.2) A=AO +K, 

where Ao satisfies 

(3.1.3) Re(AOu u) u c|| U C- Ha, 

and where K: Hs Hs-2a is compact. Since A is assumed to be invertible, we 
deduce from (3.1.2) and (3.1.3) that the Babuska stability condition, 

(3.1.4) inf supl(Ap )I ->- c > 0, IkPIla = 1 11 Il ,a = 1, p E SE , E= E 

is satisfied for small 0 < h < ho. Here Sd is a spline space such that Sd c He, i.e., 
a <d + 2. 

To verify (3.1.4), one can choose 4' = - Ph(A*)- Kq*q, where Ph: Ha -> Sd is 
the L2-orthogonal projection and where A* and K* are L2-adjoints; cf. [14]. The 
mapping T: sp --* 4 satisfies 
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We are concerned with more general Petrov-Galerkin methods, where we use 
Sd = Sd(A) as the trial subspace and Td' = Sd'(A) as the test subspace. We require 
that both meshes A and A be quasiuniform. Furthermore, it is assumed that these 
meshes have the same number of points in the unit interval, i.e., Sd and Td' have 
the same finite dimension. The Petrov-Galerkin solution uh = Gu E Sd of (2.1.1) is 
defined by 

(3.1.6) (Au lq) = (Au I qp), p E Ti. 

We assume that the approximation is stable with respect to the norm 1 * For this, 
we first require that the inequalities 

(3.1.7) x<d+ 2 and 2a -x<d'+2 

be valid. By assumption (3.1.7) we have Sd C HX and Td' c H2a-X. Furthermore, 
we assume that the stability condition (0 < h < h 0) 

(3.1.8) infsupl(A.p1I)I > c > 0, kIlP 1X = 1, 11 112a-x = 1, p E Sd, Td 

is satisfied. Applications with different trial and test functions will be discussed in 
the next section and in Section 5, when collocation with even-order splines is 
considered. Since the operator A: HS -* H'a2 is bounded, we have 

(3.1.9) |(Au I v) I < CII U IlxIl V 112a-x 

for all u E HX, v E H2,-x. From (3.1.8) and (3.1.9) it follows that the Petrov- 
Galerkin method (3.1.6) is quasioptimal, i.e., 

(3.1.10) I1u - UhIIx < c inf IIu - 'P lx. 
9 E sd 

We have the following asymptotic error estimates. 

THEOREM 3.1. For the Petrov-Galerkin approximation there holds 

(3.1.11) IIU - Uh lit < Chs tIIUIIs 

when 2 a-(d' + 1) < t < s < d + 1, t < d + 2, x < s. For the values 2a- 
(d' + 1) < t < x we also have 

(3.1.12) IIU - Uh |t < chxt 1 u - uh lx 

Proof. If t < x we take w E Ht such that IIu - uhIIt = (u - uh I w) = IIwIIt. 
With the element y = (A*)-lw H - +2a we have 

(3.1.13) IIu Uhllt= I U(uuhIA*y) = (A(U - Uh) IY ) 
for all D E Td'. The approximation property (2.3.3), together with (3.1.13), gives for 
2a - (d' + 1) < t 

2I uhI< ch'11A(u - Uh) ll-2a IIIa IIU - Uh || t - h I h)IX 2 11 Y 112a-x 

< chtu u - Uh llX * ilU - Uh 11, 

which proves (3.1.12). Estimates (2.3.1), (3.1.10), and (3.1.12) imply (3.1.11) for 
2a - (d' + 1) < t < x. The remaining cases with x < t < d + 2 follow as usual by 
using the inverse property (2.3.2). O 
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3.2. Decomposition of Local Error. We write e = u - Uh. For the local estimates it 
is sufficient to bound the norms over any interval IO c c I where I is some interval 
of unit length. We fix further subintervals such that 

Ioc c Io C C IL C C I" C CI C C I 

Moreover, let c o CCO(IO) be such that o(x) = 1, x C IO. Further, take functions 
GE CO (I') and ( e Co C(I1) such that I= 1 and = 1. For any function f 

we write f = wf. We decompose the local error e as 

(3.2.1) e= (u- GU) +(GU- GUh) -(Uh G"h) 

and study each of the three terms separately. For any u c Hx the restriction u j of 
the distribution u to the open interval I, is well defined. In what follows we write 
u E Hs(I), which more precisely means uj11 c HS(IE). Theorem 3.1 yields 

LEMMA 3.2. Assume x < s < d + 1, u c Hs(I) n HX. Then we have 

(3.2.2) IIii - G Illx < Chs'xllUIlIs < ChsX'llUls(Ij). 

For the second term of the decomposition (3.2.1) we obtain 

LEMMA 3.3. For any fixed ,B < x there holds 

(3.2.3) |IG(U - Uh) lIx < c(h T'lellx(Ij) + IIellx-i(Ij) + IIeIIfi) 
with T' = min(1, d' + 1 + x - 2a). 

Proof. By (3.1.8) we have 

(3.2.4) llG(U - Uh) lIx < csupl(AG(ii - uh) I) 1, 11 I112a-x = 1 4 C T 

The Petrov-Galerkin equation (3.1.6) yields for 4 c Td' 

(3.2.5) (AGejI') = (AejI') = (AeIco4') +([A,co]ej4) 

with the commutator [A, co] = Aco - coA. By using (2.3.17) we find with some 
E'E Td', supp' cI;, for 114112a-x= 1 

(3.2.6) 
(Ae I w4) = (Ae I 4 - ) = (rqAe I w4 - 

( ch. '(C 11 qA,e lIx-2a + II|A(1 - )e |x-2a)). 

Since q(1 - 0) = 0, and since from the theory of pseudodifferential operators it is 
known that qA(1 - () is a pseudodifferential operator of order - x, we have the 
estimate 

IIqA(1 - )ellx-2a < c1lell. 

Therefore, by (3.2.6) it follows that 

(3.2.7) (AeIco4') < chT'(IIeIlx(II) + IIe IIf). 
The term involving the commutator can be handled as follows, 

(3.2.8) ([A, co]e I ) = ([A, co]qe ) -(coA(1 - q)eIl') 
(3 .2.8) ~~~~~<1 c ( || e l|X- 01() + 11 e II#).- 

Summing up (3.2.4), (3.2.5), (3.2.7), and (3.2.8), we get the desired assertion, 

JIG( - Uh) IlX < c(hT'Ie llx( () + lie llx- (I,) + lie IIf). C 
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For the last term in (3.2.1) we prove 

LEMMA 3.4. Assume that u E Hs(I) n H', where x < s < d + 1. Then we have 

(3.2.9) IIGuh - uhllx < c(hs-xIIuIIs(I) + h|IIeIIx(Ii)), 

where T = min(1, d + 1 - x). 

Proof. We first assume that x < s < d. By Lemma 2.5, 

(3.2.10) IIGiUh - uh IIx < chs? 11 Uh Ils (Io") 

With the smooth functions q and t defined earlier in this section we have n = 

and thus 

(3.2.11) I Uh Ils (IO) < CIqUh I (11'q (Uh - ) lls + 1 IIT Ils) I 

where 

(3.2.12) II'ipIs C((II u - cpIll + I u Ils) 
for every T E Sd. By (2.3.1) we can choose the function T such that 

(3.2.13) II u - qPIls < cll u Is < clluIls(IJ) 
and 

(3.2.14) IItu - PIlIx < chs-1xIIUls < chSXlUIlls(Ij). 
By (3.2.12) and (3.2.13) there follows 

(3.2.15) IL'ipIIls < clluIs(I)( 
Furthermore, Lemma 2.4 gives, since q E Co (Il')q 

(('q(Uh - P) lIs < chxsIIuh - 9lIIx(I') 

(3.2.16) < chx-s(IIu - Uh II(I ) + Iu - (I 

< chx-S(II u - Uh llx(Il") + II u - g llx) 

where we have used the fact that t e C(1), (Ij = 1. Combining (3.2.10), (3.2.11), 
(3.2.14), (3.2.15), and (3.2.16), we have 

(3.2.17) IIGi'h - Uh IIx < C(hs+?-xll u I(II ) + hll e IIx(I)). 

Assume now that x < d < s < d + 1. Then we have u e Hd(1I), and the previous 
result (3.2.17) yields 

|| Gih - Uh lIx < c(h d?lx Iu IId(Ij) + h II e llx (I)) 

< C(hs-XIIuIIs(Ij) + hIIeIIx(Ij)). 

Finally, if d < x < s < d + 1, x < d + 2, we have by Lemma 2.5 

IIGi'h - UhIIx I chx IUhhIld(IO) 

< chd+l-x(IIUIld(I") + IIU - Uh Ild(IO)) 

< c(hS-xIIuIId(Ii) + hTIIeIIx(I1)). 

Thus the lemma is proven. E 
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Summing up the estimates of the previous lemmas, we arrive at 

THEOREM 3.5. Assume that u E= HS(Ih) n H' with x < s < d + 1. For any 13 < x 
there holds 

(3.2.18) iieiix(to1) < c[hs-Xllulls(II) + hToi e llix(Ii) + 11 e llx-1(II) + || e 11ii], 

whereTO = min(l, d + 1 - x, d' + 1 + x - 2a). 

4. Local Convergence of the Petrov-Galerkin Method. 
4.1. General Result. To utilize Theorem 3.5, we estimate the lower-order local 

norms jj * for t < x. For we E Ht there exists w e Ht such that 

(4.1.1) (we lw) =||fwe||t = iiwii-t. 

Taking y = (A*)f w we have y E H-t+2" and 

(4.1.2) iiYii-t+2a < cifwff-t = clf we jlt. 
We first prove 

LEMMA4.1. Let 2a - (d' + 1) < t < xand let 3 < a be fixed. Then 

(4.1.3) iieiit(IO) < c(hx-tlle llx(II) + lie Jlt-_(Ij) + lie li|B). 

Proof. We proceed similarly as in the proof of Lemma 3.2. We have 

(4.1.4) towe ||= (welA*y) = (Awely) = (wAely) +([A,w]ely). 
According to Lemma 2.5, we can estimate by using an element ' c Td, supp C c1, 

(woAeIy)= (7qAeIcy- ) 

(4.1.5) K c(II'qA{eIIx-2a + jjqA(1 - )eIIx-2a)hx-tiiYIi2a-t 

< c hX-(l e llx(II) + 11e 11,8) 
- 

11 telit, 

if 2a - t < d' + 1. The term involving the commutator in (4.1.4) has the estimate 

(4.1.6) ([A,w]ejy) < c(iieiit-l(Il) + ilel i) * iloe lit. 

By using (4.1.4)-(4.1.6) we have the assertion. Cl 

THEOREM 4.2. Assume that u E HS(I) n HI, where x < s, r < d + 1. Then we 
have 

(4.1.7) llellx(IO) C(hS-XiiUiis(Ij) + hd'+1+r-2aiiUiir) 

Proof. Given the intervals IO c c I,, we choose a sequence of intervals Jk, 

o < k < m, such that 

Io = JO C C J1c C c rn * * C m-i 1 C Cm = I,. 

By Theorem 3.5 we have 

(4.1.8) lie lix(Jo) < c(hsX-ilulls(J1) + hTolleiix(Ji) + lie iix-1(J1) + lie llf), 
and Lemma 4.1 yields 

(4.1.9) llejjx_j(Jj) < c(hT0jjejjx_j(J2) + llellx_2(J2) + 11e ||,o). 

By (4.1.8) and (4.1.9) we obtain 

lie lix(JO) < c(hs-xilulis(I,) + hTolieiix(J2) + llelix-2(J2) + ilelifo). 
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Continuing this process, we finally achieve 

IIellx(JO) < c(hs-xllulls (I) + hTolleiix(Jm) + iiellx-m(Jm) + iiellf). 

Taking m so large that x - m < /3, we have 

(4.1.10) tie||x(I0) < c(hs-xjiuiis(Il) + hToii|eix(II) + fe l|,i). 

A further application of (4.1.10) to sufficiently many subintervals eliminates the 
term hToIIeI x(II) and yields 

(4.1.11) 11 e Iix(IO) < c(hs-xII u|is(I1) + 11 e ipo). 
Choosing /3 = 2a - (d' + 1), we have by Theorem 3.1 

Ile II# < ch d'+l+r-2a 11 Ur, 

which together with (4.1.11) proves the assertion. El 
We are now ready to state the main result of this section. First, we observe that 

repeated use of the inequality (4.1.3) gives the estimate 

(4.1.12) |lellt(IO) < c(hx-tiieiix(Ii) +|te|i2a-d'-1) 

for2a - d' - 1 t x. Wenowhave 

THEOREM 4.3. Assume that u e Hs(I1) n H , where x < s, r < d + 1. Then for 
2a - d' - 1 < t < x there holds 

(4.1.13) ilellt(Io) < c(hs -ti u II (I) + hd'+l+r-2ait 11 Ul) 

For x < t < d + 2 we have 

(4.1.14) Ilelit(1O) < c(hs-tiI uiis (I1) + hd'+l+rx-2a-ti u 11 ) 

Proof. The first estimate (4.1.13) follows by combining (4.1.12) and (4.1.11) with 
the global estimate (3.1.11). Assume that x < t < d + 4. We continue using the 
notation in the proof of Lemma 3.4 with the smooth functions q and ( and with 
p E Sd satisfying (3.2.13), (3.2.14). 

Thus, we have by Lemma 2.4, 

iieIit(IO) < C(11 U - TIlt + q(Uh -) ii) 

s4 c(iic u - qpilt + hx-tilUh - GPlx(I) 

< c(0u 
- illt + hx-t(iiu 

- 
uhiiX(I) +ii U -( IIx)) 

$ C(hS- tiiu l(I1) + hx-tile iix(II")). 

Estimates (4.1.13) and (4.1.15) yield the assertion (4.1.14). El 
4.2. Galerkin Method. Let us consider the special case of the Galerkin method 

where x = a and d = d', a < d + 4. Then for a < t < d + 4 it suffices to take 
r = a. We have 

THEOREM 4.4. For the Galerkin method with u E Hs(I1) n HT, ra < s, r < d + 1, 
there holds 

(4.2.1) ilelli(IO) < chs-,t(uiiis(Il) + iiu Iia) 

andfor 2a - d - 1 < t S a, 

(4.2.2) iiellt(Io) < c(hS ti u ii (I1) + hd+lraii U lir) . 



LOCAL ERROR ESTIMATES FOR SOME PETROV-GALERKIN METHODS 497 

For a < t < d + , t < s, we have 

(4.2.3) Ilellt(IO) < ch -t(II u (Ii ) + IlU Ia)I 

As a conclusion from Theorem 4.4 we observe that for the Sobolev norms 

IIt(Io) with t > a, local convergence is not affected by the lack of smoothness 
outside II, Io c c II, if the minimal requirement u E H' is satisfied. On the other 
hand, for the lower-order norms with t < a we need additional global regularity to 
obtain the optimal-order local convergence, even if the solution is smooth in a 
neighborhood of Io. 

As a concrete example we choose the Galerkin method for the second-order 
differential operator, taking a = 1. We assume that piecewise cubic splines are used 
in the approximation. Then we have for the local energy norm the optimal-order 
convergence, 

||e lli(IO) < chs-I (11 u Ils (IJ) + || u |1), 1 < s .< 4 . 

For the local L2-norm we have by (4.2.2), for the values 1 < r < s < 4, 

11 e ilo(Io) < c(hSi u ilis (Ij) + h2+rIIU llr)- 

Thus the global regularity u E H2 is needed to obtain the optimal order 0(h4) for 
locally smooth solutions. Behavior of the above kind was derived already in [12]. 

4.3. Effect of Different Trial and Test Functions. In order to illustrate the effect of 
using different-order splines as trial and test functions, we consider the following 
family of Petrov-Galerkin methods. We assume that the mesh A is the same for the 
trial and for the test splines, but the order of the test functions is higher than the 
order of the trial functions. Let Sd = Sd( A) be the trial subspace and Sd' = Sd'( A) 

be the test subspace such that d' = d + 21, 1 E N, 1 > 1. 
The method: Find Uh E Sd such that 

(4.3.1) (Auh l4)=(Aul4'), E.p Sd', 

is equivalent to a Galerkin method. Let, indeed, M: Hs Hs -2 be the operator 
Mu = (J - D2) u. Then Ml defines a bijective mapping Sd' _ Sd. Writing Vh = 

M'luh E sd and v = M-'u, Eq. (4.3.1) is equivalent to the problem: Find Vh E Sd 
such that 

(4.3.2) (AM'Vh 4') = (AMv E ), s Ed. 

The operator AM' decomposes as AM' = AJ - AD21, where AD2' is a strongly 

elliptic pseudodifferential operator of order 2(a + 1) and where AJ: Hs Hs-2(a?+) 

is compact. We assume that a - 1 < d + 2. Since we have 

C, 11Ml+la- < |Aa+ I < C2 11MlA|a- 

one deduces from the stability (3.1.4), 

infsupl(AM'p l I) I > c > 0, Ik IIa+1 = 1, 14 iia? = 1, )qp,4 E Sd, 

that the requirement (3.1.8) is valid. There, x = a - 1, 2a - x = a + 1. Inequality 
(3.1.9) also holds. 

By Theorem 3.1 we have the global estimate 

(4.3.3) 1i U - Uh lit < chs-tII u ls 
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with 2a - d - 21 - 1 < t < s < d + 1, t < d + 1, a - / < s. Thus, the effect of 
using the higher-order test functions, in contrast to the Galerkin method, is to gain 
convergence for a larger range of the index t. 

For local convergence with the values 2a - d - 21 - 1 < t < a - 1 there holds 

11 U - Uh IlIt(IO) < C(hs-t IuIIs(I1) + hd+21+1+r-2aIU 11 Ir) 

by (4.1.13). For the values a - 1 < t < d + 2, the first term on the right-hand side 
of (4.1.14) is dominating, and we have 

(4.3.4) 11 U- Uh It(IO) < Ch -t(II U IIS(I1) + 11 U IlIa-), 
t < s < d + 1, a - 1s t < d + 2. Thus, if we increase the degree of the test 
functions, the range of locality increases, as we see from (4.3.4). In particular, the 
convergence can be made completely local with respect to any fixed norm j1 by 
choosing sufficiently smooth test splines. By this we mean that 

IU - Uh IIt < Chs-t(Il u Ils(II) + II u IIt) 

if d' = d + 21 is large enough. 
For example, in the previous example of second-order differential operators, it 

suffices for d = 3 to choose d' = 5 in order to have a local estimate with respect to 
the L2-norm. With this choice, we have 

|| U -Uh Ilt (IO) < Ch s- t(11 U ||s(IJ) + 11 U llo) 

for 0 < t < s < 4, t < 7/2. 
Finally, we point out that the use of lower-order splines as test functions decreases 

the range of convergence and reduces locality. 
We have taken as an example differential operators. Let us briefly mention some 

other applications which are covered by our analysis, with different choices of a. 
The case a = 0, with A = I, covers L2-orthogonal projections and with A = I + K, 
K compact, second-kind Fredholm integral equations. Also Cauchy type singular 
integral equations belong to this case. With a - 2 we have results for first-kind 
integral equations with logarithmic kernel. 

5. Local Convergence of Some Collocation Methods. 
5.1. Collocation Equations. Our key point in deriving the local results for the 

collocation method is to employ the approaches in [1] and [14]. The collocation 
equations for the odd-order splines as trial functions were analyzed by means of a 
modified Galerkin method in [1]. Correspondingly, for the even-order splines a 
modified Petrov-Galerkin method was used to describe the collocation equations. In 
the case of the odd-order splines, the collocation equations for the problem (2.1.1) 
are given by 

(5.1.1) (Au,)(xk) = (Au)(xk), 

where Xk are the break points of the mesh A and where u, E Sd is the sought 
collocation solution. In [1] it was utilized that the equations (5.1.1) are equivalent to 
the following Galerkin type problem: Find uA E Sd such that 

(5.1.2) (AAu I p) j = (AAu I 1p) j for all T E Sd, 
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where d = 2j - 1, A, = (I - J + J,)A, and where J, is given by the trapezoidal 
approximation of J, 

N 

J,U= E 2(Xk+l - Xk1)U(Xk)- 
k=1 

In the case where the collocation solution u, is sought among even-order splines 
UA E sd, d = 2j - 2, j > 1, we use as the collocation points the midpoints 

tk = Xk + 2 (Xk?- Xk) 

of the mesh A. The collocation equations 

(5.1.3) (Au,)(tk) = (Au)(tk) 

were analyzed in [14] by using the equivalent Petrov-Galerkin type formulation 

(5.1.4) (A&u& ITq) j = (A,Au I qp) j, Tp E sd+1(A) 

where A is the mesh A = {tk}, and where in the formula A, = (I - J + J,)A the 
trapezoidal approximation J, of J uses the points tk instead of Xk. The analysis in 
[14] is based on Fourier analysis and assumes that the mesh is uniform and the 
principal symbol of A has constant coefficients. 

Let us for convenience recall the convergence results proven in [1], [14]. Under the 
assumption 

(5.1.5) d > 2a, 

the optimal-order convergence result 

IIu - u,Jt < chS-tfIIuls, 

with 2a < t < s < d + 1, t < d + 2, l(d + 1) + a < s, was proved in [1], [14]. 
Further, the methods (5.1.1) and (5.1.3) are stable with respect to the norm 

1I 11I(d+1)+a- 
5.2. Odd-Order Splines. We consider the collocation method (5.1.1) with odd-order 

splines as trial functions. Let P: Hi` Sd be the collocation projection defined 
by Pu = u,. In order to use the previous considerations for the Galerkin methods, 
we introduce the projection Q: Hi` --* Sd by means of Qu = Uh, 

(5.2.1) (AUhI ) i = (AuIP)), j pE Sd. 

Using integration by parts, we find that the equation (5.2.1) is equivalent to 

([(-1)D 2j + 1]AUhIq) = ([(-l)jD2j + 1] Au I m) 

for all T E Sd. Thus, Q is the Galerkin projection corresponding to the pseudodif- 
ferential operator 

(5 .2.2) B = [ (-l)j D2j + 1] Al 

which is of order 2(a + j). Moreover, the assumption (5.1.5) used for the collocation 
method implies that the assumption a + j < d + 2, which is needed for the Galer- 
kin method, is also valid. Further, since A is an isomorphism, B is an isomorphism, 
too. Thus the projection Q satisfies the global results of Theorem 3.1 and the local 
result of Theorem 4.3 when a is replaced by a + j. 
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We shall obtain the local convergence results for the collocation projection P by 
showing that the difference P - Q, even globally, is small enough with respect to 
any norm to be considered. 

First we prove 

LEMMA 5.1. For sufficiently small 0 < h < h0 there holds 

(5.2.3) IIUA - Uhll+?a < Ch |aIUh - ull+j < chr-2aIIU Ir 

for u E H , j + a < r < d + 1. 

Proof. Equations (5.1.2) and (5.2.1) imply 

(5.2.4) (A(uA - Uh) ) = (J - J,)A(u - u) - Jqp 

for all T E Sd. Choosing qp = T(u,& - Uh), where T: Sd - Sd is the mapping used 
in Subsection 3.1, satisfying the estimate (3.1.5), we obtain 

IIUA - UhI j+a C (((-1)D 2i + 1)A(uA - Uh) I T(uA - Uh)) 

(5.2.5) - c|(A(uA - Uh) IT(u -Uh))i 

cI(J - J,)A(uA - u) - JT(uA - Uh) . 
Define 8 = min(j - a, 2). From the error term of the trapezoidal rule we have 

(5.2.6) | (J -J,) A (uA - Uh) I < ch?I A (uA - Uh) Ill-a < chI Iu| - Uh II+?a- 

Since by (3.1.5), 

(5.2.7) IJT(uA& - Uh)I |< cIIUA - Uh Il+a, 

we obtain from (5.2.5)-(5.2.7) 

|UA - Uh Il+a < c(hII u1 - UhIL?a + I(J - JA)A(uh - u) I) 
which for small 0 < h < h0 yields 

(5.2.8) IIUA - UhL?a < C(J J)A(Uh u)I. 
Since j-a > 2, we can choose a number E such that 2 <E < min(j - a, 2). By 
(5.2.8) it then follows that 

(5.2.9) IIUA - UhIl+a < chEIIA(uh - u) II, < chEIUh - UIIe+2a. 

By (3.1.12) we have 

(5.2.10) hlUh - UIIE+2a < ChiaEIIUh - UII+a, 

since 2a < e + 2a <j + a. Now (5.2.9) and (5.2.10), together with Theorem 3.1, 
imply the assertion. E 

Finally, for the collocation method (5.1.1) we have local error estimates with a full 
range of the indices. 

THEOREM 5.2. Assume that u E Hs(I1) n Hr, where j + a < s, r < d + 1. Then 
for 2a < t < j + a there holds 

(5.2.11) iju - uAIIt(IO) < c{hs-tIuIls(II) + hr-2aIIUllr}. 

Forj + a < t < d + 2, t < s, we obtain 

(5.2.12) IIu - UAllt(Io) < ChS-t(IIUIIS(I1) +IIuIIj+a). 
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Proof. If 2a < t < j + a we have, combining estimate (4.2.2) with Lemma 5.1, 

jjU - UA Ilt(IO) -< 1U Uh lt(IO) + ?IUh - UAt ?+ 

< c(hs-tl UIls(I1) + hd+l+r-2(a+j)ll Ullr) + Chr-2a 1 U lr 

= c(hS-tI aujs(I) + hr-2all U llr) . 

For the higher-order norms with j + a < t < d + ', an inverse estimate yields, by 
(4.2.3), 

jjU - UA It(Io) < IU - Uh |It(I') + ?IUh -UA lt 

< || U - Uh |t (IO) + Ch?a 1tlUh - UAft1?+a 

< chs -t(I a Iis (I) + || a L?+a) + ch2j-t| 1u [a 

<, chs-t0lulalis (i) + || a b+4) 

which proves (5.2.12). C 
5.3. Even-Order Splines. We briefly mention the collocation method (5.1.3) using 

even-order splines as trial functions and collocating at midpoints of the original 
mesh. The equivalent formulation (5.1.4) can be viewed as a perturbation of the 
Petrov-Galerkin method: Find Uh E Sd such that 

(5.3.1) (Buh I T) = (Bu I q), q E Td = Sd(1 

where B is the operator given in (5.2.2). Here we apply the results in Section 4, 
replacing a by a + j. We now have d' = d + 1, and the norm preserving stability is 
obtained with x = j + a - 4, [14]. The condition (3.1.7) is equivalent to the 
assumption d > 2a used for the collocation method. By Theorem 4.3 we have for 
the Petrov-Galerkin method (5.3.1), with u E Hs(I1) n H , 

(5.3.2) IIU - Uhlit(IO) < C(hs- tIIuIIs(I) + hr-2aU 11 Ir), 

when j + a - 2< s, r < d + 1, 2a < t < j + a - 1, and 

(5.3.3) 11 U - Uh t(IO) I chs--t(IIu ||(I1) + ?|U 1t,+a-1/2) 

for j + a - 4 < t < d + 4. Proceeding exactly as in the case of the odd-order 
splines, we finally obtain 

THEOREM 5.3. Let u, E Sd(A) be the collocation solution of (5.1.3). Then the local 
error estimates (5.3.2) and (5.3.3), where uh is replaced by uA, are valid. 
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