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The Stability in- L, and W, of the L,-Projection
onto Finite Element Function Spaces

By M. Crouzeix and V. Thomée

Abstract. The stability of the L,-projection onto some standard finite element spaces V},,
considered as a map in L, and ug,}, 1 < p < oo, is shown under weaker regularity require-
ments than quasi-uniformity of the triangulations underlying the definitions of the V.

0. Introduction. The purpose of this paper is to show the stability in L, and Wpl,
for 1 < p < o, of the L,-projection onto some standard finite element subspaces.
Special emphasis is placed on requiring less than quasi-uniformity of the triangula-
tions entering in the definitions of the subspaces.

In the one-dimensional case, which is discussed in Section 1 below, we first give a
new proof of a result of T. Dupont (cf. de Boor [2]) showing L stability without
any restriction on the defining partitions, thus extending an earlier result by
Douglas, Dupont and Wahlbin [6] for the quasi-uniform case. We then use the
technique developed to show the stability in Wpl, in the case p > 1, under a quite
weak assumption on the partition, depending on p. We also show that some
restriction on the partition is needed for stability if p > 1. We remark that the
known L, stability result has been extended to higher degrees of regularity of the
subspaces; see de Boor [3] and references therein.

In the case of a two-dimensional polygonal domain, discussed in Section 2, we
demonstrate L, and Wp1 stability results for the L,-projection onto standard
piecewise polynomial spaces of Lagrangian type. The requirements on the triangula-
tions involved are more severe than in the one-dimensional case, but allow neverthe-
less a considerable degree of nonuniformity. The proofs are based on a technique
used by Descloux [5] to show L_ stability in the quasi-uniform case (cf. also
Douglas, Dupont and Wahlbin [7]).

Results such as the above are of interest, for instance, in the analysis of Galerkin
finite element methods for parabolic problems. Thus Bernardi and Raugel [1] use the
W' stability of the L,-projection to prove quasi-optimality of the Galerkin solution
with respect to the energy norm, and Schatz, Thomée and Wahlbin [8] apply the L
stability in a similar way (in the quasi-uniform case).

1. The One-Dimensional Case. In this section we shall study the orthogonal
projection 7 = m, with respect to L,(0, 1) onto the subspace

Vi={x€C(0,1); x|, €P, j=0,...,N; x(0) = x(1) = 0},
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where 0 = xy < x; < -+ <xp,; =1 is a partition of [0,1] and I; = (x}, x,, ).
We shall first demonstrate the following result, in which || - ||, denotes the norm in
L (0,1).

P

THEOREM 1. There is a constant C depending only on k such that

l7ull, < Clull, YueL,(0,1),1<p< co.

We shall then turn to estimates in
WL0,1) = {v € L,(0,1); v = dv/dx € L,(0,1); v(0) = v(1) = 0}
and show, with &, = x,,, — x,,

1

THEOREM 2. Let1 < p
h,/h; < Coa" /), where 1

[(ra)' |, < Clwle Ve W2(0,1),
where C depends on k, and for p > 1 also on C,, a, and p.

oo and assume, for p > 1, that the partition is such that

<
< a<(k+ 1)?P™D Then

For the proofs of these results we introduce the spaces
Vi={x€V;x(x)=0,i=1,...,N}

and V), the orthogonal complement of V;? in V¥, with respect to the usual inner
product in L,(0,1). For k = 1 we have V;2 = {0} and V}} = V. We also introduce
the orthogonal projections m; onto Vj, j = 1,2, and obtain at once
(1.1) r=m+m (r=mfork=1).
We note that , is determined locally on each I; by the equations
(1.2) (mp,q)1,=(v,9);, forq e PY(IL)={q€ Py q(x;) = q(x,41) = 0},

where (-, -), is the standard inner product in L,(I;), and that a function in Viis
completely determined by its values at the interior nodes, so that dimV;} = N.

For v € C[0,1] with v(0) = v(1) =0 we shall also use the piecewise linear
interpolant r,v € ¥, and note that, for 1 < p < o

(13) [ I <1107l
and, denoting the normin L,(I) by || - ||, ;.
(1.4) o= rp "p 1, < 3h; 10" lp-

LEMMA 1. There is a constant C depending only on k such that, for1 < p < oo,

(1.5) [ mull, < Cllull,,  ue L,(0,1),
and
(16) [(mae = ra)) [, < Clwlly, e W (0,1).

Proof. We consider first (1.5) for p = 1 and set &, = m,u. It follows, by taking
q = 1, in (1.2), that

~ 112 ~
Nnllz.q, < leellv,slln oo,
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Hence ||i1,]|, ; < Cyllull;,;, where
g1,z 119l 1,
Cl = S ——_2__.
qEP (1) liqll3,;,

Using the change of variables” y = (x — x;)/h;, it is easily seen that C, is indepen-
dent of the interval I; and thus depends only on k. Analogously, we obtain

(1.7) lmsully.r, < Cillullp.z.,

for p = oo, and then for general p by the Riesz-Thorin theorem [9]. The desired
result now follows by taking pth powers and summing.
To prove (1.6), we note that

(7ol = r)Y],.,

and, by (1.7) and (1.4),
”'”2(“ - rhu)"p,l, < Cllu - "h“”p I, < 3Ch ||

from which (1.6) follows with C = 1C,C,.
In order to study the projection ;, we shall construct a basis for V}!. For this
purpose let us define € P, by

¥(0) =0, y(1)=1, (¢,q)=f01¢qu=0 Vg e P

For each nodal point x; we associate the function y; defined by

lq'll,
< 2| my(u = ru)|,.;, where C;= max
h; ! qeP(0,1) ”‘1”,;

p.1

Xi-1

= on%(]i_luli).

It is then easily seen that {{,}¥ C V! and that these functions thus form a basis.
For u given, and w = mu = L, w,y,, we then have

Z (Vo v) = (u,¥,)=u, j=1,..,N,

or in matrix form, with G = (¢, ¥;)), W = (wy,...,wy)"and U = (uy,...,uy)",
(1.8) GW = U.

We note that the Gram matrix G is tridiagonal. We shall need to compute its
nonzero elements.

LEMMA 2. We have

Iy, 1= m(h, 1+ hy)

and

(-n“’
k(k+1)(k+2) "

(‘Pia‘l’in) =
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Proof. By transformation of variables it suffices to show that

1 2 _ 1
fo v(x) e =
and

1 B (_l)k—-l
fo V(U= x)dx = T m Ty

The definition of ¢ implies easily

G Y A S
v(x) = x(1 — x) dxk?

Further, since ¥(x) — x and (1 — x) — (1 — x) € P2, we find

[ 40 = x)dr = [4()($(0 - x) = (1= x))dr =0.

Hence, integrating by parts k — 1 times, we have

‘/(;1' ¥(x)*dx = (—1)’(—1 /01 147 [x"“(l - x)k] dx

[xk”(l - x)k].

k! 1_dek_1
L kd<h 1
—E_/(;x‘”(l—x) dxk—ll—xdx

= %/:xk“dx= m
and
fl Y(x)y(1 —x)dx = —(—:1—),:/1 XK1 = x)* e ldx
0 k! 0 dx*~1 x
(_1)/(—-1

_EDT e e
T Tk /0"(1 X = T )k 5 2)

which completes the proof.
Let us introduce the diagonal matrix D with the same diagonal elements as G, i.e.,

2 1
d, =¥, = m(hi—l +h,).

We may then write G in the form G = D(I + K), where K is a tridiagonal matrix
with diagonal elements zero and bidiagonal entries

(‘Pi"l’iﬂ) — (—1)k_1 hi—-l
k+1 h,_, +h,’

ki,i—-l =

1.9) .’
(_1)k~1 h;

N e W

The equation (1.8) now takes the form

(1.10) (I+K)W=D"U.
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We are now ready to prove Theorem 1. By Lemma 1 it remains only to prove
(1.11) lmull, < Cllull,, — ue€ L,(0,1),

and we begin by showing this for p = co. This will be done by showing (here and
below we denote by | - |, the standard /,-norms for N-vectors)

(1.12) Imul, < CIW e,
then

(1.13) [Wlw < C|D7WU|w,
and finally

|D7WU e < Cllul|e-
To see that (1.12) holds, we note that, since for no x in (0, 1) more than two y,(x)
are nonzero, we have
N

Z wid,(x)

i=1

< 2 llool W o

lmull, = max
X

In view of (1.10), in order to show (1.13), we only need to show that (1 + K)7 ! is
bounded in /. But this follows at once from the fact that, by (1.9),

1
|K | = m?x ?'kij “%+1 <1,
and hence
-1 1 _k+1
1+ &) < 1-1/(k+1) &
Finally,
070 = max L8,
Al
where

6, = max Ml _ el
AT

where the latter equation follows by transformation of the subintervals onto [0, 1].
This completes the proof of (1.11) for p = co. For p = 1 the result follows at once
by duality and for 1 < p < oo by the Riesz-Thorin theorem. The proof of Theorem
1 is now complete.
We now turn to the proof of Theorem 2. We may write

mu=m(u—ru)+m(u—ru)+ru

In view of Lemma 1 and (1.3) the last two terms are bounded, as desired, and it
remains to consider w = m¢e where ¢ = u — r,u. Letting W = (w,,...,wy)T where
w; = w(x,), and € = (g,...,&5)7 where ¢, = (&, ¢,), we find that W solves (1.8)
with U replaced by e. We shall show, with D the diagonal matrix introduced above
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and p"=p/(p — 1),
[w'll, < CID~YV2W|,,

then

(1.14) |D~YVPW |, < C| D1~ VPe|p,
and finally

(1.15) | D=7, < Cllulp,

which together complete the proof.
We have first

N
P P
1wl = X [ Dol + wiadion | d
i=0 1

N
<277 Ll (2t + hr )|l
=1

<cT il = clp W),
i=1
where we have used
AP < C(h_y + h)" " < C(h2tt + hppt) 7l
The proof of (1.15) is also straightforward. We have, by Holder’s inequality,
e =1Ce, ) | <llell, s M¥illyr, + el .00,
< (KA lellp 1, + /7 llel,.1)
and hence by (1.4),
le.) < C(BE7 N Nty + B2 N0 N5
< CdMYP\ W ||po,, o,

whence (1.15) follows immediately.

It remains to show (1.14). Recalling that W satisfies (1.8), and hence (1.10), with U
replaced by ¢, we have

(D~VP(I+ K)DY?P)D~VPW = D~1-1/P,
and it thus suffices to show that I + D~'/?KD'/?" has a bounded inverse in /,
under the assumptions of the theorem. For this purpose we estimate the powers of

the second term. Since K’ is (2/ + 1)-diagonal and has nonnegative elements, we
have

D7IKDY < max, (/) 1K
Here,
djd;=(h,_y+h)/(h,_, +h)< Ca®* for i —j| <2l
Further, again since K’ is (2/ + 1)-diagonal, we have

21+1

|K'[ < 20+ DIK o < 21+ 1)K [0 € ———,
(k+1)
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and, using once more the Riesz-Thorin theorem,

K] < 1+ 1) ——
(k +

1)’

Altogether we firrd, under the assumptions made,

I(I + D—l/p'KDI/p’)‘le <1+ Y |D-VPK'DVP|,
=1
, © 2/p" \ !
<1+(C)7'Y 20+ 1)1/”(7(‘3‘i) < 0,
= +1
which completes the proof.

We conclude by remarking that in Theorem 1 and in the case p = 1 of Theorem 2
no restriction is made concerning the partitions used, and that quite strong mesh
refinements are permitted for p > 1 in Theorem 2. The following example shows,
however, that some restriction is needed in the latter case: Consider the partition
with only one interior point x; = 1 — ¢, so that hy/h; = (1 — ¢)/e. Let k =1 and
u(x) = x(1 — x). Then 7u = By,, where B is determined by the equation B||y||>
= (u, ), or, after an easy calculation, 8 = (1 + &(1 — ¢€)). In this case,

oyl = {0 - s [ )

1/p ,
ee_"dx} > e V7P
1—¢ 4
which tends to oo with 1/¢if p > 1.

2. The Two-Dimensional Case. In this section we shall consider the orthogonal
projection onto a finite element subspace of L,(£) where £ is a bounded domain in
R2. For simplicity we assume that £ is polygonal and consider a family of
triangulations ., of @ into closed triangles K with disjoint interiors such that no
vertex of any triangle lies on the interior of an edge of another triangle. We shall use
the approximating spaces

V,={ve C(Q); v|x€ P, v]pg=0}.

In order to express our assumptions concerning the partition of 2, we shall
introduce some notation. For a given K, we let R (K) be the set of triangles which
are “j triangles away from K,”, defined by setting R (K,) =K, and then,
recursively, for j > 1, R;(K,) the union of the closed triangles in ., which are not
inU, . ; R,(K,), but which have at least one vertex in R;_,(K,). Thus R (K) is the
union of the triangles which may be reached by a connected path Q,...,Q; with 0,
a vertex of K,, Q, a vertex of K and Q,0,,; an edge of the triangulation for
1 < i <, and not by any shorter such path. Setting /(K,, K) = j for K € R (K)) it
follows, in particular, that /(K,, K) is symmetric in K and K,. We also define
n;(K,) to be the number of triangles in R (K).

Letting aj denote the area of K, we shall assume below that, with some positive
constants C;, C,, a, B, r witha > 1, B > 1, we have uniformly for small 4,

(2.1) ag/ag < Cla'®-K) VYK K, €7,
K/ 8k, 1 0 h

and

(2.2) n(K)<GC,jB/’ VKeZ,, j=1.

J
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When all triangles have angles bounded below, independently of A, then aj is
bounded above and below by ch%, where &y is the diameter of K. The case when
the triangulations are quasi-uniform then corresponds to « = 1. Note that by (2.1)
we lhave

area(Rj(KO)) > cn (Ky)aga™,
and, if the angles are bounded below,

area(Rj(KO)) < area( UR,.(KO)) <C

iy

J 2
Z hK0a1/2 ,
i=0

whence
nJ(K0)< Cj2 ifa:]-,
< Ca? ifa>1.

In particular, if the angles are bounded below, (2.1) with a > 1 implies (2.2) with
r =0, B = a®. However, in practice this is a very crude estimate. In fact, for any
triangulation which is a deformation of a quasi-uniform one, (2.2) holds with 8 = 1,
r=2.

The results of this section are based on the following variant of a lemma by
Descloux [5] concerning the orthogonal projection « in L,(2) onto V.

LEMMA 3. Let 1 < p < oo. There are positive constants vy < 1 and C such that, if
supp vy © K,

(2.3) l7og [l x < CY & KIai2=1 2l voll, VK, Ko € T,
where vy depends only on k and C only on k and p.

Proof. Letting D, = U, . ; R,(K,) denote the union of triangles which may only be
reached by paths of length at least j, we shall want to show that for some k¥ > 0,

2 2 .

(2.4) llmvoll2.p, < kllwvgll2,x,  for j > 1.

Assuming this for a moment, we denote the left side by g; and thus find
‘Ijs“(qj'—l_qj') for j > 1,

whence

K K\’ 2y 2
q, < T+ <91 < (1 T K) 9o < Y| m0, 5

where v = (k/(1 + «))}/. Here, since suppv, C K,, we find, with (-,-); the
standard inner product in L,(R) with R omitted for R = £, and p’ the conjugate
exponent p’ = p/(p — 1),

v
[ 7vo ||, = max (UO—’X)- < max _(__oi]_)_Kﬁ

llqll -
<|lvoll,. x, max —=—=
2 = 2 ~Uolip, K
xS |Ixllz a<P gl k, ’

X
2 bl
7€ P 119112k,

and hence by the standard transformation to a reference triangle, with § depending
on p and £,

oo ll, < 8ai? ="l 0o lp -
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Altogether, we have, if j = I(K, K,),
2 i 1/2—
lmoolly, & <lmvolla,r, < 4777 < 8v/ai> = ?llvoll, x»

which is the desired result with C = § /.
It remains to show (2.4). Since supp v, C K, we have

(2.5) (mv5,x) =0 forx € V,,suppx € D,_; = D, UR,,if j> 1.

Let w = mv, and define for any w € S, a new function &, in S, by setting &, =
on D;and & =00n 2, =Uxcy knp-o K, the union of triangles, all vertices
of which may be reached from K, by paths of length at most j — 1. To define &,
on the remaining triangles K, which are then included in R;(K,) but notin %, ,,
we introduce for such a K the Lagrangian nodes (having barycentric coordinates
(iy/k,iy/k,iy/k) with i}, i, and i, nonnegative integers) and set & = w at all such
nodes which do not belong to = _, or to an edge joining two vertices in = and
@, = 0 at the other nodes. With x = &, (2.5) takes the form

i1

- 2 -
(0.8) =lolPp, +(@,3) 5, =0,

whence

2 ~
(2.6) lelzn, < = (@, ) g,

In order to estimate the latter quantity, we consider again a triangle K C R; with K
not included in =, _, and note that K has either one or two vertices in Z,_, and the
remaining vertices in D;. For ¢ € P, we let g be the polynomial in P, which
vanishes at the nodal points that are in 2 _; or on an edge joining two vertices in
2,_, and agrees with q at the other Lagrangian nodes. We thus have

~(©,8,) , <ll|.x max l("—fﬂ
acr  lql3 «

By transformation to a reference triangle we find that the latter maximum is
independent of K in the two possible cases for the location of its vertices, so that,
after summation,

- . 2
—(0,8)r == X (0,8) <ol
KCR,
Together with (2.6), this completes the proof of (2.4) and hence of the lemma.
The constant k may thus be expressed in terms of the reference triangle K with
vertices Q;, Q, and Q; as
=9, 4z R
c= max max — )k
J=1.2 q¢P |qll3%

where Gz, = 0 at Q), Gz, = q at the other nodes and g , = 0 at the vertices of
0,0, and = q at the other vertices.

We are now ready for our stability estimate for 7 in L (). Here and below, a, B
and v are the parameters in (2.1), (2.2) and (2.3).
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THEOREM 3. Let 1 < p < oo and assume that the numbers a, 8 and vy are such that
(2.7) yBa/271/Pl < 1.
Then
lrul < Cluly Vue L, (R),
where C depends only on C,, C,, a, B, r, k and p.
Proof. We have in the usual way, for each K € 7,
(2.8) lrullp.x < Cag'/2* /Pl mull2 k.
Here, writing u = X¢.c 7. 4| g, and using Lemma 3, we find
lrulbx < X N7(ule)lox< € X vy X0V ullp.x,
K'ed;, K'ed,
so that, using also (2.8) and (2.1),

) 2—
”Wu"pK <C Z YI(KK)(aK/aK)l/ 1/p”“” K’
K'eg,

<C Y (ya2 ) E Oy, k.
K'eZ,

Introducing the vectors X = {xgx = ||7ull, x; K€ .7,} and Y = { yg = ||ull, &
K €7,} and the symmetric matrix M = (mg x) with mg g = 8/%- X0 where
8 = yal'/271/71 we conclude for the corresponding /,-vector and associate matrix
norms | - |,

lrully =1X|p <[Mp|Y|p =| M|l ulp.
It remains to bound the matrix norm |M|,. We have by the Riesz-Thorin theorem
and the symmetry of M,

1/p 1-1/p

M|, <|M|/"|M|s —|M|oo=m]2(1x28’("'1"),

7z
Using now also the hypothesis (2.2) we find
|M]p < max > n,(K)8 < C ¥ j7(Bs)’,
j=0 j=0

where the latter sum is finite under assumption (2.7). This completes the proof.
We now show a stability estimate for the gradient of the L,-projection.

THEOREM 4. Let 1 < p < oo and assume that the angles of 7, are bounded below,
uniformly in h, and that a, B, and vy are such that

(2.9) YBal~VP < 1.
Then

Ivaul, < Clvull, foru e W, (Q).

Proof. There exists a linear operator r,,: W;}(Q) — V, such that for u € WPI(Q),
(2.10) Ivrull, < Clvull
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and
(2.11) lu = ryull, x < Chllvulp.k < Cai?|Vullp.k.

Forp>2 ue WI(Q) implies # € C(Q), and r,u may be chosen as an interpolant
of u and K as K, whereas for p > 2 a preliminary local regularization as in Clément
[4] is needed and K may be chosen as K U R;(K).
We may write
Varu = vVwe + Vr,u, wheree=u— r,u,
and, in view of (2.10), it suffices to estimate V7u. We have the inverse estimate

|V7elp.x < Cax!tV/?||me|2 k,
and, as in the proof of Theorem 3,

Iwellax < € 3 vy €Fai2=1P|lep .
K'e9,

Hence, using also (2.1) and (2.11),

1-
Ivmelox< C ¥ v ®F(ag/ax) " ag llelp.x
K'eZ,

<C ¥ (v 7)) gul, k.
K'eZ,
The proof is now completed as in Theorem 3.

It is clear that the assumptions (2.7) and (2.9) are satisfied in the quasi-uniform
case. In order to see that they permit severely nonuniform triangulations, it is
necessary to know that the constant y is not too close to 1. For this purpose we
recall that vy = (k/(1 + k))*/? with k = k, = max(,,, ,;), where with the nota-
tion of the proof of Lemma 3,

(2.12) Kj. = max ——(ﬁ’—%f”—)f‘, j=12k>1

a<P |lqll3, %
Introducing the Lagranglan basis functions {{; } ¥ corresponding to the Lagrangian
nodes {Q;} in K, so that ,(Q,) = §;;, we have

l_/’

2 k
”q"2,f(= (Ag’g)’ q= Z£i¢iePka
i=1
where 4 is the matrix with elements a;; = (¢, ¥;). Correspondingly, the quadratic
form in the numerator in (2.12) may be obtained as

(g.9z,) = (B&.£), =12,

where B, is a symmetric matrix obtained from A4 as follows: Let S be the set of
indices i such that gy ; is forced to vanish at Q,, i € S, and let
S’ ={1,2,..., N, }\S.
Then gz ; = ¥, c s &;¥, and hence (¢, §z) = (BE, §), with B = (b,;), where
b;=0 ifi,jes,
=3a,; ifi€s, jeSorjeSs, ics,
=q, ifi,je s’

Ly



532 M. CROUZEIX AND V. THOMEE

Fori=1,§ = {1}, and for i = 2, § consists of the indices for which Q, are on 0.0,.
With this notation, « , is the largest eigenvalue of the eigenvalue problem
(2.13) — B¢ = \A¢.
For k = 1 we have N; = 3 and
(48,6) = (& + & + & + &1, + £ + i85 ) ag/6,
(B1§, 5) = (E% + £§ + 5253 + %5152 + %51&3)“1(/6,

(By§,£) = (£3 + 36,4 + 36,85) ax/6.
By completing squares we find easily that for both j = 1and 2, A = (V6 — 2)/4 is
the smallest number such that
A(4¢,¢) +(Bj£,£) >0 V¢eER.
Hence,
Ky =Ky =k, =6 —2)/4= 112, 7y, =v3 —V2 = 318.

For k = 2 and k& = 3 we have N, = 6 and N, = 10 nodal points, respectively. By

numerical computation we have determined the largest eigenvalues of (2.13) in these

cases and found
Kk, = 048, K, = 165, «,

165, v, = .376,
and

Ky = 032, Ky, = 142, Kky=.142, y,= 353.
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