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On the Computation of Solutions of Boundary 
Value Problems on Infinite Intervals 

By R. M. M. Mattheij 

Abstract. For solutions of linear boundary value problems defined on [0, oo) one has to study 
the stable or bounded solution manifold. A characterization of these manifolds is investigated 
here. A multiple shooting type algorithm is then developed to compute such solutions. This 
algorithm is fully adaptive and also covers problems where the ODE matrix does not tend to a 
limit (as is usually assumed), if the unstable manifold consists only of exponentially growing 
solutions. If the latter manifold also contains polynomially growing solutions, an extrapola- 
tion type approach is suggested. The theory is illustrated by a number of examples. 

1. Introduction. Consider the ODE 

dx ( t) (1.1) dt ) = L(t)x(t) + f(t), 0 < t < x, 

where L (t) is a continuous n x n matrix-valued function and x(t) and f(t) are n 
vector-valued functions. Assume we have a boundary condition (BC) 

(1.2) Mox(O) + lim M1x(fl) = b. 

Quite often, (1.2) is not sufficient to define a unique solution to (1.1), (1.2), and an 
extra requirement 

(1.3) lim 1x( f3)J exists 
,8 -- 00 

is needed. In fact, (1.3) restricts the set of potential solutions to the bounded solution 
manifold (I11 11 denotes some norm on Rn). 

Boundary value problems (BVP) on infinite intervals have been studied extensively. 
Numerically, the usual approach is to look for a finite interval problem such that its 
solution approximates x reasonably well on (a part of) that finite interval. Hence, 
the two main problems are: where to choose the " terminal point" 13; and what BC to 
define at /B. In cases where L(t) approaches a limit, this can be investigated by 
studying the eigenvalues of the limit matrix. The terminal point should be chosen 
such that, e.g., the modes corresponding to the eigenvalues with positive real part 
have grown sufficiently; at the same time, natural BC's are induced by the directions 
of the complementary eigenvectors (or principal vectors), see [5], [6], [8], [9], [20]. 
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Sometimes it is possible to use special techniques for second-order scalar problems, 
as in [20], double shooting as in [1], or a least-squares approach (which should work 
also in more general situations), as in [7]. 

A first problem is that of rotational activity of the fundamental solution (cf. [21]); 
thus it may be that the solution x approaches a limit, but L(t) does not. Obviously, 
the above-mentioned asymptotic approach then does not work. Secondly, from a 
computational point of view, it is important to be able to find a suitable terminal 
point ,B automatically, without an elaborate preliminary analysis. Finally, if for 
example L (t) and f(t) are asymptotically constant, there may be modes that grow, 
but only polynomially (defective zero eigenvalues). This requires a fairly detailed 
analysis of the bounded solution space. In the present paper we try to address these 
three questions. If we only have exponentially growing homogeneous modes, then 
the algorithm given below gives a satisfactory solution to both the problem of 
possible rotational activity of these modes and also to the question where to choose 
terminal points. In fact, the method just computes a sufficient approximation to the 
bounded solution manifold. Because of the latter capability it can also be adapted to 
employ extrapolation techniques for iterative refinement of the solution in the case 
where we have polynomial (instead of exponential) growth. In that sense it is 
possible to treat the defective cases in the same way as elsewhere (e.g., [8]). 

The paper is organized as follows. In Section 2 we consider the existence of 
solutions and in Section 3 their uniqueness within the bounded solution manifold. 
Then in Section 4 we describe an algorithm, based on multiple shooting, for 
computing a bounded solution within a prescribed accuracy on a prescribed interval. 
Cases where some of the unstable modes are growing only polynomially are treated 
in Section 5. In Section 6 we show how the algorithm determines the dimension of 
the unstable manifold and also what is done when there is no unique solution. 
Finally, a number of numerical examples are given in Section 7. 

2. Existence of Solutions. 
2.1. The Solution Space. Since our main objective is to describe an algorithm, we 

shall not go into depth with regard to existence questions. Besides, the subject is 
quite well developed; cf., e.g., [5], [6], [8], [9]. Our interest is mainly in problems 
where the solution space can be split into subspaces whose members have a certain 
growth behavior. Therefore, we shall use the following generalization of the dichot- 
omy concept: 

Assumption 2.1. Let Y be a fundamental solution of (1.1) and P1, P2, P3, and P4 
be projection matrices of rank k1, k2, k3, and k4, respectively, with 

P1 + P2 + P3 + P4 = I (k1 + k2 + k3 + k4 = n); 

let X, y be negative numbers and, finally, K a positive number such that 
(i) IIY(t)PIY-1(s) II KexpX(s - t), t < s, 

(ii) ||Y(t)P2Y 1(S)11 K, t < s, 
(iii) JJY(t)P3Y 1(S)JJ K, t > s, 
(iv) IIY(t)P4Y 1(s)II KexptL(t - s), t > s. 

The projection Pj introduces a solution subspace Y: { Y(t)Pj c Ic E Rn } j = 

1, .. ., n. The projections in 2.1 then have the following meaning: Y, consists of 
solutions that increase exponentially. Yt2 consists of solutions that do not decrease. 
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If P1 is chosen such that k1 is as large as possible, 5?2 may still have polynomially 
increasing solutions. 9'3 consists of solutions that do not increase. Finally, 94 
consists of exponentially decreasing solutions. If P4 is chosen such that k4 is as large 
as possible, then the solutions in 593 do not increase or decrease. Although the 
splitting in 2.1 covers much more general situations, it is useful to think of an 
autonomous ODE, which has k1 eigenvalues with strictly positive real part, k2 + k3 
eigenvalues with zero real part and such that their geometric multiplicity (= number 
of genuine independent eigenvectors) is at most k3, and finally k4 eigenvalues with 
negative real part. 

In order to further simplify our analysis, it is useful to note that the projection Pj 
can be written as 

(2.2) p1 = HJ [Hj]T, 

where H' consists of kj orthonormal columns. Writing 

(2.3) H:= (H1 IH2 1H3 1H4) 

an orthogonal matrix, we immediately find that 

(2.4) Z(t):= Y(t)H = (Z1(t) I Z2(t) I Z3(t) I Z4(t)) 

is a fundamental solution with similar properties as those mentioned in 2.1, but with 
projection matrices P. such that Pj is a zero matrix, except for the diagonal entries 
with indices (1-i1k1) + 1, ... ,9 ELk1, which are 1. From now on we shall assume 
that Y already has a form like Z, so that the projections simply amount to picking 
the appropriate column vectors of Y. Moreover, we tacitly assume that P1 is chosen 
such that k1 is maximal. 

Under suitable circumstances there exists a bounded solution Yb of the problem 
(1.1), for which (cf. [2, Chapter 4]) 

Yb(t) = I Y(t)(P3 + P4)Y1-(s)f (s) ds 
(2.5) 0 

+f Y(t)(PI + P2)Y -1(5s)f (s) ds. 

Alternatively, 
ft Y(t)P3 Y-1(s)f (s) ds 

may sometimes be replaced by 
00 

Y(t)P3Y -(s)f (s) ds. 

Henceforth, we shall simply assume that such a bounded solution exists (and do not 
go into the requirements this imposes on f ). 

2.2. Existence of the Solution to (1.1), (1.2). In order to have a bounded solution to 
(1.1), (1.2), we must exclude components of 5Y, and $2 from x. Hence, x e Yb E 

@3 9D Y4. As was shown by a simple example in [17], this imposes several restrictions 
on M1 in those cases where the "directions" of modes in 5YI, $2 do not tend to a 
limit. Of course, problems of this kind are avoided if M1 = 0. Below we shall give 
slightly more general conditions for the existence of such a conditionally stable 
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solution x. If c E RW is such that 

(2.6a) x(t) = yb(t) + Y(t)(P3 + P4)c, 

then 

MoYb (O) + lrm Mlyb (1) + MOY(O)( P3 + P4) c 
(2.6b) 3o 

+ lim M1Y(13)(P3 + P4)c =b 
,8 -- 00 

provided the limits exist. This yields 
Property 2.7. The BVP (1.1), (1.2) has a bounded solution if 

lim M1Y(13)(P3 + P4) 
f - 00 

exists. 
We shall henceforth explicitly exclude cases where lim, # Yb(IM) does not exist. 

Next, we give the following (simply verifiable) sufficient conditions for x to exist. 
Property 2.8. limf, i M1Y(/3)(P3 + P4) exists, if 

(i) M1 = 0 or 
(ii) P3 = 0 or 

(iii) lim,0 00 M1Y(M )P3 exists. 
Theoretically, we need the existence of limf, i M1Y(f1)(P3 + P4) c only for some 

specific vector c. However, if we change b (in (1.2)) slightly, the value of c will 
change accordingly; hence in order to make the result practically relevant, it should 
be independent of c. 

3. Uniqueness of Solutions. 
3.1. The Number of Independent BC's. As we saw before, modes of 9" and 5Y2 

did not play a role in determining x, since x E Yb E Y3 E 94. In order to have a 
unique solution of the BVP, we thus have to require that Mo and M1 provide for 
k3 + k4 independent relations, hence 

Property 3.1. If the problem has a solution x, then x is unique if 

m: rank([MOY(O) + M1Y(/3)](P3 + P4)) = k3 + k4 

for all f3 sufficiently large. 
Since there might be some arbitrariness in the choice of P2 and P3, the above 

statement should be read in the proper spirit. To be more specific, if Y2 consists of 
solutions that increase as t -x oo, then 3.1 says something about the bounded 
solution. However, if Y2 contains some nongrowing solutions as well, then unique- 
ness is meant relative to the subspace S2 ED 3. Of course, from a practical point of 
view, the latter result is not very useful if no detailed information about these 
subspaces is available. Hence 

COROLLARY 3.2. If P3 is chosen such that k3 is maximal, then there exists a 
(k3 + k4 - m)-dimensional manifold of bounded solutions, where m is defined in 
Property 3.1. 

3.2. Conditioning of the Problem. The vector c in (2.6b), at a first glance, satisfies 
an underdetermined system. However, if we consider that the vector we are inter- 
ested in is (P3 + P4)c, i.e., the vector of the last k3 + k4 coordinates, it follows that 
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it must solve the (rank m) linear system 

(3.3a) Rc = b:= b - MOyb(O) - lim MlYb(/8), 

where 

(3.3b) R:= lim R(/3):= lim [MOY(O) + MlY(/)](P3 + P4). 

Similar to the conditioning bound that was given in [15], we may now introduce 

(3.3c) 1A'(f8):= max 11 Y(t)(P3 + P4)R (#3) 
jj 

where R+(/3) is the pseudo-inverse of R(/B); cf. [22]. On account of Corollary 3.5 in 
[22] we deduce 

Property 3.4. lim, + MWX(/3)-: WX exists, if m = k3 + k4, where m is defined 
in Property 3.1. 

Since Y(t)(P3 + P4) represents bounded modes only, we may estimate WA(/3) by 

(3.5) K(/A):= IIR+(/)j112 

(cf. [5], [17]). By the Singular Value Decomposition, 

(3.6a) R(/3)= U(= ) (,)VT(p), 

where U(,B), V(,/) are orthogonal matrices and 

(3.6b) Y(/3) = diag(a1(f3),...,uan(f3)) 
contains nonnegative diagonal elements, which we assume to be in decreasing order 
crl( p) * ** > c,(/3). It is clear that am+1(13) = * = an(/3) = 0, and so we find 

(3.7) K(/3) = ;1(fl). 

4. General Description of the Algorithm. With the previous results in mind, we 
develop a numerical method to compute solutions of conditionally stable problems. 
We assume that the solution has to be approximated on an interval [0,,B] within an 
accuracy TOL. 

4.1. The Multiple Shooting Approach. The algorithm we consider is based on the 
ideas which were described in some detail in [14], [19]. We shall first recall the most 
important points here. 

The integrations which are needed for multiple shooting are done adaptively for 
one particular solution; for the other (complementary) solutions the integrations are 
simply carried out on the same grid. For reasons of efficiency, a shooting interval 
consists of five grid points only (cf. [18]). A number of such so-called minor shooting 
intervals is then assembled (with the incremental recursion relations) into so-called 
major shooting intervals. This assembly is done in a stable way, as we first decouple 
the incremental recursion. For a description of the actual algorithm, however, we do 
not need to make the distinction between minor and major intervals. Thus, suppose 
we have (shooting) points 0 = tO ..., tN = /3. On the interval [ti, ti+1] we typically 
compute a particular solution wi(t) and a fundamental solution Fi(t) such that 

(4.1a) Fo(to) = Q0 is orthogonal, 
(4.1b) wi(ti) = 0, 

(4.1c) Fi1(ti) =:Fi(ti)Ui = QiJJ, 
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where F1(ti) -Qi is orthogonal and Ui is upper triangular. Under conditions that 
often prevail, cf. [12], [19], the matrix Ui has diagonal elements which are nonin- 
creasing in modulus down the diagonal, reflecting the increments of the various 
modes of the ODE. Now since x(t) can be written, for some vector ai, as 
(4.2) x(t) = Fi(t)ai + wi(t), 

we derive from the well-known multiple shooting recursion relations, 

(4.3) ?i+1(ti+?)ai+l = Fi+1(ti+L)Uiai + wi(ti+1)- 
Therefore, denoting gi:= Q[T lwi(ti + 1) we have 
(4.4) aj+1 = Uiai + gi. 

If we assume that the subspace of nonincreasing modes has rank m (cf. 3.1), and 
introduce the partitioning 

(4.5a) U [B i C,] E E E Rmxm 

al ~~~~~~~1 
(4.5b) a |= 2 gi 2g a, g2 Ee Rm, 

we find the following decoupled recursion, 

(4.6a) ai+1= Eai + g2, i = O,..., N-1, 

(4.6b)~~ al = B [+-Cia 2- gl], i = N - 1, ...,10. 

It is important to note that (4.6a, b) is stable in the indicated directions. This allows 
us to compute a suitable particular solution and a fundamental solution (of the 
recursion (4.4)) in a stable way. However, we only want to have components related 
to the solution subspaces 9'3 and '4, which necessitates a special approach, to be 
discussed next. 

4.2. Computation of Bounded Solution Components. At the point t = / (= tN) we 
evaluate the diagonal of UN-, ... UO (implemented as a sum of logarithms of the 
modulus of diagonal elements with corresponding indices, to prevent overflow). If 
we assume that k2 - 0, then we can easily find, by inspection of this product, the 
dimension m of the subspace 93 E) e4 of the nonincreasing modes. Moreover, by 
looking for the absolutely smallest element of the first n - m diagonal elements we 
can find an estimate for X of 2.1. This is a practical implementation of the following: 
Let 

(4.7a) L := glb(BN-1 ... Bo), 
where glb(M):= min1X11= jjlMxjj, and define 

(4.7b) X:= (InL)IP 
Then the increasing modes "grow" at least like ext. Since the desired solution x may 
contain modes in eY3 E 4, we need to compute these nonincreasing modes on (a, 3) 
within accuracy TOL. This can be achieved by proceeding with the multiple shooting 
approach, outlined in Subsection 4.1, up to a further point t = y, which is defined 
by 

ln TOL 



SOLUTIONS OF BOUNDARY VALUE PROBLEMS ON INFINITE INTERVALS 539 

Possible 0(1) components in the direction of the increasing solutions introduced at 
t = y will then have damped out by a factor TOL after backward integration from 
t = y to t = A3. 

Since we know the growth of the particular solution, w72(ti), we can even use a 
"sharper" value for y if the particular solution (or the fastest growing mode in the 
homogeneous case) is decaying exponentially, cf. [14]. Suppose the bounded-mode 
subspace decays like e-" (to be estimated as in (4.7b)), where M > 0 (cf. 2.1). Then 
instead of (4.7c) we should use 

(4.7d) y = ,B_ ln TOL 

This choice means that the relative error (in norm) at t = has damped by a factor 
TOL compared to the 0(1) error at t= y. However, this certainly implies an 
O(TOL) absolute error at t = P. 

In practice, we choose shooting points as before until we reach y =:tM (where 
M > N), say, and check whether 

(4.8) JIBN7 B 1j1jj TOL. 

If this turns out to be violated, we update the value of y with this new increment 
information, until we reach a satisfactory endpoint (cf. [14]). Hence we obtain 
recursions like (4.6a, b), now for i = N,..., M - 1 and i = M - 1,..., N, respec- 
tively. 

We then proceed as follows: First we compute a particular solution { pi }i of the 
recursion (4.6a, b), satisfying 

(4.9) 
2 = ?, P = ? 

Obviously, with this choice of pl we introduce an 0(1) truncation error, if { Pi i 
m 

is considered an approximation of { QTyb(ti)}=o. Since this error satisfies the 
homogeneous part of (4.6a) (cf. also [14]), we see that by (4.8) the truncation error at 
tN = P3 is O(TOL) (and becomes even smaller for ti < tN). We next compute a basis 
{(i }) 0 for 93 E 94 by defining 

(4.10) (D2 = Im 0.M= 

Note that ID is an n x m matrix, which is again computed in parts, i.e., { F71O via 
the homogeneous part of (4.6a) and then {f }IO M via the homogeneous part of 
(4.6b). {t Fi} IN, like { pi}'N 0, is contaminated by components of increasing modes 
of O(TOL) only. We therefore conclude that, writing 

(4.11) ai = Pi + ojc, c EE Rn, 

the sequence { Qiai }IN0 is an O(TOL) approximation of a bounded solution of (1.1). 
In order to determine c we use the BC 

(4.12) [MOQOFO + MlQNiPNIC = b - MoQopo - MlQNPN 

-MOWo(to) - M1WN-1(tN). 

In general, this is an overdetermined system; hence, we solve it with a least-squares 
solver. Since we are interested in the singular values, we in fact use an SVD routine 
(cf. Section 6). 
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5. Problems with (not Exponentially) Increasing Modes. In the previous section we 
assumed, for clarity of exposition, that k2 = 0, that is, all increasing modes are 
increasing exponentially. We now wish to consider a few ways to tackle problems 
where k2 > 1. We shall not go into a deep analysis of existence and growth behavior 
of f and the "bounded solution" Yb; one may consult, e.g., [5], [8]. It is important to 
keep in mind, however, that a slowly growing mode will, in general, force us to 
employ exceedingly large values of y, cf. (4.7), unless we can indicate a special 
structure that enables us to obtain appropriate starting directions for much smaller 
" terminal points". Such a special structure is provided by an exponentially decaying 
source term f(t). It is obvious that a backward recursion like (4.6b), now with a 
partitioning such that the Bi blocks are (k1 + k2) x (k1 + k2), should work satis- 
factorily; that is, if the point y is chosen such that 

II(iY) II 11 JIY)11| B 1 -1 
**B1 

| <, TOL, 

we should expect the error due to this "truncation" to be bounded by TOL. Hence, 
in the sequel we shall assume that at least one of the components of f behaves like a 
rational function in t (generalizations including fractional powers of t are again 
obvious). 

A central point in our discussion is played by the fact that we can (easily) 
compute the "direction" of the subspace tY2: By this we mean that we can find a 
basis within an accuracy TOL using the multiple shooting approach of Subsection 
4.1. We first extend our interval of integration to a point 8 = ts, say, as follows: 
Instead of computing complete fundamental solutions we only compute the first 
k1 ? k2 columns. On [ti, ti+1] we thus have an initial value Q', where Q' is an 
n X (k1 + k2) matrix consisting of orthonormal columns. Instead of choosing 

wi+I(t i+) = 0, we take the projection 

(5.1) Wi+j(ti+j = I_ QI+I[Qil+l] 
T 

Wi(ti+j) 

Write 

(5.2) x(ti) - Q>'aL + w(t1), a, E 

This computation, which is in fact the stabilized march (cf. [16], [19]), gives, after 
matching, a recursion like (4.6a), 

(5.3a) a a= l - ill], 

with 

(5.3b) =l [Q+?] T[W1(ti+?) Wi+(ti+Q)] =[Qi+l] Wj(tj+j 
If we partition Bi as 

(5.4a) Bi= [0' BiEkX' 

then the point 8 = ts is chosen such that 

(5.4b) JIB-' BS? 11 l TOL. 

Now let { i }j=s be a matrix solution of the homogeneous part of (5.3a), with 
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(%i thus being a (k1 + k2) x k2 matrix). Then span(*i), for i < M, represents the 
directions of the solutions in Y"2 at t = ti within an accuracy of TOL. Similarly, by 
defining 

(5.5) qs = ? 
we can compute a particular solution {qis} of (5.3a). With the vector c E Rk2, 
and 

(5.6) ai = qi i , 

we can thus find via (5.2) any solution in Y'2 @ Yb within an accuracy of TOL for 
t < y. 

The problem now is to "remove" the Y2 components from a suitable solution. To 
that end, factorize %i as a matrix with orthonormal columns Xi and an upper 
triangular matrix Ri, 

(5.7a) *i- XiRi- 

Then define the orthogonal projection 

(5.7b) Z= XIXIT 

(a (k1 + k2) x (k1 + k2) matrix). We now consider the following two inhomoge- 
neous recursions, 

(5.8a) ri= Bi -ri+ -Zi+1hi]q 

(5.8b) Si= BTL. 1 -[I - 

Clearly, { + 3 } satisfies (5.3a). Although the recursions (5.3a) and (5.8a,b) were 
defined for i = M,..., S - 1 only, we may consider them for i = , ...,M- as 
well, since we can repartition (4.4) in a straightforward way with Bi being the left 
upper part of Ui. 

If we use (5.8a) with A = 0 we find 
S-1 

( 5 .9a) ri EBi B j J+lh j, 
J=i 

whence Ai E span(Z1) = span(4i). 
Similarly, if we use (5.8b) with Ss = 0, we find 

S-1 

(5.9b) s = - - l- * ** -(I -Zj+1)hj, 
j=i 

so Si e span(I - Zi). If we write for ease of notation the transformed bounded 
solution Yb as 

(5.10) u= QTYb(ti), 

then we seek to determine ai of (5.3a) such that in 

(5.11) a1 = ti + tc 

the norm of c is as small as possible. From (5.9b) we immediately see that 

(5.12) Si = ( I-z u) us 
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This means that it is possible to obtain the component of yb(t) in the orthogonal 
complement of span(Y(t)P2) (in span(Y(t)P1) ED span(Y(t)P2)) for values t < y, 
and within an accuracy of TOL, in a stable way (note that (5.8b) is stable). The 
component of yb(t) in the orthogonal complement of span(Y(t)P1) ED span(Y(t)P2) 
is simply found from (4.6b). It remains to compute the component in span(Y(t)P2). 
(Of course, spaces here have a strict geometrical, not a functional meaning!) 

In order to compute the latter component we first remark that both the poly- 
nomial growth of solutions in "2 and the rational growth of f make it quite 
reasonable to expect that &0 = 0((1/ts)P) for some integer p > 0. To simplify 
further discussion, we therefore make the following 

Assumption 5.13. Let {ij(j)})j 0 satisfy (5.8b) and 3 (j) = 0. Define 30*( 
(I -Z0)0) = lim1 >0030(j) and the vectors d(j) E R'2 by 30(j) = 'Id(j). Now 
assume that d(j) = (81(i), . . . 8k2(j))T has an asymptotic expansion, as j -x o, of 
the form 

81(i) = t/,o t/1( tj + I) 1,2 tj+ I 

The solution {( } = ((I - Z1)uij} is then approximated as follows. Choose 
points tj, say /3, y, 8, and compute 30(j). By Richardson extrapolation we can now 
find, approximately, the values of ?10. If implemented properly, one can even 
estimate the accuracy of the approximation; of course, TOL acts again as the bound 
for maximal obtainable accuracy, so this should determine the order of the extrapo- 
lation scheme. Once we have (1 gk2o)=a d* (= lim1 a(j)), we find 3 

from 
(5.14) so = t0d 
The other iterates 3* can now be found fairly easily. We have for some vector 
c-(N) E Rk2, 

(5.15a) 0 = SN(N) = 3N + INC(N) 

so that 
(5.15b) 30(N) = 30* + *04(N). 
Since &0(N) ,so and 'I' are known, we can thus find the vector c(N) from (5.15b). 
Note that certainly the last k2 rows of 'ro define a nonsingular matrix. Substitution 
of this vector in (5.15a) yields 3N and hence via (5.8b) the entire sequence { f 

It is worth noting that the "slow" growth of solutions in "2 not only makes 
extrapolation meaningful but also the computation of the vector c(N) in (5.15b) 
fairly stable. For this, observe that (5.15b) is overdetermined. Therefore, we only 
need the last k2 rows of ''0, which form an upper triangular matrix (which is not 
unduly small in norm!) 

Thus far, we only considered the question of how to "remove" "2 modes from a 
bounded particular solution. Our discussion was based on a detailed discussion of 
the inhomogeneous shooting recursion (5.3a). This means that we can utilize the 
same derivations for obtaining modes in $2 which are approximated within 
accuracy TOL. Indeed, by partitioning the matrices Ui as 

uiB= [ iF]1 
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with Bi of order k1 + k2, the backward recursion (4.6b) (with corresponding 
partitioning) can be identified with (5.3a), with special vectors hi for each such 
mode. We remark that this is only needed for not exponentially decaying modes (as 
we noted for "bounded" solutions which are exponentially decaying). For solutions 
in Y4 we just have to choose y (or 8) large enough such that I IEMl- 1 ... ENII < TOL. 

Although we believe that Assumption 5.13 is realistic (and certainly covers cases 
discussed in [8]), we may alternatively consider problems where yb(t) tends to a limit 
but the solutions in 5'2 do not necessarily. We assume that yb(t) has an asymptotic 
expansion in powers of (t + 1)-i and that solutions in 5"2 grow polynomially. Then 
denote for the solution { qj } (cf. (5.3a), (5.5)) 

(5.16a) Pi:= QliQi 

For S - i large enough, pi can be written as 

(5.16b) Pi Yb(t= ) + Qhi tc, 

where c E R'2 (cf. (5.6)). Now assume that yb(t) has an asymptotic expansion as 
t .-* 

(5.17) YJ(O)= ro+ ri t+ I + r2 t+ 1 +; R+ 

(where ri E Rn). If ts is large enough we can monitor pi at several places and 
estimate r0, r1,... and the vector c by solving a (possibly overdetermined) linear 
system. By substituting these values of ro, r1,... into the expansion for yb(ts) we 
can even refine this estimate by using the backward recursion (5.3a) with "initial" 
value [QlITYb(ts): This should give an even more "pure" Yb(t0), providing a more 
accurate estimate of c via (5.16b), and hence of Yb* 

6. Choice of Partitioning; Underdetermined Problems. The last question to be 
considered is how one should deal with nongrowing/nondecaying components and 
modes, that is, whether or not they should be controlled by an initial condition (cf. 
Property 2.8). To a certain extent the partitioning of the nongrowing/nondecaying 
solution subspace into parts that belong to "2 and SY3, respectively, is arbitrary. We 
now opt for a choice where k3 is maximal. This may make (4.12) a rank-deficient 
system. 

One of the advantages of the singular value decomposition is that we can easily 
use it to compute the minimal norm solution of such a rank-deficient system. If we 
write 

(6.1) RN = MOQ0OF0 + MlQNDN 

(an approximation of O(TOL) to R(/3), cf. (3.3b)), and 

(6.2a) RN= UNENVNT 

with RN VN orthogonal and 

(6.2b) 2N = diag(ul(N), ... , am (N)) a1(N) > ***> a.(N) 

(cf. (3.6a, b)), we can first determine the numerical rank of (4.12). As before, we treat 
quantities smaller than TOL as numerically zero. If a,+ (N)... ., Gpj(N) < TOL, we 
define 

(6.3a) + = diag( 1(N) . ... 90- (N) O . ... O) 
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and, otherwise, 

(6.3b) += diag(UN 1N), ... ., al( N)) . 

We thus find a pseudo-inverse of RN, 

(6.4) RN = JVN'N4 UNT 

This matrix RZ determines a vector c via (4.12) and hence a sequence { a,) via 
(4.11), and thus, finally, a particular solution x via (4.2). If I = m, this solution is an 
approximation to "the" unique bounded solution. The condition number of the BVP 
is then found to be a,1(N) (cf. (3.7)). If RN is rank-deficient we can still give some 
potentially meaningful results, although we have no uniqueness. Indeed, in addition 
to the solution x found as before, we can also give basis solutions of the complemen- 
tary solution space, so that we actually characterize the (m - l)-dimensional mani- 
fold of solutions solving the BVP. To see this, let 

(6.5) VN:= (VN() I * - * VN(m))- 

Then it follows from the construction of i and RN that 

(6.6) y(t, j):= Qi0iVN(i) j = / + 1,..., m, 

defines a solution { y(t1, j)})N1 (j fixed) which satisfies a BVP with a BC like (1.2), 
but with homogeneous BC's. Hence the general solution of the rank-deficient case at 
the point ti is given by 

m 

(6.7) x(ti) + E ejy(ti,j), ej E R. 
j=l+l 

For such a problem a meaningful condition number is given by al`(N), unless all 
singular values are zero. 

7. Numerical Examples. In this section we give a number of examples to illustrate 
the previously outlined algorithms. 

Example 7.1. Consider the ODE 

dx [ lOcos2t -1 + lOsin2t + -10(cos2t + sin2t) 
(7.2 dt l1 + l0sin2t -10cos2t -2 + e0(cos2t - sin 2t) 

A bounded particular solution Yb is given by 

Yb(t) = e-t[i 

and a fundamental solution F by 

F(t) [cos t -sint 1 diag( elOt,e-lOt). Lsin t Cost] 

As BC's we use 

(7.3) [O ] x(O) I 

so that 

x = e-t 1] + e-lOt [ -sin t] 
Li LCost] 
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TABLE 7.1 
Numerical results for Example 7.1 

t x exact abs. error 

0 .100+1 .44 -7 
.200+1 .22 -14 

1 .368 +0 .19 -8 
.368 +0 .29 -8 

2 .135 +0 .43 -8 
.135 +0 .11 -8 

3 .489 -1 .12 -8 
.489 -1 .20 -8 

4 .183 -1 .20 -8 
.183 -1 .20 -8 

5 .674 -2 .20 -8 
.674 -2 .31 -8 

6 .248 -2 .11 -9 
.248 -2 .27 -8 

7 .912 -3 .19 -8 
.912 -3 .92 -9 

8 .335 -3 .13 -8 
.335 -3 .83 -9 

9 .123 -3 .42 -9 
.123 -3 .20 -8 

10 .454 -4 .12 -8 
.454-4 .59-9 

In Table 7.1 we list the values of x and associated errors resulting from a 
computation with TOL = 10-6, ,B = 10. The algorithm found 

y = 11.38 (e10(Y-fl) = TOL-1); 

the condition number K was found to be 1. 
Example 7.4. We carried out an experiment similar to Example 7.1, but now with 

a BC 

(7.5) [1 g] () [1j 

As can be seen quite easily, the row vectors of this BC are orthogonal to the initial 
value of the decaying mode, so we expect no unique bounded solution. The 
algorithm nevertheless gave a bounded particular solution and a basis for the stable 
mode space. From Table 7.2 we see that we might construct the same solution as in 
Example 7.1. 

Example 7.6. Written as a first-order system, a one-dimensional Schrodinger 
equation with potential given in [3], can be written as 

(77) dx 0 20tanh2(t)-11]x 
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TABLE 7.2 
Numerical results for Example 7.4 

t part. sol'n stable sol'n 

0 .100+1 -.294 -7 
.100+1 -.707 +0 

1 .368+0 .270 -4 
.368+0 -.174 -4 

2 .135+0 .132 -8 
.135 +0 .607 -9 

10 .454 -4 -.136 -43 
.454 -4 .209 -43 

Actually, this is an eigenvalue problem whose first eigenvalue is equal to 11. 
Consider the BC's 

(7.8) [ 0]x(O) +[ 0]x() =[g]. 

Clearly, we do not have a unique solution. We asked for output on [0,4] with 
TOL = 10-6. The algorithm computed a terminal value y = 5.96. One should realize 
that the "unstable" solutions grow like e3t and the desired "bounded" solution like 
e -3t. Hence at t = y we have the theoretical point where their relative growth equals 
TOL-1, and this is quite close to the value of y actually found (cf. (4.7c)). The results 
of the algorithm are displayed in Table 7.3. The last column contains the absolute 
error after normalization of the "stable" solution (by comparing the initial values to 
the exact solution). Note that the absolute errors decay with the magnitude of x. 

TABLE 7.3 

Numerical results for Example 7.6 

t stable sol'n exact sol'n abs. error 

0 -.105 -6 .000 +0 .10 -6 
-.100 +1 +.100 + 1 .25 -6 

.8 -.278 + 0 +.278 + 0 .17 -6 
+.320 +0 -.320 +0 .24 -6 

1.6 -.538 -1 + .538 -1 .40 -7 
+.140 +0 -.140 +0 .84 -7 

2.4 -.573 -2 +.573 -2 .23 -9 
+.167 -1 -.167 -1 .53 -9 

3.2 -.537 -3 + .537 -3 .47 -9 
+.160 -2 -.160 -2 .37 -10 

4.0 -.490 -4 +.490 -4 .29 -9 
+.147 -3 -.147 -3 .10 -8 
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Example 7.9. Consider the ODE 

(7.10) d [0 0] +(t) t>0 dt L0 0 ] 

where 

f(t) = +1 2 10 10 1 2 
T 

(t+l) 
W (2t + 1)2 t + 1 2t + 1 (t + 1)2 (2t + 1)21 

A particular solution is given by 

(7.11) x(t) 3t + 2 [1] 
(t + 1)(2t + 1)Li 

As BC's we take 

(7.12) [1 ?]x(0)= 20 

Suppose we want a solution on [0,10] with TOL = 10-4. Because the homogeneous 
part of (7.10) has a constant solution and x is decaying only moderately, we use 
extrapolation. Anticipating w = 1 in the expansion (cf. Assumption 5.13), we used 
Richardson extrapolation for t = 10, 20, and 30. We obtained values for So equal to 
2.13851, 2.07202, 2.04865, respectively. After two extrapolation steps we found 

(7.13) SO [2.00016]' 

which gave us an approximation for x(0) with an error of 1.6 x 10-4. Note that we 
would have been forced to go as far as t = 104 to obtain a similar accuracy for the 
"truncation error", without extrapolation! 

Example 7.14. Consider the ODE 

dx [-sint + lOcost cost + sin ti 
dt -cost t-10 sin t -sin t + cos t' 

where 

___ i+ +OCost 
f(t) - + i 1 + t st 

Consider the BC's 

(7.16) x(0) [2] 

A particular (bounded) solution is given by 

Yb() t + 1 1 

and a fundamental system by 

F(t)= r elt Cost sint1 
L-elot sint cost] 
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Since F(t) does not have asymptotically constant directions, Assumption 5.13 is not 
applicable. Nevertheless, Yb has an asymptotic expansion. We computed "trial" 
values at t1 10, 20, 30, starting at t= 32, and set Y2Y3 = = 0. We 
obtained the following values, see Table 7.4, using a tolerance TOL= 10-4 (cf. 
(5.16)). 

TABLE 7.4 
Numerical results for Fxample 7.14 

Pi 

.0092286 
30 

.038734 

.0085953 
20 

.064754 

-.1375201 
10 

.055678 

We found (cf. (5.17)) 

? [59 -4] 
r= 

[1.0 +1ij c= .4199 x 10 

(actually the coefficients in r1 were accurate up to five decimals). 
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