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Finite-Dimensional Approximation of Constrained
Tikhonov-Regularized Solutions of Ill-Posed
Linear Operator Equations

By A. Neubauer*

Abstract. In this paper we derive conditions under which the finite-dimensional constrained
Tikhonov-regularized solutions x, c of an ill-posed linear operator equation Tx =y (i.e,
X4,c, is the minimizing element of the functional ||Tx — yII* + af|x||?, « > 0 in the closed
convex set C,, which is a finite-dimensional approximation of a closed convex set C) converge
to the best approximate solution of the equation in C. Moreover, we develop an estimate for
the approximation error, which is optimal for certain sets C and C,. We present numerical
results that verify the theoretical results.

1. Introduction. In many problems arising in practice one has to solve linear
operator equations

Tx =y,

where x and y are elements in real Hilbert spaces X and Y, respectively, and T is a
linear bounded operator from X into Y. By a solution of the equation Tx =y we
always mean the best-approximate solution Tfy, where TT is the Moore-Penrose
inverse of T. Unfortunately, T'' is not bounded in general. A prominent example for
the equation Tx = y is a Fredholm integral equation of the first kind,

/01 k(t,s)x(s)ds=y(1), te]o0,1],

x, y € L?[0,1], k€ L*[0,1]%). Here, T' is bounded if and only if k is a
degenerate kernel. Therefore, one has to regularize the equation Tx = y. A well-
known and effective regularization method is Tikhonov-regularization, where the
functional ||Tx — y||*> + a||x||%, @ > 0, is minimized in X (cf., e.g., [4]). Often, one is
not interested in the solution 7'y, but in the best-approximate solution on a certain
set C, which, in the following, we assume to be closed and convex. It is thus
reasonable to require that the regularized solutions should have the same properties
as the unknown exact solution, e.g., it should be an element of C. Therefore, we
regularize the problem

Ix=yAx€eC
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566 A. NEUBAUER

by minimizing the Tikhonov functional ||Tx — y||* + a||x||%, @ > 0, on C. We call
the solution x, - of this minimum problem the “constrained Tikhonov-regularized
solution.” Results about convergence rates for these solutions x, . have been
developed in [9] (cf. also [10]). For stability and convergence results see [7], [9] and
[10]. Some of these results are summarized in the next section.

For numerical computation one approximates the Hilbert space X by finite-di-
mensional subspaces X,. In Section 3 we are concerned with the influence of the
approximation of X and C on the convergence and the convergence rates of
constrained Tikhonov-regularized solutions. In contrast to the optimal estimate of
the approximation error in the unconstrained case (cf., e.g., [4]), estimates for
1Xa,c = Xac,ll Where x, ¢, is the constrained Tikhonov-regularized solution in C,
(S X,), in general contain terms for which only the square root of the best-possible
rate of convergence of elements in C, to x, . can be guaranteed (cf. [11]). We
develop an estimate which implies, at least in the case that C is a ball and
C, = C N X,, the optimal convergence rate (see Theorem 3.9 and Corollary 3.10).

In the last section we present numerical examples for integral equations of the
first kind. For the sets C we have chosen the nonnegative functions on the one hand,
and balls on the other hand. X, is the space of linear splines on a uniform grid of
(n + 1) points in [0, 1]. The tables show that the convergence rates obtained confirm
the theoretical results.

2. Constrained Tikhonov Regularization. Throughout this paper, let X and Y be
real Hilbert spaces; T: X — Y a bounded linear operator; the set of all bounded
linear operators on X into Y will be denoted by L(X,Y). The inner products and
norms in X and Y, though in general different, will both be denoted by (-, -) and
||l - |I, respectively. We consider the problem of solving

(2.1) Tx=y and xe€C

with y € Y and @ # C (C X) a convex closed set. We define now what we mean
by the “solution” of (2.1).
Definition 2.1. x - € C is called the “C-best approximate solution” of (2.1) if

ITxo,c — |l = inf{|Tx - y| |x € C}
and
Ixo.cll=inf{[| x| |x € Cand |Tx — y||=[Txoc = 2]}

Thus, a C-best approximate solution minimizes the norm of the residual on C and
has minimal norm among all minimizers.

PROPOSITION 2.2. Let R be the metric projector of Y onto T(C).
(a) Ry is defined as the unique element in T(C), for which

(2.2) (Ry —y,u—Ry)>0 forallue T(C)

holds.
(b) A C-best approximate solution exists if and only if Ry € T(C); it is then unique.
(c) Let Ry € T(C) and let x . be defined by Definition 2.1. Then

(2.3) Txyc= Ry
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and
lxo.cll = inf{|lx|| |x € Cand Tx = Ry}.

Proof. The proof follows from [9, Proposition 2.2, (2.3) and (2.4)] and Definition
21. O
We regularize the problem of solving (2.1) by solving the minimization problem

(2.4) min{|Tx - y|” + alx[*]x€C}, a>o0.

One can show that the problem (2.4) has a unique solution x, ~ for all « > 0 and
that

2 2 . 2 2
(25)  ITxac~ QI+ alxgcll = inf{ITx = Qy|I" + allx|"|x & C},

where Q is the orthogonal projector onto R(T) (cf. [9, Theorem 2.3]). We call x,, ¢
the “constrained Tikhonov-regularized solution” of (2.1). x, . can also be char-
acterized as the unique element in C such that the variational inequality

2.6 T*Tx, +ax,—T*y,h—x >0 foralheC
a,C a,C a,C

holds (cf. [9, (2.7)]).

In the following two theorems we show that x, . converges to the C-best
approximate solution x, . of (2.1), if Ry € T(C), and that x, » depends continu-
ously on the data y for all @ > 0. Therefore, the problem of solving (2.4) is well
posed.

THEOREM 2.3. Let T € L(X,Y), y € Y.

(2) The constrained Tikhonov-regularized solutions x, - converge to an element in C
for a = 0 if and only if Ry € T(C).

(b) Ry € T(C) implies that lim,,_, X, - = X c-

Proof. See [9, Theorem 2.4]. O

THEOREM 2.4. Let a > 0 and let x,,  and X, - be the constrained Tikhonov-regu-
larized solutions for the right-hand side y and y of Eq. (2.1), respectively, and let Q be
the orthogonal projector onto R(T). Then ||x,c — X, cll < a”?|Q(y = Pl and

IT(xq,c = Xa, I < N2y = Pl

Proof. See [9, Theorem 2.5]. O
If one knows more about x,. than its existence, one can also guarantee
convergence rates for constrained Tikhonov-regularized solutions.

THEOREM 2.5. Let Ry € T(C).

(@) If xoc € R(PCT*), then ||x,c = Xocll = O(a"?) and |T(xc — xo.0)ll =
O(«). If in addition Qy = Ry, we even obtain ||x, c — xo c|l = o(a'/?).

(b) Let Qy = Ry. Then ||T(x, ¢ — Xo.c)ll = O(a) implies that x, - € R(P:T*).
(P denotes the metric projector of X onto C.)

Proof. See [9, Theorem 4.2]. O
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THEOREM 2.6. Let Ry € T(C) and let 0C be twice continuously Fréchet-differentia-
ble in a neighborhood of x,; i.e., there exist ¢ >0, ¢ >0 and a functional F:
Uxq,c) = R such that 0C N U(xy ) = {x € U(xo )| F(x)=c} and F is twice
continuously Fréchet-differentiable. Moreover, let F'(x, ) be positive definite (i.e.,
y > 0 exists such that F'(xocXz,2)> Y|z||* for all z € X) and let one of the
following two conditions be fulfilled:

(i) Ry # Oy, xoc € N(T)* and Qy € R(T;

(ii) Ry = Qy, xoc € R(P,T*) and xo - #+ T*u,
where T is the element of minimal norm in U= {u € R(T)| P.T*u = x, ). Let P
be the orthogonal projector onto L:= {h € X |(f,, h) = 0}, where

* —
T*(Ry — Q) in the case (i),
Ry - 0]
[ — T*u
M in the case (ii).
xo.c = T

Then Px, . € R(PT*TP) implies that ||x, ¢ — X cll = O(a).

Proof. The proof follows from [9, Lemma 5.12 and Theorem 5.13]. O

For a more general version of Theorem 2.6 see [9, Theorem 5.13].

We now assume that the exact right-hand side y of Eq. (2.1) is unknown and that
only perturbed data y are available. We assume that we have the information
10(y — ys)ll < 8. Let x2 ¢ be the constrained Tikhonov-regularized solution of (2.1)
with y replaced by y;. Then we obtain the following result.

THEOREM 2.7. Let Ry € T(C) and ys € Y such that ||Q(y — ys)ll < 8

(@) If a(8) is such that limg_,a(8)=0 and lims_ ,8%/a(8)=0, then
hms-»oxaw)c Xo,c

(b) xo,c € R(P:T*) and a(8) ~ & imply that ”xa(B) ¢~ Xocll = 0(81/2)

(c) Under the assumptions of Theorem 2.6, Px0 ¢ € R(PT*TP) (P as in Theorem
2.6) and a(8) ~ 8% imply that ||x5 5, c — xo.cll = O(8%3).

Proof. The proof follows from Theorems 2.3-2.6. O
For more results on constrained Tikhonov-regularized solutions, and detailed
proofs, see [9] (cf. also [10]).

3. Finite-Dimensional Approximation of C-Best Approximate Solutions. For
numerical computation one has to approximate the infinite-dimensional real Hilbert
space X by a sequence of finite-dimensional subspaces. In the unconstrained case,
algorithms for the finite-dimensional approximation of Ty have been developed,
e.g., in [2], [4] and [6].

We approximate X by finite-dimensional subspaces X, (n € N) such that X; C
X, C --- and U,.nX, = X. Moreover, we approximate the closed convex set C
by closed convex sets C, C X, (e.g., C,= C N X,) and compute the constrained
Tikhonov-regularized solutions x, - in C,. Now we look for conditions under which
X,.c, converges to x,  for a = 0 and n — co.
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Following [8], we define
Definition 3.1. Let C, be a sequence of subsets in X.

(2) s-lim C,:= {x € X| there exist a sequence {x,} and N € N
such that x, € C, forall n > N and x, > x forn - o }.
w-1lim C,:= {x € X| there exist a sequence { x, }, a strictly
monotonically increasing sequence {n, } and K € N
such that x, € G, forall k > K and x; —x for k - oo}.
(b) lim C,=C ifandonlyif s-lim C,=w-lim C, = C.
nh— o0 I
THEOREM 3.2. Let Ry € T(C) and let C, be a sequence of closed and convex subsets
in X such that lim,_,  C,= C. Moreover, let {x,} be a sequence in X such that
x,€C, foralln € Nand lim, _,  x, = x, ., and let {a,} be a sequence such that
a, |0 for n — oo. If one of the following two conditions:
(i) Ry = Qy and lim,, _, , .| T(x, — xoO)II* = 0;
(ii) Ry # Qy, C, C C forall n € N and lim,, _, , ;" T(x, — x5c)l| = 0
is fulfilled, then lim,, _, , X, c = Xoc-

Proof. First we show that

(3.1) lim Tx, . =Ry
n—oo "
and
(32) limsuP”xa,,,c,, <[l xo.cll-
n— oo

Let (i) be fulfilled. Then (2.5) implies that

2 2 2 2
”Txa,,,C,, - Qy" + an”xa,,,C,, < ”Txn - Qy ” + an”xn” H
which together with (2.3) and Ry = Qy implies that

0 < lim “Txan,cn - QV”2 < lim (”Txn - Qy ”2 + an”xn”2)
n— o0 n—o0

0

and
limsup |x,, ¢, I” < lim (e |7(x, = xo0) [ +[x,0) =lxocl”
Now let (i’il) bz fulfilled. Since C, € C, (2.2) (with u = Tx, ) implies that
IT50,c, = BN =[Txc, = 5] + 2ATxo = Ry = BY) =Ry =5
<\ Txac, =¥ = 1Ry =5 I,
and hence

IT%0 . = RY|| <||Txec. =y " =Ry = 31" + aullxa, . I

2 2 2
<ITx, = yI" = 1Ry = 1" + a,[lx,II",
which together with (2.3) implies that

0< lim |Tx, ¢, = Ry < lim (1T, =y =1 Twoc =3I + ax,[) = 0

nh— oo
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and

. 2 . - 2 2 2
limsup x,, ¢ I < tim (a(17x, = [ = Tx0.c = yI) +x,1)

n— oo
. _ 2 2
< tim (a117(x, = x0) (17, = 1 +1Tx0¢ = 7 1) + 1%, ) = lxo.cl

Now let {a,} be an arbitrary subsequence of {«,}. Then (3.2) implies that there
exist a subsequence of {«, } (again denoted by {«,}) and an element u € X such
that x, . —u for k - oo. Together with lim,_, ,,C, = C, (3.1) and (3.2), we obtain
that u € C, Tu = Ry and

2 . .
lul” = lim (x4, ¢, %) | <llullimsup|lx,, oI <llull -Ixo.cl,
k— o0 k— o0
which implies that ||u|| < ||x, || Proposition 2.2 now implies that u = x, .. There-
fore, we have shown
(3.3) Xo.c, = Xoc-
n— o0

Again, (3.2) implies that

2 . e
lxo.cll™ = nl_I{I:Ol(xo,c’xa,,,c,,) <[l xo.cll - hnnllgt‘”xa,,,c,,“

. 2
<llxg,cll - limsup ”xa,,‘C,, <l xoclls
n—o0
and hence lim,, _, ,||Ix,, c il = [1Xo,cll- Together with (3.3), this implies the assertion.

O

Theorem 3.2 is a qualitative convergence result. To obtain results about conver-
gence rates, we develop an estimate for ||x, c — X, ¢ |, where we follow [11]. For the
proof of the next theorem we need the following lemma.

LEMMA 3.3. Leta, b,c > 0. Thena* < a-b + c? impliesa < b + c.

Proof. Since (ab/2c + c)* = a’b?/4c? + ab + c?, the inequality a® < ab + ¢
implies a?(1 + b*/4c?) < (ab/2c + c)?, and hence a - |1 + b?/4c? < ab/2c + c.
This implies that a(Vb* + 4c?> — b) < 2¢?, and hence

‘ 2¢2 Vb2 +4c2 +b 1
a< . = >(Vb* +4c* +b
et s Verac+s 2V )

< %(\/b2+4bc+4c2 +b)=b+c. O

THEOREM 3.4. Let C and C, be closed and convex. For a > 0 let g, be defined by
8a'=T*Tx, -+ ax,— T*y. Then

”xa,C - xa,C,, < a-l/zllT(xa,C - hn) ” + ”xa,C - hn”

12
+a 2 g (I X0 = Aall +]|%arc, = 1]

forallh € Candh, € C,.
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Proof. For a > 0 we can define the following inner product on X (cf. [4])
(3.4) [u,v]y= (Tu,Tv) + a(u,v) and |u|e= [u,u]?,  uwwveX.
Then (2.6) implies that
(3.5) [Xacrh = Xocla= (T*y,h — x, ) forallheC

and
(3.6) [¥ar.co n = Xapc,], = (T*92 1y = X4, ) forall h, €,
hold. Summing up (3.5) and (3.6) we obtain for all h € C and h, € C,,
|xa,C|i + |xa,C,,|i < [xa,o h], + {xa,C,,’ hn] o _(T* vh=Xx4cth, - xa,C,,)
and hence with |x, c = X, ¢ |2 = [Xacla + [Xac |2 = 2 X0 Xac, 1o and (3.4) that
|X0c— xa,C,,li < [xa,C’ h— xa,C,,] <t [xa,C,,’ h, - xa,C] N
—(T* b = xpe+ hy— xoc )
= [xa,C ~ Xa,cp Xac T hn] T [xa,C’ h—Xoc, +h,— xa,C] «
—(T*h = xpe+ hy— x,c)
= {xa,C — Xa,cpp Xa,c T hn] « +(8ar h — Xac, t hy— Xac)

a,C - hnla +||ga|| ||h - xa,C,, + hn - xa,C”‘

Together with Lemma 3.3, we obtain

< |xa,C — Xa,c,ly

”1/2 1/2

|xa,C - xa,C,, a X ta,c T hn‘a + ”ga "h - xa,C,, + hn X o C”

Now 34) and [|h — x,c, + hy = Xocll <N1B = Xoc /| + 1B, = Xq,cll imply

2 2\172
al? ‘”xa ¢~ Xa a0, ~ Xa,C,lq < (”T(xa,C - hn) ” + a”xa,C - hn” )
1/2 12
gl xae = hull +lxac, = #l) 7
Together with (a? + b%)}/2 < (a? + 2|ab| + b*)}/? = |a| + |b|, we obtain
Ixac = Xac, Il < @2 T(x0c = h,) |
_ 1/2 1/2
xae = Aol + &2 g ([ 0c = Ball +]x0c, — Bl)

Remark 3.5. (a) If G, C C, then we can choose h = x, . in the estimate of
Theorem 3.4.

(b) If C = X and C, = X,, where X, is a linear finite-dimensional subspace of X
(unconstrained case), then g, = 0 and &, = P,x, - = P,x,, where P, is the orthogo-
nal projector onto X, imply the estimate

”xa,C - X :" < a_l/zllT(I - Pn)xa,C“ + ”(I - Pn)xa‘C"’

which is the same estimate as in [4].
(c) Let

W= {h, € GI((T*T + aI)(x, ¢, = Xac)s By = X0 ,) 2 0} (€ G,).
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By a result of the Kuhn-Tucker theory (cf.,, e.g., [10, Proposition 1.2]), x, . 1is the
unique element in W,* which minimizes ||Tx — Tx,c||* + allx — x, ||* on W2
hence

“xa,C,, - xa,C“ < a—l/znT(hn - xa,C) ” + “hn - xa,C“ fOI' all hn € I/Vnm‘

But W depends on « and, in general, & + W,* #+ C,.
If we only know that 4, € C, (C C), then by Theorem 3.4 we obtain the estimate

”xa,C — Xa,c, " < a—l/znT(xa,C - hn) ” + ”xa,C - hn”

_ 172 1/2
+a 1/2”ga“ “xa,C - hn” ’

which is not optimal with respect to convergence rates: If Qy = Ry and x,. €
R(P.T*), then Theorem 2.5 implies that ||g,/| = O(«); hence a™'/?|g,||*/? is
bounded. Now let

hn =P C,,x a,Co
where P is the metric projector of X onto C,; then the third term of the estimate
only converges with the rate O(||Pc X, ¢ — X, cl|I'/?), but the best possible rate of
convergence of elements in C, to x, ¢ 18 O(||Pc Xoc = Xa,clD-

In the following we develop two estimates, one for ||x, o — Xo ||, and one for
IXa,c = Xa,c,|l, which are both optimal with respect to convergence rates, if C is a
ball ie, C={x € X||lx —z||<r}, z€ X, r>0and C,= C N X,, where X, is
a finite-dimensional subspace of X.

In the following, let X, be a linear subspace of X and C, C X, be closed and
convex. By P, we denote the orthogonal projector onto X,. We then define

(37) = {h,eX,|((T*T+ al)x,c, - T*,h,— x,¢,) >0}
It follows from (2.6) (with C, instead of C) that C, € C2. C? is closed and convex.
By S, we denote the metric projector of X onto C;". Let
ga=P,[(T*T + al)x,c — T*];
then for all x € X,
P x if gy =0,

(g:’ xa,C,, - an)
2
Il
If g = 0, (3.7) implies that C;* = X,, and hence S = P,. Now let g # 0 and
(g:’ Xa,c, ~ an)
2
Il
By a result of the Kuhn-Tucker theory (cf., e.g., [10, Proposition 1.2]), S%x is defined
as the unique element in C* such that (Syx — x, h, — S;x) > 0 for all h, € C. If
P,x € C?, (3.7) implies that A% = 0. Since (P,x — x) € X,* and (h,— P,x) € X,
for all h, e C?, (P,x — x,h,— P,x)=0 for all h,€ C;; hence S;x = P,x. If
P.x & C7, (3.7) implies that

(3.8) S =\ p s max( 0

gy ifgy+0.

R CAL Yt ) N

n 2
gl
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Since (P,x — x) € X,*, (h, — P,x — X,8%) € X,, and A% > 0,

(P,x + X%g% — x,h, — P,x — N%g2)
=N(g8 hy — Pox — Nagy) +(Pyx — x,h, — Px — Nygr)
(g::’xa,c,, - an)
2
ezl

for all &, € C (cf. (3.7)); hence Six = P,x + A, g

= )‘c:r (g:’hn - an) -

lgal*| = A% (g2 k= Xac,) > 0

LEMMA 3.6. Let X,, P, and S* be as above. Let C be defined by C:= {x € X|
|lx —z|| < r}, wherez € Xandr > 0,and C,:’= CN X,.

(@) C,# Bifandonlyifr = |(I — P,)z|.

(b) Let r > ||(I — P,)z|. Then for all x € C, |(P, — S&)x|| < (I — P,)z||*/r.

Proof. (a) Since

G = {xeX,llx,—zll <7} = {x, € Xl Ix, = Pzl’ <2 =|(1 = Bz [},

n

we have C,# @ if and only if r*> —|(I — P,)z||*> > 0, which is equivalent to
r=|(I - P,)zl|.

PnC
Cn
Pz
en ca
g’ "
n
o I
a,C d
FiGURe 3.1

(b) If g = 0, then (3.8) implies that ||(P, — S)x|| = 0 for all x € C; hence it is
clear that ||(P, — S¥)x|| = 0 < ||(I — P,)z||*/r. Now let gx # 0; then (2.6) (with C
replaced by C,) implies that x, - € 0C, (0 with respect to X,), i.e., 1Xac, — P z|?
=r2 —||(I — P,)z||>. We see from Figure 3.1 that for all x € C with P,x € C7,

n1l/2
(P, - s2)x|| <d=r—(r*=|(1 - P)z])

_ I - 2z
r+(r2 =1 - B)z|

1 2
)1/2 < 7 ”(I_Pn)z” .

If P,x € C2, then (3.8) implies that ||(P, — S¥)x|| = 0 < |(I — P,)z||*/r. O
Now we estimate ||x, ¢ — X cll-
THEOREM 3.7. Let Ry = Qy € T(C), xoc € R(P:T*); let X, be a linear subspace

of X and C, € X, N C be closed and convex. By P, we denote the orthogonal projector
onto X, and by S the metric projector from X onto C;', where C; is defined by (3.7).
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Then
1 _ -
gllxa,c" - xo,c” < “1/2””” +(1 +a 1/2||T(I - Pn) ")"(I - Pn)xo,C"

+a‘1/2||T(S: - Pn)xo,c” + "(S: - P")XO’C”

2112
+max[0,(P,,x0,c,(S,‘,’ = P)xo.c) = (I = P)xocl ] ’

where ii is the unique element of minimal norm in U:= {u € R(T )| PcT*u = xo}.

Proof. The existence and uniqueness of # follows from [9, Lemma 4.1]. Since
u € U, we have P.T*u = x, . and hence (xoc — T*4, h — xo) > Oforall h € C.
Together with (3.7), (2.3), Ry = Qy and C, C C, we obtain

0< (T*Txa,C,, +ax,c — T*Txq ¢, Spxoc— xa,C,,)
+a(T*17 — Xo.csXo,c ~ Xac, T SiXo.c— S:xo,c)
= ((T*T + “I)(xa,c,, = Xo.c) * aT*u, S3%0 c — Xqc + X~ xo,c)
+a(T*ﬁ — Xo.cr Xo.c — S,j"xoyc),
which implies that
“ T(xa,C,, - xo,c) ”2 + a”xa,C,, - xo,c”2
< (aT*ﬁ, Xo.c— xa,C,,)
+ ((T*T + aI)(xa,C" — Xoc) + aT*u, Sixg ¢ — xo,c)
+a(T*ﬁ ~ Xo,csXo,c T S:xo,c)
= (T(xa,C,, - xo,c)aT(S: - I)xo,c - 0“7) + a(xa,c,,»(S: - I)xo,c)
< ”T(xa,C,, - xo,c) " ‘”T(S: - I)XO,C —au ” + a(xa,C,,’ (S: - I)xo,c)'
Together with Lemma 3.3, we obtain
"T(xa,C,,— xo,c) ” < "T(S: - I)xo,c — ol ” +a1/2max[0, (xa,C,,’ (S: _I)xo,c)]l/z,
and hence

2
a“xa,C,, - xo,c||2 < "T(S: - I)xo,c - aﬁ" + amax[O, (xa,c"’ (Sy - I)xo,c)]
+a1/2||T(S,‘," - I)xo,c - ou ||max[0, (xa,C,,’ (S: - I)xo,c)]l/2

2
< ("T(S,‘," —I)xqc— aiif + al/zmax[O, (xa,c,,, (S - I)xo,c)]l/z) ,

which implies that

[Xac, = Xo.cll < @ |T(SF = I)xoc — ait] + max |0, (xoc, (S5 - I)xo,c)]l/2

12

1,2 N
'"(Sn - I)xo,c” .

Hxac, = xo.cll
Again, Lemma 3.3 implies
1/2

Ixac, = X0l < [a 2 T(Sg = I)xoc — ail

1,2
+max[0,(x0,c, (Sy - I)xo,c)]l/z]

N 1/2
+||(Sn - I)xo,c" .
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Since (a + b)> < 2(a* + b*),(I - P,)* = (I — P,),(({ — P,)x¢ ¢, P,xoc) = 0,2and
(I = P)xyc (Sy — P)xg) = 0, this implies that

Hxae, = xocll < VA T(8y — I)xoc — i
+max[0, (xo,c, (S5 — I)xo,c)]l/2 +[|(Sx = I)xocll
<o + a2 T(I = P (1 = P)xocll + a2 T(S5 = P,)xocll
+[(I = P)xocll + (S5 = P)xocll
12

2
+max[0,(P,,x0‘C,(S,f‘ = P)xoc) = (1 = P)xocll ] - o

Remark 3.8. (a) If P,x, - € C;, where C; is defined by (3.7), then it follows that
(S, — P,)xy = 0. Together with Theorem 3.7, we obtain the estimate

xac, = xocll < @?all +(1 +a2|T(1 = P) ) = B)xocll-

If we choose a, such that a;/2||T(I — P,)|| < const and a, — 0 for n > oo, then
we obtain the convergence rate O(al/* + |(I — P,)x, ), which is optimal (see
Theorem 2.5) for x, - € R(P-T*).

(b) If C and C, are defined as in Lemma 3.6 and «, is chosen such that
a;? max(||T(I — B, (I — P,)z||) < const and a, —» 0 for n = oo, then we
obtain the convergence rate O(ay/? + (I — P,)x, cll + [({ — P,)z||), which is again
optimal.

If we know that ||x, - — x|l = O(a), then the estimate of Theorem 3.7 can
never be optimal with respect to a. Therefore, we develop an estimate for ||x, - —
X,,c,|l, which is optimal with respect to « even in the case ||x, c — X cll = O(a).

THEOREM 3.9. Let Ry = Qy € T(C) and C,, P,, S as in Theorem 3.7. For a > 0
let g, be defined by g,:= T*Tx, .+ ax,c— T*y. Then

< a1 = B)TH(I(T = P)xocll +lxuc = %ocl)

+a A T(S5 = B)xgcll +(S5 = P)xcl

%”xa,C — Xg,c,

+a_1"(I - Pn)T*T(xa,C - xO,C) "

1/2

121/ aa
”(Sn - Pn)xa,C” .

+a7 g |

Proof. It follows from (3.7), (2.3), Ry = Qy, (2.6), and C, C C that
0< (T*T('xa,C,, - xo,c) +ox, o SpXac— xa,C,,)
+ (T*T(xa,C — Xoc) tax, ¢, Xoc, — xa‘C)
= (T*T(xa,C - xa,C,,) +a(x,c— xa.C,,)’ Xa,c, ~ xa,C)

+ (T*T(xa,c,, — Xoc) + Xy co SpXac ™ xa,C)
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which together with (P, — I)x, o = 0 implies that

2

2
+ a”xa,C — Xa,c

s&n

IT(xac = *arc,)
< (T*T(x0c, = Xo.) + WX cpp S¥ac = Xarc)
= (T*Tx e + axqe = T*9, (S5 = 1) Xoc)
+((T*T + al ) (x4, = Xuc)s (87 = D)xoc)
= (8w (85 = P)Xec) —(T*T(xec, = Xarc)s (S5 = D)xoc)
+((P, = DT*T(x,.c ~ Xo.0)s Xac)
—((B, = D)T*T(x0c = Xo.)s Xurc,)
+a(Xg (P = Do) + a(xac, = Xacr (SF = P)%Xac)
+a((P, = I)(*4c, = Xarc)s Xarc)
= (T(xuc, = *a,0)s T(Sg = D)%) +(8ar (S5 = P,) %o )
+(Xarc = Xarcp (Pa = DT*T(xoc = Xo.c) — (S = P,)xo c)
< T(xac, = xa) | 1T(S5 = Dxacl +lgall 1(S5 = Po)xacll
(IR, = DT*T(x0c = x0.0) || + all(S5 = P.)xacl):

Together with Lemma 3.3, we obtain

+ ”xa,C - xa,C,,

<|IT(Sy = Dx.cl

+ [”ga” : ”(Srl: - Pn)xa,C” + ”xu,C - xa,C,,

” T(xa,C - xa,C,,)

I

(P, = DT*T(x0c = x0.0) | + al(S2 = P)xacl)]

and hence (using the fact that for a, b > 0, a®> + ab + b> < (a + b)?),

2
ol xpc = %o, I’ < (IT(S2 = Dxoc]

+ [”ga” ) "(Sr‘zx - Pn)xa,C”+ “xa,C - xa,C,,

(=D Ty =50 ) |+l (57 = 25 )]

which implies that (note that Va + b < Va + Vb for a, b > 0)

"xa,C - xa,c,,|

1/2 1/2

< aT(S3 = Dxgcll + a2l gall ISy = Pu) X cll

YHa (B, = DT*T(xqc = Xo.0) | + (55 = P)xucl

)1/2

+lxge — Xa,c,
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Again, Lemma 3.3 implies
1/2

”xa,C - xa,C,,

- « _ 120/ oo 1/2\1/2
< (a2 T(Sg = Dxocll + @ gl (87 = P)xocl )

+ (“_l”(Pn - I)T*T(xa,c - xo,c) ” + "(S: - Pn)xa,C”)l/z'

Since (a + b)? < 2(a® + b?*) and (I — P,)> = (I — P,), this implies that
%"xa,C - xa,C,,” < a_l/zllT(S: - I)xa,C” + ”(S: - Pn)xa,C”
+a_ll|(Pn - I)T*T(xa,C - xO,C) ”

. 1,2 12
+a 2 g NSy = P)xacll

< a_1/2|l(1 _ Pn)T*"(”(] - Pn)xo,c” + ||xa,C - Xo,c”)
+a | T(8g = B)xocl + (S5 = P)xacl

+’1_1”(I — P)T*T(x,c— Xo,) ”

_ 1/2 1/2
+a V2 g NSy = P)xacll T O

If C and C, are as in Lemma 3.3, we obtain the following corollary.

COROLLARY 3.10. Let C be defined by C:= {x € X|||x —z||<r}, wherez € X
and r > 0. For a sequence { X,} of finite-dimensional linear subspaces of X, such that
XcX,C - andVU ,.nX,=X,letC,;;= CN X,. Let T € L(X,Y) be compact
andy € Y such that Ry = Qy € T(C). Foralln € N, letr > |[(I — P,)z||, where P,
denotes the orthogonal projector onto X,,.

(@ If xoc € R(PT*) and a,:= c - max{|(] - P)xocl? I - P)z||?,
(I = P,)T*||*}, ¢ > 0, then

"xa,,,C,, - xo,c” = O(max("([ - Pn)xo,c"’ "(I - Pn)ZII, ”(I - Pn)T*"))’

(b) If xoc € R(P.T*), xoc#* T*u and Px,c € R(PT*TP), where P is the
orthogonal projector onto L:= (h € X|(xqc — T*4, h) =0}, and a,:=c-
max{|(I = P,)xo.clb I = P,)zll (1 = BYT*[?}, ¢ > 0, then

”xa,,,C,, - Xo,c "

= ofmax{|(1 = B)xocll, 12 = )zl |1 = 2T, (1 = B)T*T])).

Proof. Lemma 3.6 implies that C, # @ for all » € N and ||(S; — P,)x, cll <
(I — P,)z||>/r for all @ > 0. Therefore, by Theorem 3.9, we obtain the estimate

%”xa",cn - xo,c"

1 Xa,,c~ xO,C"'
(3.9) +0‘;1/2"(I - Pn)T*”(”(I - Pn)xo,c" + ”xa,,,C - xo,c")
2
+a 2T -|(1 = P)z| -|(1 = P)z|| + rH(1 = P,)z]|

I(r = B,)z|.

_ 1/2
+ 01,,1

(I = P,)T*T(x,, c— Xo.c) " +r7V % g,
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The compactness of T guarantees (cf. [4, Lemma 4.21)) that ||(/ — P,)T*|| — 0 and
(I = P)T*T| — 0forn— co.

Since x, - € R(P:T*), Theorem 2.5 implies that [|T(x, - — xo.)|| = O(a), hence
by definition of g, (cf. Theorem 3.9) ||g,|| = O(a). This implies that a;'/*||g, |I'/*
is bounded. The choice of a,, in (a) and (b), respectively, implies that

a, (I = P,)T*| and o;'?|(I - P,)z]|
are bounded. Therefore, (3.9) implies that

LI = P)zl)

(1= P)T*T(x, = %o0)|).

1%a,.c, = Xo.cl = O(max(|lx,,.c = xo.cll (1 = B)xoc
(3.10)

-1
+a,

(a) Theorem 3.2 implies that
"xa,,,C - xo,c" = 0(“11/2)

and that &;,'|T(x,, ¢ — %o )|l is bounded. Therefore, we obtain with (3.10)
“xa,,,C,, - xo,c” = O(max(”(] - Pn)xO,C”’ ”(1 - Pn)Z”’ ’ (1 - Pn)T*”))'

(b) Since 3C = {x € X| ||x — z||> = r?}, F(x):= ||x — z||? is twice continuously
Fréchet-differentiable and F”(x) is positive definite for all x € X (note that
F'(x)(z, z) = 2||z||*), Theorem 2.6 implies that x4, c = Xo,cll = O(a,) and
a;'||x,, ¢ = Xo,cll is bounded. Therefore, we obtain from (3.10)

"xa,,,C,, - xo,c"

= 0(max(|[(1 = B,)xo.cll (7 = B,)z]].|

Corollary 3.10 shows that it is possible to obtain optimal convergence rates if C is a
ball and if C, = C N X, where X, is a linear subspace of X. If we know only that
Ry = Qy, xoc € R(P.T*), C,c Cforall n € N, and P xq = xoc for n = oo,
where P denotes the metric projector from X onto C,, then we can only guarantee
the square root of the best-possible rate of convergence of elements of C, to the
C-best approximate solution of (2.1), i.e., O(|(P¢c, — I)x, cl['/?): Since C, C Cp,
(S, — Dxo.cll < (Pe, — I)Xo,cll- Now Theorem 3.7 implies that

lo/? + o, 2| T(Sg = I)xo el +]|(Sg = I)xocl

2

b

(I-P)T*|

(1~ pyreT])). O

%”xa,,,C,, — xo.cll <@

+max[0, (xo,c’ (O I)xo,c)]l/2
12
< |lulla/? + n(PC,, - I)xo,c“

A0 o2 (Be, = Dxac” + 1P, = Dxacl” + ol 7,

If we choose a,, such that &, ~ [|(P;, — I)x, ||, then this estimate implies that

e, = o.cl = O(J(Pe, = D)xole] 7).

If we do not know the data y exactly, but elements y; € Y such that ||Q(y — ys)l|
< 8, then we can obtain results about convergence rates in dependence on §
analogously to Theorem 2.7, using Theorem 2.4 and the fact that ||x5 . — x|l <

8
1Xa.c, = Xo.cll + lIXac, — Xac,ll-
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4. Numerical Results. All results of this chapter were obtained with FORTRAN
programs on an IBM 3031. We compute the constrained Tikhonov-regularized
solutions x,, . of linear Fredholm integral equations of the first kind,

fol k(1,5)x(s)ds = y(1), te[0,1],

where y € L?|0, 1] and x € C (c L*0,1]). C is either the set of nonnegative
functions, ie., C={x € L?[0,1]|x >0 ae.}, or C is a ball, ie, C={x€
L*[0,1]]]|x — z|| r}, z € L*0,1], r > 0. We approximate X:= L2[0 1] by the
sequence of linear subspaces X,, where X, is the space of linear splines on a uniform
grid of (n + 1) points in [0,1]. It is easy to see that X; C X, C X, C Xz C --- C
X« € -+ C is approximated by C,:= C N X,. For the set of nonnegative func-
tions we used the Lemke method to obtain x, - and for balls we used the Wilson
method. For details on these methods see [1] and [3], respectively.

We use the following notations: e, = [|x, = X, and ef:= |lx3 ~ — x, |,
where xs" .c, 1s the constrained Tikhonov-regularized solution of the integral equa-
tion with 'y replaced by Vs, (IQ(y = ys Il < 8,),

100
Iyl

Example 4.1. Here the kernel is always given by

6, —%:=29,-

n

As—1)+6(s—1)"+4(s—1) ifs<t,
As—t)—6(s—t)*+4a(s—1)° ifs>1.
One can show that T* = -T, N(T') = N(T*) = [1] and

R(T) = R(T*) = {x c H3[0,1]|f01y(s)ds =0

k(t,s):= {

and y®(0) = y®(1) for k = 0,1,2}-

It follows from [5] that ||(I — P,)T*|| = O(n~2).
(@ C:={x€X|x>0ae},

1L 29 W, 5, .. 18, 1
20 ~ 80° 20t + 5t + 4¢ 5t ifogt< 7
= ﬂ §_]; 322__3_3 . l é
y(1): 360 %0’ T 0l T 3! if 7 <t<7g,
wst_en o w3
6720 80t+ 20t 2t+4t 1f4<t<1,
and || y|| = 0.0415. The exact solution is
1+ 4s—128s> if0<s<3i,
Xo,c(s)= 0 ifi<s<i,
-3+ 4s if2<s<1,

and x, - € R(P:T*).
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It follows from [5] that, even though x, » & H?[0,1], one has |(I — P )x, C|| =
O(n?%) for n=2% ke N. This follows from the fact that Xo.c, € H? ),
J =123, with I;:= [0, §], I,:= [}, 3], andI3—[4,1]

Now Theorems 3.7 and 2.4 imply that for @, = ¢; - n"%, 8, =c, - n"% ¢, ¢, > 0,
we should obtain the convergence rates e, = O(n!), e,‘f = 0(n™).
a, e, e,-n-10
4 6.3%x10°¢ 1.9*107" 7.7
8 1.6%10°° 49%1072 4.0
16 3.9%10°7 1.0%x1072 1.6
32 9.8%108 3.9%1073 1.3
64 2.4%1078 2.6%1073 1.6
8,— % el S.n-10
4 6.3%1072 191071 7.7
8 1.6%1072 4.9%1072 4.0
16 3.9x%10? 1.0%10°2 1.7
32 9.8%107* 3.9%1073 1.3
64 2.4x10°* 2.6%1073 1.7
a,=10"%%8,— %

The last column of each table shows that the rate obtained confirms the theoretical
result.

(b) C:= {x € X|||x — z|| < r}, where
z(t)=1—-1t, rt= % =~ 315,
and ci= |z = 2= % ~1.38,
y(1)= 6()\ 1)+(3g 17—0) (1—>\) +(;‘§>\—5)t3
+(A=1)* - g)\tS + %t6 - g)\ﬂ,

8 [79263889 _ _
where A = 7=\ Teaaas = 0.84, and || y|| = 0.0243.

_3 s — Iag? 473
4)+()\ 1)s 2)\s + Ts

The exact solution is
7 4
- 2)\s
and
Xoc € R(P.T*).

It follows from [5] that |[({ — P,)xq || = O(n™?), |(I — P,)z|| =
Corollary 3.10 and Theorem 2.4 imply that for a,=c¢;-n"% 8§, =c, - n-
¢, > 0 we should obtain the convergence rates e. = O(n~2). ¢ = N(n=2)

O(n~?), and hence

4
) cl,
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a, e, e, n*-10
3.9%1073 24%1072 39
8 2.4%10°* 44%107? 2.8
16 1.5%10°° 9.8%10°* 25
32 9.5%1077 2.2x%10°* 22
64 6.0+10-% 5.0%107° 2.0
n 8, — % el el-n?-10
4 3.9%10%! 6.2%10°2 10.0
8 2.4%10%° 6.4%1073 4.1
16 1.5%107! 1.3x10°? 33
32 9.5%1073 3.5%10°* 3.6
64 6.0%10"* 8.3¥107° 34

a,=10"**8, — %

The last column of each table shows that the rate obtained confirms the theoretical
result.

Example 4.2. Here the kernel is always given by

k(t,s) = {

One can show that 7* = T, T is injective, and R(T) = {y € H?[0,1]| y(0) = y(1)
= 0}. It follows from [5] that |[(I — P,)T*|| = O(n™?).
(a)C:={x€ X|x>0ae},

s(1-1) ifs<t,
t(1—s) ifs>zt

5, 8,16, 3

. 16t 9t + 27t 1f0<t<4,
y(t)'= 3 . 3

Ig(l—t) lfz<t<1,

and x, - € R(P:T*),but x5 = x5 & R(T*).

It follows from [5], analogously to Example 4.1(a), that [|(1 — P )X, cll = Oo(n™?)
for n=2% ke N. Now Theorems 3.7 and 2.4 imply that for a, =c; - n"2
8,=c,-n"% ¢, ¢, >0, we should obtain the convergence rates e, = O(n}),
ed=0(n™).

The unconstrained Tikhonov-regularized solutions x; (= (T*T, + a,I ) IT *y,
T,:= TP,) do not converge as fast as the constrained Tikhonov-regularized x, .
(The necessary condition “x, € R(T*)” for the convergence rate o(a'/?) in the
unconstrained case (cf. [4]) is not fulfilled). We denote &,:=|x; — xqcll
&%= [lx = xqll
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a, é, e, e, n**103
6.3%10°° 6.0%x10°3 231074 3.6
8 1.6%107° 53%1073 5.6%10°° 3.6
16 3.9x10°¢ 451073 1.4%107° 35
32 9.8%1077 3.8%10°3 3.5%10°¢ 3.5
64 2.4x1077 3.2%1073 8.6%x1077 35
a, é, e, e, n-10
4 6.3%10°° 4.7%1072 4.6%10°2 1.8
8 1.6%107° 2.5%1072 1.9%1072 1.5
16 3.9%10°° 1.5%1072 9.2%1073 1.5
32 9.8%10°7 8.9%1073 45%1073 1.4
64 2.4%1077 53%1073 22%107° 14

a,=10"%%8, - %

The last column of each table shows that the rate obtained confirms the theoretical
result.

(b) C:= {x € X|||x — z|| < r}, where

z(2):= 4L8(145 — 288t — 4¢3 + 21), r?2=3,

and c¢:= ]|z”2 -r
_ 1 1g,2 5 __~.6 ~
y(1):= 1240 (112 — 15¢* + 61> — 2¢°) and | y| = 0.00097.
The exact solution is
. 1 3 4
xg,c(s):= %(1 — 4s% + 2s5%),

and Pxo’c = PT*TP1, where P is the orthogonal projector onto
L:i={heX|(xgc— T*a,h)=0}={he X|(z~-xqc, k) =0},

but x, = x5 ¢ R(T*). It follows from [5] that [[(I — P,)xocll = o(n™?),
(I = P,)z|| = O(n~?), and hence Corollary 3.10 and Theorem 2.4 imply that for
a,=c,-n% 8 =c,-n3 c,c,>0, we should obtain the convergence rates

,=0(n?%, el=0(n?. We see from the tables that the unconstrained
Tikhonov-regularized solutions x; and x 2;5" do not converge as fast as the
constrained Tikhonov-regularized solutions x, .~ and xJ ., respectively. (As in (a),
the necessary condition “x, € R(T*)” for the convergence rate o(a'/?) in the
unconstrained case is not fulfilled.)
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8, — % &l el el-n-10

6.3%x107! 5.0%10°2 4.8+10°2 1.9
8 1.6*%107! 2.5%1072 1.8+10°2 1.6
16 3.9%10°2 1.4%10°2 8.6%1073 1.4
32 9.8%1073 941073 5.0%1073 1.6
64 24%1073 53%10°3 22%1073 1.4

5, — % &l el el - n?x103
1.6%107! 6.0%10°3 2.3%107* 3.7
8 2.0%10°2 5.3%1073 56%10°° 3.6
16 24%1073 45+107° 1.4%10°° 3.6
32 3.1+10°¢ 3.8%10°3 3.5%10°¢ 3.6
64 3.8%10°° 32%1073 8.7%10°7 3.6

a,=n-10"%+8 — %

The last column of each table shows that the rate obtained confirms the theoretical
result. From the third column we see that the rates for &, and &2 are very slow. For
more examples see [10].
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