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The Discrete Galerkin Method 
for Integral Equations 

By Kendall Atkinson* and Alex Bogomolny 

Abstract. A general theory is given for discretized versions of the Galerkin method for solving 
Fredholm integral equations of the second kind. The discretized Galerkin method is obtained 
from using numerical integration to evaluate the integrals occurring in the Galerkin method. 
The theoretical framework that is given parallels that of the regular Galerkin method, 
including the error analysis of the superconvergence of the iterated Galerkin and discrete 
Galerkin solutions. In some cases, the iterated discrete Galerkin solution is shown to coincide 
with the Nystrom solution with the same numerical integration method. The paper concludes 
with applications to finite element Galerkin methods. 

1. Introduction. Consider the numerical solution of the Fredholm integral equation 
of the second kind, 

(1.1) x(s) - K(s, t)x(t) da(t) = y(s), s E D. 

In this paper we will define and analyze the discrete Galerkin method for the 
numerical solution of (1.1). The Galerkin method is a well-known procedure for the 
approximate solution of this equation (e.g., see [5, p. 62]); and the discrete Galerkin 
method results when the integrations of the Galerkin method are evaluated numeri- 
cally. Before giving a more precise definition of the discrete Galerkin method, we 
review results for the Galerkin method. 

In Eq. (1.1), the region D is to be a closed subset of Rm, some m > 1; and the 
dimension of D can be less than m, for example, if D is a surface in R3. For the 
discrete Galerkin method, we will assume that K(s, t) is continuous for s, t E D, 
although that is not necessary for the discussion of Galerkin's method given below. 
The equation (1.1) is written symbolically as 

(1.2) (I -X =y, 

with the integral operator assumed to be a compact operator from L2(D) to L2(D) 
and from L?(D) to C(D). Further, it is assumed that (1.1) is uniquely solvable in X 
for all y E X, for both X= C(D) and X= L2(D). Additional assumptions on D 
and K(s, t) will be given as they are needed in the applications presented later in the 
paper. Generally y E C(D), and this will imply x E C(D). 
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The Galerkin method for solving (1.2) is defined as follows. Let { Sh: h > 0) 
denote a sequence of finite-dimensional approximating subspaces of both L2(D) 
and C(D), and let Ph denote the orthogonal projection of L2(D) onto Sh. Then to 
approximate (1.2), solve 

(1.3) (I - PhX")Xh = PhY, Xh E L (D); 
or equivalently, pick xh E Sh such that 

(1.4) ((I-Y)xh, 4) = (y, ), all , E Sh, 

using the inner product of L2(D). This is called the Galerkin method for (1.2), 
relative to the subspace Sh. In addition, define the iterated Galerkin solution by 

(1.5) xh* =y+ x 

The error analysis of Xh and xh* is well known, both in L2(D) and C(D). For a 
simple error analysis of Xh in L2(D), see [5, p. 62]; for more general error analyses 
of xh and xh*, in both L2(D) and C(D), see [12], [13], [15], [28], [29]. 

The error analysis of Xh and xh*, whether in L2(D) or C(D), usually depends on 
showing that 

(1.6) JI1- Ph{ II-*0 as h - 0 

with the norm dependent on which space X= L2(D) or C(D) is being considered. If 

(1.7) Phx-*x ash -0,allxe-, 

then (1.6) follows from the compactness of X on X; and generally we will be 
assuming (1.7) for both choices of X. From (1.6) and the assumed existence of 
(I - Xr)-1 on X, it follows that (I - Ph)- exists and is uniformly bounded for 
all sufficiently small values of h. Furthermore, 

(1.8) x - Xh = (I- PhJ*")1(x - Phx), 

(1.9) ||X - Xhll < (II- PhY)1 IIX - PhXII. 

Together with (1.7), this shows convergence, along with the rate of convergence. The 
value of lIx - Phxll will depend on both Sh and the smoothness of the unknown 
solution x. 

For the iterated Galerkin solution xh*, it is straightforward to show that 

(1.10) (I-X"Ph)xh =y 

and that 

(1.11) PhXh = Xh. 

Using an error analysis for x*, one can also be given for Xh as follows: 

1.12 
x - Xh = X - 

Phxh 
= [x 

- 
PhXI + Ph [X - 

||X - XhII | <1X - PhXII + ||PhxlllX - Xh*11- 

The analysis of (1.10) in L2(D) hinges on the fact that with the corresponding 
operator norm, 

(1.13) | X M Ph I I| X Ph - f | as h -0. 

The compactness of X implies the same for t*, and then the assumption (1.7) 
implies 1XP* - Ph'ff*II --> 0. Derivation of (1.13) employs the fact that Ph is an 
orthogonal projection in L2(D). When Ph is not orthogonal, as on X= C(D), one 
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uses ad hoc methods to establish superconvergence; for example, see [15]. It is the 
purpose of this note to introduce a formalism that allows the derivation of similar 
estimates for a wide class of discrete Galerkin methods. 

Using (1.13), a straightforward stability and convergence analysis can be given for 
(1.10). In fact, ((.10) is a degenerate kernel method if the application of (1.10) to 
(1.1) is examined in more detail. The analysis of (1.10) generalizes to C(D). For this, 
see [12], [13], [15], [28], [29]. 

For (1.10), 

(1.14) x - Xh = (I - '-Ph)-'(I - Ph)x. 

Since I -h is a projection, (I - ph) = (I - ph)2 and 

(1.15) x - Xh (I -YPh)r)1 ILX(I - Ph) ||||(I - Ph)XII 

Using (1.13) for the case f= L2(D), (1.15) shows that x* converges to x more 
rapidly than does Xh. A similar result can be shown in the space C(D); see the 
papers cited above. This more rapid convergence is called 'superconvergence'. 

In practice, the integrals in (1.4) and (1.5) are not computed exactly, which leads 
to the discrete and discrete iterated Galerkin methods, respectively. We shall 
introduce these discrete methods in the next section, initially posing them in a matrix 
algebra framework. It is shown that in many important cases, the iterated discrete 
Galerkin method is exactly the same as the direct application of the numerical 
integration method to (1.1), yielding a Nystrbm method. Section 3 contains some 
applications and implications of this result. In Sections 4, 5, and 6 we introduce a 
functional analysis framework for discrete Galerkin methods, a framework that is a 
'discrete analogue' of the analyses given above for the regular Galerkin method. 
Unlike the previous analyses of the discrete Galerkin method by [12, Chapter 3], 
[23], [30], our approach yields convergence results for the discrete methods directly, 
without referring to the convergence of their continuous analogues. Albeit more 
restrictive, our approach yields more general results where applicable. For reasons of 
space, Section 6 is placed separately at the end of the issue, in photo-offset form. 
Section 7 contains applications of this method to several classes of problems. 

This paper is devoted to the nonhomogeneous equation (1.1), but the results 
generalize to the numerical solution of the associated eigenvalue problem. The 
approximating operators in Section 5 are shown to be a collectively compact family. 
This means that the standard analyses of the numerical eigenvalue problem can be 
used, for example, [1], [3], [4], [14, Chapters 5-7], and [25]; and these results can be 
combined with the techniques of this paper to give an analysis of the discrete 
Galerkin method for solving the eigenvalue problem. Future papers will discuss the 
eigenvalue problem, iterative variants to solve the associated linear systems, and 
applications to Galerkin methods for nonlinear equations. 

Discrete Galerkin methods for boundary value problems have also been analyzed 
previously. An important early paper is [20]; and an analysis of a discrete least- 
squares method is given in [2]. Although their results are related to those given here, 
our schema is more general and is not as restricted in the properties of the operators, 
the approximating subspaces, and the numerical integration scheme. 



598 KENDALL ATKINSON AND ALEX BOGOMOLNY 

2. The Discrete Galerkin Method. The Galerkin equation (1.3)-(1.4) is solved by 
reducing it to an equivalent finite linear system. To this end, let { q), ..., T9N) be a 
basis of Sh, with N = Nh the dimension of Sh. Assume 

N 

(2.1) xh(s) = jgj(s), s e D. 
j=1 

Then (1.4) is equivalent to solving for { aj } in the linear system 

N 

(2.2) a{ ( < (Pi q) -(-*,(pi} = (Y,), i =1 N. 
j=1 

We will assume that this is easily solvable, although in practice the size of N may 
necessitate an iterative method of solution. The conditioning of this linear system is 
examined in [5, p. 79] and [32]. The iterated Galerkin solution x* is obtained by 
substituting (2.1) into the definition (1.5). 

To solve (2.2) and (1.5) in practice, usually we must numerically evaluate the 
integrals that occur in these formulas. Thus, introduce the numerical integration 
scheme 

R 

(2.3) Aft(t) da(t) -EWkRft(tkR), 
D k=1 

with all tkR E D and all WkR * 0. Here R = Rh is the number of node points; and 
we assume that the numerical integration scheme converges as R -x 0 (h -* 0), for 
all f E C(D). Ordinarily, the weights and nodes will be written simply as wk and tk, 

with the dependence on R (or h) understood implicitly. In all cases when using (2.3) 
in this paper, we will assume that 

(2.4) [Hi1] Rh> Nh, h >0. 

This will be needed for reasons that will become apparent later. 
Use (2.3) to approximate all of the integrals in (2.2), applying it twice to evaluate 

the iterated integrals of (YX'g, gi). Let 

N 

(2.5) Zh(S) =E 10jqj(S), s e D, 
j=1 

with ,1, ... fIN determined from the linear system 

N { R R R 

L LWkq)j (tk) i (tk) W EkwK(tkI t/)Tj(tI)Ti(tk)} 
(2.6) j=1 k=l k=1 W=I 

R 

Y, WkY(tk)99i(tk), i = 1,. ..,N. 
k=1 

Note that the coefficients (1j, m>) are also being approximated, as this is necessary 
for some of our later applications. In the earlier works [121, [30], these coefficients 
were assumed to be evaluated exactly; and in some cases, our work will imply the 
earlier results. To complete our approximation of the Galerkin method, define the 
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discrete iterated Galerkin solution by 
R 

(2.7) Z*(S) = y(s) + L WkK(s, tk)zh(tk), s E D. 
k=I 

To simplify the analysis of Zh and z*, introduce the following matrix notation. Let 
4 be the matrix of order N x R with 

(2.8) Oik 
= 

Ti(tA) i = 1,. ..., IN, k = 1,. ................ I R. 

Also, define 

(2.9) K = [K(tk, t,)], 
k, l = 1, ..., R, 

W= diagonal[wl,. ..,WR], 

(2.10) Y = [y(tl), ..., y(tR)] T, = [PI, ,N] 
T 

h [Zh(tl),..* Zh(tR)] h = 
[Zh*(tl),*, Zh*(tR)I 

The linear system (2.6) can be written as 

(2.11) 4W4VT4 _ WkWFTI = Wy 

and 

(2.12) Zh =0 TB. 

The iterated solution zh* satisfies 

(2.13) Z= y + KWZh. 

With this, we have 

LEMMA 2.1. 4DWZh = 4Wzh. 

Proof. Multiply (2.13) by 4'W, yielding 

( WZh* = F Wy + 44WKWZh- 

Combining (2.12) and (2.11), 

4WZ h = ('WY + 44WKWZh- 

This shows the desired result. El 
For the remainder of the paper, we will assume 

(2.14) [H2] Rank(4) = N, h > 0. 

The lemma leads directly to our first important result. 

THEOREM 2.2. Let N = R, and suppose that the system (2.11) has a solution Zh. 

Then the iterate zh* is a solution to the Nystri5m method for solving (1.1), with (2.3) as 
the numerical integration method: 

R 

(2.15) Zh*(s) - W wkK(s, tk)Zh*(tk) = y(S), s e D. 
k=I 

Proof. From the assumption N = R, ( is a nonsingular square matrix. Then from 
Lemma 2.1, zh = Z*. Combine this with the definition (2.7) to obtain (2.15), as 
desired. [O 
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This theorem has consequences that will be explored in the following section. We 
first say something further about the matrix 4). For R > N, the matrix 

(2.16) Gh = 4)W4)T 

is the discretization of the Gram matrix of the original Galerkin system (2.2), 

(2.17) rh [ P(Ti I 1J)]. 

The discrete Gram matrix Gh is not necessarily an approximation of Fh, as will be 
shown in the next section with an example, where Sh is a space of periodic 
piecewise-linear functions. This means that Eq. (2.6) need not be an approximation 
to (2.2) in order to assure convergence of Zh (or z *) to x. The theory developed in 
Sections 4 and 5 to explain this convergence differs from the customary approach 
via perturbation theory, as given in [12], [30]. In certain cases Gh = fh, and then our 
discrete Galerkin method (2.6) becomes the same as that analyzed earlier. Such cases 
are considered in Sections 3 and 7. 

To aid in further understanding the meaning of the matrix 4), we give the 
following results. 

LEMMA 2.3. Let N = R. Then [H2] is true if and only if for every set of data 
{ b1,..., bN }, there exists a unique element g E Sh with 

(2.18) p(t,) = bi, i =1...,N. 

In fact, we have that the mapping f e C(D) -g e Sh, with p(s) interpolating f (s) 
at the nodes { tj }, is a bounded linear projection operator on C(D). 

Proof. This is straightforward and well known. Also, this interpolation property is 
well known to be true for many pairs Sh, { t }, and thus [H2] is easily checked by 
considering the equivalent interpolation problem (2.18). r1 

Remark. Let N = R. Then 

(2.19) DWDT = I if and only if4 TW = I. 

Proof. Again, the proof is straightforward and we omit it. El 

3. Applications of the Discrete Galerkin-Nystrom Method. In this section we 
consider only the case Nh = Rh, h > 0, with the resultant Theorem 2.2. When the 
discrete Galerkin solution Zh exists, the iterated discrete Galerkin solution zh is 
simply a solution of the Nystrom method for solving (1.1), with (2.3) as the 
integration method. Therefore, the well-developed convergence theory for the 
Nystrbm method can be used to show the convergence of the discrete Galerkin 
method, even in the heretofore disregarded event of the Gram matrix fh not being 
computed exactly. 

The Nystrbm approximation method is 
N 

(3.1) thh(S) - L w,K(s, t,)'h (t,) = y(s), s E D. 
1=1 

With the assumptions that (i) Eq. (1.1) is uniquely solvable on C(D), (ii) K(s, t) is 
continuous for s, t E D, and (iii) the numerical integration method (2.3) is conver- 
gent on C(D), it is well known that (3.1) is uniquely solvable in C(D) for all 
sufficiently small h, say h < ho. For a development of this theory, see [5, p. 88]. 
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From the error analysis of (3.1), 

(3.2) x - th = (I - (h)1(YX - YhX), h < ho, 
where Yh denotes the numerical integral operator in (3.1). Because of Theorem 2.2, 
we will henceforth identify "h with zh* 

The Nystrom method also gives a justification of the discrete Galerkin method 
when N = R. To show that the system in (2.11) is nonsingular, write it as 

(3.3) DWDT - DWKW T = DW[I- kW])T. 
The matrix I - KW arises when solving (3.1), and it is known that 

(3.) || (I- kW)-'11 11(I Yh)_ 111 h h0 
The matrix norm on the left side is the matrix row norm; see [5, p. 105]. Since 4', W, 
and T are also nonsingular, this shows that the system (3.1) is nonsingular; and the 
condition number of the matrix on the left side of (3.3) can be found from 
information on F, Gh, and I - KW.. 

The result (3.2) says that the choice of Sh is not important in the rate of 
convergence of zh* to x, provided that [H2] is satisfied, along with N = R. Also, the 
Gram matrix Fh does not have to be evaluated exactly in order to obtain conver- 
gence. 

Application 1. Let n > 0, D = [a, b], h = (b - a)/n, sj = a + jh for 0 < j < n. 
Let Sh = 9,r- the set of functions that are polynomials of degree < r on each 
subinterval [sj1 l, sj], j = 1, .. ., n. The functions in gr- I need not be continuous at 
the node points sj. The dimension of Sh is 

(3.5) Nh = rn. 

On each subinterval [slj sji], let an integration scheme be given: 
s ~~~~~r 

(3.6) f f (t) dt EVkjJ(Tkj) 
k=I 

with Sj1 <; Tlj < *** < Trj < Sj Assume that (3.6) has degree of precision d on 
each subinterval [sj-l, sj]. The formula (3.6) leads naturally to an integration 
formula over all of [a, b], and the number of integration nodes will be R = rn. 
(Note: Because of the discontinuous nature of the functions in Sh, we can allow 

Tij = s1- i and Trj = s1, while still considering Trj and T + 1 as distinct nodes.) 
The space Sh is not contained in C[a, b], so the analysis will be extended to allow 

functions which can be considered as continuous on each subinterval [sj-1, sj]. This 
can be done in several ways, as is pointed out in [9]. We will use a formulation using 
L?[a, b], with the point functional evaluations defined as in Section 2 of the cited 
paper. With this, we have the following theorem. 

THEOREM 3.1. Assume (1.1) is uniquely solvable on C[a, b]. Further assume that 
X E Cd+l[a, b] and that K(s, t) is d + 1 times differentiable with respect to t. Then 
the iterated discrete Galerkin solution zh* satisfies 

(3.7) |x - Zh = O(h dl). 

If d > 2r - 2, then Fh = Gh. For a maximal order of convergence, choose (3.6) to be 
Gauss-Legendre quadrature on [sj-1, sj], j = 1, . . ., n. Then d = 2r - 1 and 

(3.8) |x - Zh = (h 2r). 
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Proof. These results are a straightforward use of (3.2), together with easily derived 
error bounds for the numerical integration in (3.6). The fact that Gh = rh when 
d> 2 r - 2 follows from the fact that the integrand in 

n 

(I, ) ?= Is' cp,(t)cpk(t) dt 
J=1 -y1 

is a polynomial of degree < 2r - 2 on each subinterval. The result (3.8) is the same 
as that given in [12, Theorem 3.6]. El 

Application 2. Let D be a piecewise-smooth surface in R3, with 
(3.9) D = D1 u UDj. 
For each D., assume the existence of a smooth mapping 
(3.10) Fj:DJ-*DJ, j= ...IJ, 

where Dj is a polygonal region in the plane. For each such region DJ, let t A k1J } be a 
triangulation of DJ, and let Fj(Lk,J) = Ak,j define a corresponding triangulation of 

DJ. Collecting together all these triangulations of D, ..., DJ one has a triangulation 

{ Alv 1 I * n} of the surface D. 
To have a standard means of defining approximations and numerical integration 

on { i\,k }, we introduce an alternative way of defining '\ k. For each Ak, let v1,k' V2,k, 

and V3,k be its three vertices. Also let e be the unit simplex in the plane: 
(3.11) e = s t s t s - t > 0}. 

1-1 
Define mk: -* Ak by 

onto 

(3.12) mk(s, t) = Fj(iWl,k + tV2,k + SV3,k), (, t) E e, u = 1 - - 

where L\k C Dj. We define Sh as the set of functions that are images under mk of 
polynomials of degree < r on e, for k = 1, . . ., n. Again the space Sh will not be 
contained in the continuous functions, and the analysis must be extended to L?(D) 
in order to carry out an error analysis. 

For numerical integration, let 

(3.13) If (s, t)d- WJf (Si tj) 
j=1 

Then for integrals over A\k, use 

f(Q)dS(Q) = f (mk(&,i))|Dsmk X Dtmklda 

(3.14) 

?Wkjf ( Mk (Si tJ ) 
J=1 

with WkJ = WjIDSmk X Dtmk(&j, i1) . Ds denotes the partial derivative with respect to 
s, and similarly for Dt. For more information on both the triangulation of D and the 
numerical integration (3.14), see [7], [8]. 

The dimension of Sh is 
(3.15) N = n(r + 1)(r + 2)/2; 
and the total number of integration nodes is 

(3.16) R = n/. 
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Thus to have N = R, we must choose 
(3.17) _ (r + 1)(r + 2) 

Subject to this, we choose (3.13.) to maximize the degree of precision d. For formulas 
chosen from [24], [31], we have the possibilities shown in Table 1. 

Assuming (i) an integration rule of degree of precision d, (ii) sufficient smoothness 
of the functions K(s, t) and x(t) on each DJ, and (iii) sufficient smoothness of each 

Dj (by means of the mappings FJ), we obtain from (3.2) that 

(3.18) x - Z* |lo = O(h d?), 

where h denotes the maximum of the diameters of the triangles Ai making up the 
triangulation of DJ, ... . DJ. This is a relatively straightforward argument, and we 
refer the reader to [7]. 

TABLE 1 

Maximal degree integration rules 

r 0 1 2 3 

f 1 3 6 10 
d 1 2 4 6 

We note that, in general, G h F rh, because of the presence of the Jacobian 

IDsmk X Dtmkl in the integrand of (3.14). Nonetheless, what is referred to as 
superconvergence is still attained. With approximations in Sh of degree < r, one 
would ordinarily have 

(3.19) |ix - Xhlloo = O(h 

for the Galerkin approximation and 

(3.20) x - Xh = O(h2r2) 

for the iterated Galerkin approximation. According to Table 1 and (3.18), we do not 
quite attain this order of superconvergence with z1*, although there is an improve- 
ment over (3.19). More accurate numerical integration will be needed to replicate 
(3.20), and this will be returned to in Section 7. 

Application 3. We consider two different approximating families Sh while using 
the same integration rule, thus arriving at the same iterated discrete Galerkin 
method. Let D be a smooth simple closed curve in the plane. Then C(D) can be 
replaced by Cp[0, 2 r], the space of continuous periodic functions on [0, 2 r]. As our 
first choice of Sh, use Sh = gn, the set of trigonometric polynomials of degree < n, 

n 

cp(s) = ao + , [ajcos(js) + b sin(js)]. 
j=1 

Then the dimension of Sh is N = 2n + 1. For the second choice of Sh, let Sh = h 

the set of continuous piecewise-linear periodic functions on [0, 2 "], with each 

p E- h linear on [tj 1 tj], j = 1, .., 2n + 1, 

(3.21) t= jh, 0 < j < 2n, h = 2T/(2n + 1), 

31t2n+1 to, t2n+2 = t. 

The dimension of 6h is also N = 2n + 1. 
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For the integration rule, use the trapezoidal rule with the nodes in (3.21). Then the 
number of distinct nodes is only R = 2n + 1 because of the periodicity of the 
functions being integrated. This is a natural integration rule to use when Sh = gn, 
because the integration rule then has degree of precision d = 2n and Gh = h. This 
would seem to preserve the rapid convergence of the Galerkin method with Sh = gh. 

For the space Sh = 'h' however, we will not have Gh = h. For a basis of "7h' use 
the standard 'hat' functions: 

((s - tJ-1)1h, ti _ <1 s <1 ti I 

jy(s) (tJ+1 - s)/h, t <, s < t?+ 1 j = 1,...,2n + 1, 

ol O,otherwise. 

Then Fh is almost tridiagonal (it is circulant); and (F = I, Gh = hI. Gh is not a good 
approximation of Fh. 

According to the standard theory of Galerkin's method, one would expect 

||X - Xh 11oc = O(h 2), |x - X* = 0(h ) 

with Sh = ?h. But according to Theorem 2.2 and formula (3.2), we need only 
consider the integration error in examining the error in z *, and it will coincide with 
the result using the more sophisticated approximation from $n. It is well known that 
for sufficiently smooth periodic integrands, the trapezoidal rule converges very 
rapidly; see [6, p. 253] and [16, p. 314]. Thus llx - z,*ll will converge very rapidly, 
regardless of which underlying space Sh is being used. When going back to Zh, 

however, this greater speed will be lost for approximants from Yh, except at the 
node points (since Zh(tl) = Zh*(t,)). 

4. The Discrete Orthogonal Projection. We will introduce a discrete analogue to 
the orthogonal projection Ph of L2(D) onto Sh. Using this discrete projection, we 
will give an error analysis in Section 5 for the discrete Galerkin method when 
R > N. In this section the discrete projection is defined and its properties are 
examined. Examples with important subspaces Sh will be given in Sections 6 and 7. 

Using the numerical integration method (2.3), define 
R 

(4.1) (f, g) h = Wkf (tk)g(tk), f, g E C(D), 
k=1 

(4.2) lIf lih (f, f )h, f E C(D). 

The latter is only a seminorm on C(D), but we will henceforth assume it is a norm 
on Sh: 

(4.3) [H3] f E Sh and II f |h =? implies f = O. 

We also assume 

(4.4) [H4] wj>O, j=1,...,R. 

With [H4], it is usually straightforward to prove [H3]. In particular, we have the 
following easily proven result. 

LEMMA 4.1. Let [H4] hold, and, in addition, assume that functions from Sh possess 
the interpolating property (2.18) with respect to a subset of N of the integration nodes 
used in (4.1). Then [H3] holds. El 
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With the definitions (4.1) and (4.2) and using [H4], it is easy to show that 

(4.) (f f, 9)h I < 1f lll 9 lhiih f, g E- C(D), 
R 1/2 

(4.6) Ilf Ilh < Cllf IKo c = EWk] f E C(D). 

Since the integration rule is convergent on C(D), the constant c can be bounded 
independent of h. 

Define the projection operator Qh: C(D) -* Sh by 

(4.7) (QhfJ ) h= (f, ')h all p E Sh . 
To see that such a Qhf is uniquely defined, let Sh = Span{ qP1, .. ., 9N and write 

N 

(4.8) Qhf(S) = m(S) = E ajpj(s), s ED. 
j=1 

To satisfy (4.7), it is necessary and sufficient that al,.. ., a N satisfy the linear system 
N 

(4.9) E ai (cpj,p1i)h = (f, Ti)h i = ...I N. 
j=1 

The coefficient matrix is a Gram matrix relative to the inner product (4.1), and it is 
also the matrix Gh of (2.16). To show Gh is nonsingular, we use the standard 
arguments to show it is positive definite, with the aid of [H3]. Thus (4.9) is uniquely 
solvable and Qh f is uniquely defined. The linearity of (4.9), relative to f, will also 
show Qh is linear; and the uniqueness of Qhf shows Qh is a projection, i.e., 

h Qh. 

As a first indication of the usefulness of Qh, we give the following result. 

LEMMA 4.2. Let Zh and zh* be the discrete Galerkin and discrete iterated Galerkin 
solutions, from (2.5)-(2.7), assuming they exist. Then 

(4.10) Zh = 
Qhzh,v 

in analogy with (1.11) for the original Galerkin method. 

Proof. Recall Lemma 2. 1, that D WZ h = iD Wz * 

Equating corresponding elements, 
R R 

E Wk/i(tk)Zh(tk) = 
E WkTi(tk)Zh*(tk), i = 1,..., N, 

k=1 k=1 

(Zh ITi)h =(Zh Ti)hi i =1 ... I N. 

Since {T (P1 . .. , TN is a basis of Sh, this says 

(zh,4')h 
= (z, ')h all 4 E Sh. 

From Zh E Sh, the uniqueness of QhZh* combined with this latter result proves 
(4.10). El 

Some additional properties of Qh are given in the following 

LEMMA 4.3. (a) Qh is selfadjoint on C(D), relative to the discrete inner product 
(4.1): 

(4.11) (Qhfv g)h 
= (f, Qhg)h, f, g E C(D). 
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(b) 

(4.12) ffQhf fIb -<ff IIlh, f E C(D). 
(c) If the family { Qh: h > 0) is uniformly bounded on C(D), using the usual 

operator norm induced by the uniform norm 11 *I I,,o then 

(4.13) I - Qhf K < C minimum ff f - mf 

with c independent of h andf. 
(d) When N = R, the projection Qh is the interpolating projection from C(D) onto 

Sh, i.e., 

(4.14) (Qhf)(ti) =f(ti), N. 
Proof. (a) From (4.7) with =Qhg= 

(Qhf , Qhg) h = (f Qhg) h 

Similarly, 

(Qhg Qhf ) h = ( g Qhf ) h' 

Using the symmetry of the inner product, result (4.11) is proven. 
(b) 

flQhf hI = (Qhf' Qhf )h 

= 
(f'Qhf)h' using = Qhfin (4.7) 

< 11 llhll Qhf fih, using (4.5). 

If Qhf 0 0, cancel IfQhfllh to prove (4.12). If Qhf = 0, then (4.12) is trivially true. 
(c) Let 

(4.15) q= SupremumllfQhf < 00. 
h>O 

Then for any T) E Sh, 

(4.16) f- Qhf = f + Qh -Qhf (I Qh)(f )' 

(4.17) lf Qhf loo < (1 + q)Iff- pffl. 

Let c = 1 + q, and form the minimum of the right side over Sh to prove (4.13). 
(d) The system (4.9), defining Qhf' can be written as 

Gha = 4Wf, f = [f(tl), ..., f(tN)IT 

Using (2.16) for Gh, 

4DW4DTO = Jwf. 

Since F and W are nonsingular, we have 
Ta= f. 

But from (4.8), with s = ti, we have 

Qhf(ti) = (fTx)i = (f)i =f(ti), i =1 ... N 
and thus the result is proven. rO 

Part (c) shows that Qhf 
-- fin C(D) if (i) the family { Qh: h > 0) is uniformly 

bounded on C(D), and (ii) the family { Sh: h > 0) approximates all elements of 
C( D). Conversely, if Qhf -* f for all f E C(D), then { Qh } is uniformly bounded 
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by the principle of uniform boundedness. We examine next the general problem of 
bounding the family { Qh } for some important approximating families { Sh}). 

In general, we need to bound Qhf in (4.8), subject to a1, . ., a N satisfying (4.9). 
The choice of the,basis { ,-1 ... I T} of Sh is at our disposal. Since the coefficient 
matrix of (4.8) is Gh, a bound for Qh can be produced by using 

11 11 oo 1 Gh -'I MaxN I ( f x99i ) hI 

(4.18) NlIG-11IIII Max w 

< |h ||l 1 Ma E Wkl gi (tk) I 
<'i< k =1 

with a= [al, .. ., of]. The matrix norm used in IIGK1II is the row norm. Combining 
(4.8) and (4.18), 

(4.19) IIQhf K1oo I Cf 11f, 

(4.2) C=IG-11 Ma E Iq)i(s) IrMax R 
k Pi(k 

(4 .20) [ ~~s E D z =1 ][1<i t SN k= 1 

Thus the problem of bounding Qh is reduced to that of bounding GK1, at least in the 
case when the underlying subspaces Sh are of finite element type. For then, 

N 

Max qiq(s)1 
se-D 

can be reasonably assumed to be bounded independent of h; while for the last term 
in (4.20), an estimate 

R 

Max E Wkl9)i(tk)| < ch8 
l<i<N k=1 

could be established. 
Bounds on II1W'll7 were studied in [10], [18] in case of spline spaces Sh, and in [17], 

[19] for finite element spaces over subregions in Rn. The possibility of defining the 
discrete inner product and the corresponding projection was mentioned in the latter 
paper; and the discrete projection onto spline spaces in conjunction with collocation 
methods at Gaussian points was used in [21], [22]. Unlike the latter two papers and 
aforementioned works [12], [30], we do not require Gh= Fh in order to establish 
convergence llx - z,*1j -- 0. 

Anticipating the superconvergence results for the discrete iterate zh*, we next show 
that the discrete Galerkin solution Zh inherits certain superconvergence properties of 

* 
Zh. 

LEMMA 4.4. Let Zh and zh* be defined as in Lemma 4.2. Then 

(4.21) IlQhX - Zhllh < CjjX -Zh*11X 

where c is the constant in (4.6). 

Proof. Using consecutively (4.10), (4.12), and (4.6), one has 

IIQhX - Zh lih = IQh(X - Zh) Ith -< |X - Zh*lh |< CjjX - Zh* lo c 

Assuming (4.19), we state a stronger result. 
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LEMMA 4.5. Assume (4.19) holds, i.e., IIQhf loo < Cllf 11 for allf c C(D) with c 
independent of h. Then 

(4.22) IIQhX - 
ZhIIx -<- C||X - Z* ||w 

Proof. In (4.19), set f = x - zh*; and then use 

IiQhX-ZhKllo= lQh(X-Zh*) llooc<X-z* Zh* 1 l 

With N = R, Qh is just the interpolating projection. Thus (4.22) extends the result 
of Richter [26], on the superconvergence of (x - xh)(t1) for collocation at Gaussian 
points, to the case of the discrete Galerkin method. 

Thus we see that the convergence of the discrete Galerkin method hinges on 
availability of the bound (4.19). This will be discussed in Sections 6 and 7. But first 
we introduce the formalism for handling the fully discretized Galerkin method. 

5. General Error Analysis. Recall the numerical integral operator 1h based on 
the integration rule (2.3), 

R 

(5.1) (Xhf )(s) = E w1K(s, t1)f (t1), s E D. 
J=1 

Using the notion of the discrete inner product (4.1), we also have 

(5.2) (Xhf)(s) = (ks,f)h, 

where ks = K(s, ). 

LEMMA 5.1. The discrete Galerkin method (2.5)-(2.6) can be written equivalently as 

(5.3) (I - QhXh)Zh = QhY' Zh E C(D). 

Moreover, the discrete iterated Galerkin solution satisfies 

(5.4) (I - hQh) Zh* Y- 

Proof. From (5.3), Zh = Qh(Y + khzh) E Sh. Using this, rewrite (5.3) as 

Qh [(I- Yh)Zh - Y] = ?' Zh C Sh- 

This is equivalent to saying that Zh E Sh and that it satisfies 

((I- h)Zh-Y,4))h=0 all PcSh. 

Choose a basis { 1, .I. I, 9PN of Sh, and successively set A = TPi, i = 1, . . ., N. This 
leads directly to the formulation (2.5)-(2.6), showing the equivalence with the 
formula (5.3). 

As to z *, the definition (2.7) is equivalent to 

(5.5) Z*h Y + YhZh, 

from which QhZh* = QhY + QhYhZh = Zh, supplying another proof of Lemma 4.2. 
Now replacing Zh with QhZ* in (5.5), we prove (5.4). E 

Solvability of the two equations (5.3) and (5.4) follows easily from the standard 
theory of collectively compact families of operators, [1], [5]. 

THEOREM 5.2. Assume the integral equation (I - ))x = y is uniquely solvable for 
every y e C(D), and assume K(s, t) is continuous for s, t E D. Let 

(5.6) {Sh C C(D): h > 0} 
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be a sequence of approximating subspaces with the property that for each f E C(D), 

(5.7) Ph(f ) = rnin Ilf - (pllD '4 O ash -4 O. 
e E Sh 

Finally, assume that the discrete projections { Qh: h > 0) are uniformly bounded, 

(5.8) q sup IIQh II < ?? 
h>O 

Then { Qh fh } and { 1hQh } each form a pointwise convergent and collectively 
compact family of operators. Hence, for all sufficiently small h, the operators I -Qhh 

and I- '1hQh are invertible on C(D) (for, say, h < h0), and 

(5-9) II(,I- Qhyh) ||l < B5 II(, - hQh) ||l < B < Xo 
Moreover, 

(5.10) (I- QhYh)(X -Zh) = (I- Qh)(Y + )hX) + (X- Xh)X 

and 

(5.11) (I - YhQh)(X - Zh*) = -X s'hQhX- 

Thus both IIX - Zhlloo and lix - zhl11 tend to 0 as h - 0. 

Proof. We concentrate on the equation (5.4). Equation (5.3) can be dealt with in a 
similar manner. We show that {YhQh: h > 0) is a pointwise convergent and 
collectively compact family of operators on C(D). Then the general theory of 
collectively compact operators can be used to complete the proof (e.g., see [1] or [5, 
p. 96]). 

From (5.7), (5.8), and (4.17), 

(5.12) Ilf- Qhf Ill < (1 + q)ph((f), 

proving that Qhf -4 f as h - 0, for all f E C(D). Then 

(5.13) Yf - YhQhf= [f -hf I +Yh[f Qhf I 
It is straightforward to show that lkXf - )hf K-4 0 (see [5, p. 90]); and then the 
principle of uniform boundedness implies { Yh) is uniformly bounded. Combining 
the latter with (5.12), the last term in (5.13) also goes to zero, completing the proof 
that 'VhQhf (f 

The collective compactness of { IhQh: h > 0) will follow by standard arguments. 
Combined with the pointwise convergence of { 1hQh }, the remaining results follow 
from known theory [1], [5]. 0l 

We now give another proof of Theorem 2.2, within this new framework. 

COROLLARY 5.3. When N = R, the discrete iterated Galerkin solution results from a 

Nystrobm approximation of the integral equation (1.1). 

Proof. From Lemma 4.3(d), we have 1hQhf(S) = Yhf(S) for all f E C(D). Thus 
formula (5.4) for zh* reduces to 

(I -Yh)Zh* =y, 

the Nystrom method. El 
To obtain superconvergence results for zh to x in the original Galerkin method, 

examine the error term in (5.11). This reduces to examining the error 
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LEMMA 5.4. Let ks(t) = K(s, t), s, t e D. Then 

(5.14) Xkx(s) ^hQhx(s) =[ x(s) -Yhx(s)] ?((I - Qh)ks, (I- Qh)X)h 

and 

(51) YX (S) - YhQhX (S) I X < (S) 
- 

hX (S)I 

+ |(I- Qh)kSII, h1J (- Qh)xX h,oo 

The seminorms are 
R 

(5.16) ll IIh,1 = Wjl f (tj) |, ll f IIh,oo = Maximum I f (tj) 
1=1 I <j< R 

Proof. Write 

XX(S) - hQhX(S) = [X(S) -hX(s)] + h(I 
- 

Qh)x(s). 

Then note that from (5.2), 

Yh(I - Qh)x(s) = (ks, (I - Qh)X)h = (ks, (I - Qh)2X )h 

= ((I Qhks, (I - Qh) x)h. 

The last two steps used the facts that I - Qh is a projection and that it is selfadjoint 
from Lemma 4.3(a). (5.15) follows easily from (5.14). O 

This shows the quantities that must be examined in order to obtain convergence 
results for z*, namely, (1) JX-)rhX, (2) x - Qhx, and (3) (I - Qh)ks. The first is 

simply the numerical integration error. The second and third are the errors in using 
the projection of C(D) into Sh, and these are examined for particular cases in the 
next two sections. 

When Sh contains only piecewise-continuous functions, the above arguments can 
still be used. Note that if Sh C L?(D), then X: L?(D) -- C(D) implies that 

(hQh: C(D) -b C(D), and zh* will still be a continuous function. The discrete 
solution Zh will not be continuous, but the following bound in (5.17) is still valid. 

Note also that for the difference x - Zh one has 

(5.17) || X - Zh ll oo =-| X - QhZh* lloo < 1- X QhX 1l1K + || Qh || || X -Zh1 

which provides a way other than (5.10) to estimate lIx - Zhllo. As the first applica- 
tion of the above lemma, consider the simple case of a smooth kernel K(s, t) and a 
smooth right-hand side y. Assume also that for smooth f, 

inf Ilf - Tlloo = O(h'); 
e E Sh 

and assume the integration formula used is of degree of precision d. Then under the 
assumption that { Qh } is uniformly bounded, 

(5.18) 1IX - Zhllo = 0(h min(l,d?+ 1)) 

(5.19) x - Z*|- 
= 0(h mn(2I,d+ 1) 

(5.19) actually coincides with a result by Chandler [12], while (5.18) improves the 
corresponding result of his in the event we are concerned with, i.e., when the same 
integration formula is used in defining Qh and 1h. 
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While we are on the case of smooth kernels, let us use (5.14) to make a remark 
that parallels one in [28]. Namely, the rate of convergence observed in (5.19) remains 
the same for all derivatives of x - z*, i.e., 

(5.20) |Da(x - z*) || = min(21,d+1)) 

where a is a multi-index. This follows from (i) the fact that the uniform bounded- 
ness of (I - VhQh)-l in C(D), h < h,, implies their uniform boundedness in 
Ck(D), the space of k times continuously differentiable functions, and (ii) the easy 
formula 

(5.21) IID ah(I- Qh)xK|oo = max((I- Qh)ke,l(I- Qh)X)h, 
S 

where k5 = Ds"K(s,*). 

6. Bounds on Gj 1. See the Supplements section at the end of this issue. 

7. Applications. In this section, we derive the bound in (4.19)-(4.20), using the 
results of the preceding section. To define the projection Qh, we have to specify the 
spaces Sh and the numerical quadratures (2.3). 

We consider finite element spaces as described in Section 6. Starting with an 
integration formula over the reference element, 

(7.1) f(t^)t dt- E (?j), 
e = 

we define the composite formula over D, 
E f 

(7.2) f (t) dt - E Wjk9(tjk), 
D k=1 j=1 

where tjk = Fk(i ), and wjk = w'yDFk(t )1, k = 1,..., E, j = 1,..., 1f, in accor- 
dance with (3.13)-(3.14). 

Using (7.2), we define the scalar product (-, )h as in (4.1) and (6.2), with 
If 

(7.3) (T, P) ek = WkP ((t]k) 4 (tjk)) 
j=1 

This clearly satisfies (6.10) and (6.11), if the scalar product ( is defined by 
means of 

(7.4) p,)^Ewjtj (y. 
j=1 

To state a general result, we have to impose two additional conditions, in addition 
to (a)-j) of Section 6. 

Fk is continuously differentiable and 

(k) max IDFk (0I <KM (ek), k =l,1...,IE. 
tee 

In case Fk is an affine mapping as in (6.11), this follows from IDFkI = m(ek)/m(e). 

(1) Let Mj ={k: Cj 1 ek1. Then IMj J< M, j = 1,..., N. 

This is easily verified for all commonly used finite element spaces. 
We can now state the following general result. 
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THEOREM 7.1. Let spaces Sh be defined as in (a)-(I), where for definiteness, we set 
h = max(d(ek)), k = 1,..., E. Then with (, )h defined as above and Qh as in (4.7), 

(7.5) IIQh 1I < C, 

independent of h. 

Proof. We have to estimate the three terms in (4.20). First, using (), we get 
N N 

Max E Pi (s)|= Max Max E (Pi (s)| 
seD i k=l,..,E seek i=1 

= Max Max E ITp(s) 
(7.6) k=l,...,E seek jlek 

< M Max Max MaxI|P (s)| 
k=l,...,E seek lCIk 

< Max MaxI j (S-) <C M, 
j=1 v & eeC 

for a constant C independent of h. 
For all i = 1,. ..,Nand k E Mi, denote the progenitor of qPi over ek as 

q9ik = milek Fk 

as in (6.14). Using this notation, we next estimate the last factor in (4.20). Thus, for 
all i = 1, ..., N, we see that 

R E f 

E Wkl i (tk) I = : E E WjklTi (tjk) I 
k=1 k=1 j=1 

- E E w]jqpik(tj) I' from(j) 

(7.7) keM j=1 
If 

< K E E-Wjm (e )|i tj)| from (k) 
k iM J1-i= 

)I 
keM, j=1 

< K* Max E E Vp(i)| Max m(ek) 

1=1,. v keMi j=1 1. E.. k E 
k 

< K- M- ch = ChS, 
where n = n or n = n - 1 as in (h), and C is independent of h. 

Finally, applying Lemma 6.3, (k), and the same bound on m(ek) as in (7.7), we 
obtain through Theorem 6.1 the estimate 

(7.8) JIG-'II < Ch- n 

with C independent of h. 
Combining (4.20), (7.6)-(7.8), we finish the proof. O 
Examples. Consider the unit simplex e, as in (3.11). Let V1, V2, V3 be its vertices 

while v02, v23, v13 are the midpoints of its sides. First we study the element 

{e, 91}, where 91 is the set of polynomials of degree less than 2, and 

2= { v8 83 }. The scalar products are defined with 

=6 
I =1 
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The space Sh consists of piecewise-linear continuous functions, and the discrete 
iterated Galerkin method reduces to the Nystrom method with nodes at vertices of 
the triangulation. 

If one chooses instead 2? = { 3121, 823, A13 } and replaces (7.9) with 

(7.10) (6 i ' 
6, 1.,=1 

i *j 

then Sh will consist of piecewise-linear functions, continuous at the midpoints of the 
sides of the triangular elements. The discrete iterated Galerkin method coincides 
with the Nystrom method with nodes at these points. Again, although (7.10) is exact 
for the finite elements concerned, Qh does not reduce to the customary orthogonal 
projection h- 

It immediately follows from the general theory that, taking operators X with a 
smooth kernel, we have lix - zhlloo < ch2 in the first case, while lix - zh ll" < ch3 
in the second case, since the degree of precision of the quadrature in (7.9) is 1, while 
that of the quadrature in (7.10) is 2. Note that lix - x*flloo < ch4, from which we see 
that, though the discrete iterate zh converges faster than Zh (or for that matter Xh), it 
does not attain the full superconvergence of X4. As we see, to achieve this, it does 
not suffice to choose an integration formula for which the integral in (7.4) is 
evaluated exactly. To obtain the convergence rate 0(h4) for zh, an integration 
formula with degree of precision d > 3 is needed. From [24], there exists a formula 
with d = 3 that has 4 nodes. 

As the last example of finite element spaces, we consider the piecewise-smooth 
surface D from (3.9). The triangulation is defined by (3.10)-(3.12), while the scalar 
products (', )e are defined by means of the integration (3.13)-(3.14). The kernel of 
the integral operator X is assumed to be smooth on each of the patches DJ. The 
same holds for the solution x, provided the right-hand side y is sufficiently smooth. 

Theorem 7.1 applies directly; thus we have that (4.19) holds. Convergence 
estimates easily follow from (5.14), (5.17). The difference (X- Jh)x(s) is bounded 
as in [7], [8]; we have as before 

lix - zhll < c(hd+l + hr+l) and x - z C(hd+1 + h2(r+1)). 

To attain the rate of convergence of the exact Galerkin iterate xh, which is 
h 2(r+ 1), one has to choose an integration formula with 

(7.11) d+ 1 >2(r+ 1). 

Finally, note again that (7.11) does not imply Qh = Ph. 

Lastly, we would like to remark on the applicability of the developed theory to the 
spline spaces. The crucial assumption (j) holds for the spline spaces S(r, k) with 
2k < r - 1, where 

S(r, k)= {fE Ck[a,b]: f!t1, lt,j E )- 

Here, A: a = to < ... < tm = b is a partition of a finite interval [a, b], gr is the 
set of polynomials of degree less than r. When 2k = r - 1 one has a space of 
Hermite splines; with 2k < r - 1 the splines are less continuous than in the latter 
case. 



614 KENDALL ATKINSON AND ALEX BOGOMOLNY 

Thus we can formulate the following 

COROLLARY 7.2. Assume for Sh = S(r, k) with 2k < r - 1 that (a)-(k) hold. Then 
with (-, *)h defined by (6.2) and Qh by (4.7), 

11 Qh| < C, 

independent of h. 0 

Example. Let K be an operator with a smooth kernel. Then using the above-de- 
fined spline spaces Sh of Corollary 7.2, we have two estimates for the exact Galerkin 
and iterated Galerkin methods: 

(7.12) lix - Xh llo < chr 

and 

(7.13) lix X- xllo < ch 

provided the right-hand side y E Cr[a, b]. 
If the quadrature in (7.1) has degree of precision d, then from (5.14) we 

immediately have 

(7.14) lix -z* 1l < c(hd+l + h2r); 

and combined with (5.17), 

(7.15) ||x - IL < c(h"d1 + hr). 

Then using numerical integration maintains the accuracy of the Galerkin method if 
d > r-1. To preserve the accuracy of the iterate, we need d > 2r - 1; although 
with d > r - 1, the discrete iterate will exhibit superconvergence. Compare with 
[12]. 

Remark. Consider more general spline spaces Sh = S(r, k), with a greater order of 
smoothness. Assume that the numerical integration (7.1) over the reference element 
has degree of precision d > 2r - 2. As a basis for Sh, use the normalized B-splines. 
Then Gh = Fh, because the numerical integration of all inner products is exact, 

(p,m )h= (m +), P E , Sh- 

Thus, although Qh + Ph, the results of de Boor [10] can be used to bound IIGK-11, 
giving the result (7.8) with n = 1. Also, since B-splines are nonnegative and 
constitute a partition of unity, (7.6) is verified directly, with 

N 

E ) IP(s) =1 a < s < b . 
i=l 

The assumption (1) holds easily, and this implies (7.7). Thus we also have for the 
general spline spaces Sh = S(r, k) that 

IIQh| < C, 

independent of h, provided the degree of precision d of (7.1) satisfies d > 2r - 2. 
With this, the inequalities (7.12)-(7.15) also apply to Sh = S(r, k). In (7.15), we 
need d > 2r - 1 in order to recover the full speed of convergence of the iterated 
Galerkin method. This was noted previously in [12]. 
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