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An Algorithm for the Construction
of Optimal Methods for the Numerical Solution of
Volterra Integral Equations of the First Kind

By C. J. Gladwin

Abstract. Optimal methods for the numerical solution of Volterra integral equations of the
first kind are outlined in [3] and [4]. An explicit algorithm for the construction of such
methods as well as tables of coefficients for methods with order less than or equal to eight are
displayed here.

1. Introduction. Quadrature methods for the numerical solution of Volterra
integral equations of the first kind are described by the ordered triple Q(C, B, r),
where:

(i) C € R?*! consists of the Newton-Cotes quadrature weights with step number
p;
(ii) B € R?*? are coefficients of the polynomial

p+1

(1.1) e(z) = Zﬁob,-zp+1";

(iii) r is the order of the methods, r < p + 2;

(iv) p starting values are needed prior to the implementation of the method. See
[3], [4] and [5] for details.

Here we shall only be concerned with giving a simple explicit algorithm to search
for optimal methods Q(C, B, r). A table of the coefficients, B, for r < 8 will also be
given. The constraints on B are two-fold. First, r linear conditions must be satisfied
to attain order r, and second, the roots of the polynomial p(z) must lie in or on the
unit circle with roots on the circle having multiplicity 1. We have available
p + 2 — r > 0 parameters to implement the slightly more restrictive form of the
latter condition: All roots lie strictly inside the unit circle. Furthermore, we are only
interested in methods satisfying the above constraints which have the least number
of free parameters. It is known that p + 2 — r = 0 for p = 0 only; see [5] or [6]. We
first give a short digression on some classical stability results for roots of polynomi-
als.
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2. Schur and Hurwitz Polynomials. ([1] or [7].) All polynomials considered here
will be assumed to be in the class m,, the set of polynomials of exact degree n with
real coefficients and no roots at the origin.

Definition 1. The polynomial a(z) = L!_ya,z" is said to be a Schur polynomial if
a(z) = 0 implies |z| < 1.

Definition 2. The polynomial b(w) = L"_,bw' is said to be a Hurwitz polynomial
if b(w) = 0 implies Rew < 0.

We catalogue some relationships between these two classes of polynomials:

@) b(w) = (w—D"a((w+ 1)/(w - 1)) €m,

(i) a(z) = (z = 1)/)"b((z + D/(z = 1)) € 7,.

(iii) The coefficients of a(z) and b(w) are related by the matrix relations:
(2.1a) B=T-4,

(2.1b) A=2"T-B

with 4 = (ay, ay,...,a,), B=(by,by,...,b,), and T = (v:,) the matrix of order
n + 1 generated by the recursive scheme:
Yic1,j-1 = Yi—1,; ~ Yij-1 = Yij»

n), i,j=11)n.

2.2
(22) =t (]

(iv) The polynomial a(z) is a Schur polynomial if and only if b(w) is a Hurwitz
polynomial.

(v) The polynomial a(z) is a Schur polynomial if and only if:

@) lao| < la,,

(b) a,(z) = L'2g(a,a;,1 — Gg@,_;+1y) 2 is a Schur polynomial.
In later applications, it will be necessary to normalize the coefficients of a,(z),
leading coefficient unity at each step, due to the rapid growth of the coefficients of
a,(z).

We shall use the notation D‘{ p(z)} to denote the ith derivative of p(z) with
respect to z.

(vi) If p(z) is a Schur (or Hurwitz) polynomial then D'{ p(z)}, i = 0(1)n, are
also Schur (or Hurwitz) polynomials. The contra-positive of this statement will be of
use in the algorithm.

3. The Algorithm. We return to the consideration of p(z), defined in (1.1), and
also the transformed version

(3.1) r(w) = (w = 1)

The order conditions imposed on p(z) are given by the linear system

w+1)
w—1)

p+1 1
(3.2) Y i, = Sk j=01)r-1,
i=0
with the convention 0° = 1.
It was shown in [3] that
p+l

(33) 7(w)= g q.2'(w — 1)P+1_i +(w— 1)p+1ri bp+1_i(w + i)",

i=0 w=
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where ¢, are linear in b,, i = 0(1)p + 1 — r. This enables us to use the linear system
(3.4) D'{r(wy)} =0, i=01)p+1-r,

to determine the remaining parameters so that 7(w) (or p(z)) has as many equal real
roots as possible; see also [3]. Here, w, is selected from the at most r — 1 real roots
of DP*27r{ 7(w)} so that 7(w) is a Hurwitz polynomial, if possible.

Unfortunately, the resulting linear relations (3.4) for the b, i=01)p +1 —r,
become quite unwieldy because of the nature of the g,. In this note, we show how
one can solve for 7,, i = 0(1)p + 1, and then transform back using (2.1b).

THEOREM 1. Let py(z) be as in (1.1) with coefficients satisfying (3.2) and b, = 0,
i=01)p + 1 — r. Further, let

7o(w) = (w=1)""po((w+1)/(w=1)) and c(w)=(w=1)""""m(w).
Then

(i) D?*27{(n(w)} = DP* 27" c(w)),

(ll) 'T(W) = Z;’D=+Ol_r7iwi + Z;D:p1+2—rciwi’
where ¢ ; are the coefficients of c(w) and 7; are to be determined.

Proof. For (i), we have from (3.3)

D2 (r() = 02 By (w4 D' = 17|

=0

= DP+2_’{(W — l)p+2_r(w - l)r_lri bp+1—i(W +1)'(w— 1)—i}

= D72 7{e(w)}.

(i) follows by integrating D?*2~"{7(w)}p + 2 — r times so that 7, i = 0(1)p +
1 — r, are simply the integration constants which may be determined by the
conditions (3.4). O
Remark. For ease of notation, subscripts “p” and/or “r” will be addended to the
polynomials p,, 7, and ¢ only when necessary. (See also Theorem 2.)
We now summarize the algorithm.
(i) Foreach p = 1,2,3,..., consider r = p + 1(-1)2.
(ii) Solve (3.2) with b, =0, i = 0(1)p + 1 — r, to obtain py(z).
(iii) Generate 7,(w) using (2.1a).
(iv) Generate c(w) = (w — 1)?+2 "1y (w) = L2 e w'.
(v) Generate D'{c(w)}, i = 0(1)p + 2 — r. Only the r coefficients ¢,, i = p +
2 —r(1)p + 1, are needed.
(vi) Solve for the r — 1 roots of D?*2~"{¢(w)}. Note that if any of these roots
have nonnegative real parts, go to (v) and take the next r; see also Section 4.
(vii) Otherwise, for a real root w,, solve the linear system

p+l—r . p+1 .
35 X {i!(i)wd"}frj=_ Y i!(i)cjwof", i=01)p+1-r.
J=i Jj=p+2—r

The matrix of coefficients of (3.5) is an upper triangular Wronskian with determi-
nant [T27} i,
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(viii) Generate B € R?*2  applying (2.1b) to the vector
(Tos+ s Tys1—rs Cpra—pr-+->Cpy1), and test if the resulting B is a vector of Schur
coefficients using (v) of Section 2.

(ix) If it is, proceed to (i) and increment p. Otherwise, try the next real root of
D?*27"{¢(w)} and return to (vii).
(x) If none is available, proceed to (v) and try the next r > 2.
Remark. Any method with r = 2 and p > 0 is stable (Schur). We show that 7(w)
is a Hurwitz polynomial, i.e.,
p+1 ptl
+1= Z bp+]—ti+l,t = Z b;=1
1=0 i=0
and
p+1 p+1

Cp = Z bp+1—ti,l = Z bp+]—i[2i _(p + 1)] =
i=0 i=0

using the first two equations of (3.2). Hence, D?*2~"{ 7(w)} has a single real root at
wy = —p/(p + 1), and thus 7(w) has a root of multiplicity p + 1 at this w,. Of
course, this method is only optimal in the case p = 1 in the sense that the number of
free parameters is a minimum.

4. Alternative Method of Calculation of p,(z). The calculation of the coefficients
of py(z) in step (ii) involves inversion of a Vandermonde matrix which can be quite
ill-conditioned for large r and p (r = 9, p = 13). Here we derive some recursive
relations for computing p,(z) for various r and p. Furthermore, it will be shown
that only p,(z) for r = p + 1 need be calculated; see also (vi) of the algorithm.

We denote

(41) pO(z) = Z sr,p,tzr_i’
i=1

where

s"”":(r—lv (f:})[ ljl[x—(p+l—r+j)]dx

j#i
[8, p. 152]; i.e., py(2) is as in (1.1) with r-order conditions (3.2) as well as b, = 0,
i=01)p + 1 — r, imposed. The following lemma summarizes some recursive rela-
tions needed.

LEMMA 1. We have
(1)
s, D, = (_1)’—1(;: ) rp r + S, 1,p—1,i> i= r(_l)l’ sr~1,p—1,r = 0;
(i1)

rg Gk = (- =p+1 =1;
= i+ 1sr—i,p,r——x - (_ ) » r=p ’ sl,p,l ]
(iii)

-1fr—1 .
sr.p,x = (_1)1 (: _ l)sr,p.l + sr—l,p,t—l’ 1= 1(1)r’ sr—],p,O = O
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Proof. For (i), we have

_ED) T -y p =t 2-0)] - [x = (p+ 1)
et ’_1!(i—1)-/() p[x—(p+1—r+i)] dx.

7
Usingx —(p+1)=x—(p+1~—r+i)—(r—i)and splitting up the integrand,
we obtain (i). (iii) is obtained in a similar fashion using x — (p +2 — r) = x —
(p+1—r+i)+i- 1 Finally, for (ii), we have

1 1
Spr=7=qr, x=(p+ 2= [x = plax.

Making the change of variable u = x — (p + 2 — r) and defining
[e¢]
G(t) = Z Sr,p,rtr_ly
r=1

we get the generating function

(1 + )7y

(4.2) G(1) =TT D)

Using the expansion for log(1 + ) and equating equal powers of ¢ (for r = p + 1),
we obtain (il). O

Equations (i) and (ii) are used to compute py(z) for » = p + 1 and each p = 1(1)c0.
Equation (iii) will be needed to justify the need of calculating p,(z) for r = p + 1
only.

THEOREM 2. Let p, (z), 7y ,(w), and c,(w) be defined as in Theorem 1. Then
(43) C,_(W) - Cr—l(w) = sr,p,lzr—l(w - 1)1’+2_’.
Proof. A simple calculation with the aid of (iii) in Lemma 1 yields

(4-4) pO,r(Z) - pO,r—l(Z) = sr,p,l(z - 1)’_1-

Note that p is a fixed subscript in the recursive relation (iii). Replace z by
(w + 1)/(w — 1) and multiply by (w — 1)""}(w — 1)?*277" = (w — 1)?*1. Thus we
obtain (4.3). O

Remark. Since c(w) € m,,, for every r (with fixed p), the coefficients c,,
i=p+2—r()p+1, must be invariant with r. See also (ii) of Theorem 1. Thus
Po(z) need only be calculated for r = p + 1. See also (v) and (vi) of the algorithm.

S. Table of Coefficients. We first present a table of the optimal r for each p. This
is given for the coefficients of p(z) as well as for p,(z); i.e., for the crude choice
b=0,i=00)p+1-r.

The coefficients of py(z) are the Adams-Bashforth weights (p < 5); compare also
[2, p. 194]. The methods derived here are of use for 6 < p < 20. For completeness
we present the coefficients of p(z) for p < 10 in Table 2. Tables and programs for
arbitrary p and r are available from the author.
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TaBLE 1
Optimalr; p + 2 — r is minimum

)4 p(2) Po(2)
1 2 2
2 3 3
3 3 4
4 4 5
5 5 6
6 5 5
7 6 5
8 7 5
9 7 5
10 8 5
11 8 5
12 9 5
13 10 5
14 10 5
15 11 5
16 11 5
17 11 5
18 11 5
19 11 5
20 12 5

6. Conclusions. The coefficients in Table 2 were prepared on a Honeywell Sigma 9
computer at the Communications Research Centre in Ottawa, Canada. Double
precision was used, i.e., a 64-bit word. While the coefficients of D?*2~"{r(w)} are
rational, hence the roots necessarily algebraic, the coefficients of 7(w) or p(z) may
become algebraic when repeating an irrational w,. See p = 2, for example. If w, is
complex, 7(w) could be made to have a repeated complex factor (w — wy)(w — w,)
= w? — 2 Re(w,)w + |wp|?, since we are really only interested in making r(w) have
as many roots as possible of equal magnitude; see also [3]. No attempts at this have
been made here, as it would only be practical in a case where all the roots of
D?*27r{1(w)} have negative real parts and all the real roots lead to unstable
methods. This does occur in the (p,r) pairs: (17,12), (18,12), (19,13), (19,12),
(20, 14), (20,13) so that, perhaps, the orders for 17 < p < 20 may be increased, by
consideration of complex roots with negative real parts. See also Table 1.

Methods with less than optimal order (more free parameters than necessary) are
not entirely “useless”. It is sometimes useful to choose a polynomial p(z) so that the
weights of the overall quadrature rule, Q(C, B, r), have the same sign. This will not
be pursued here.

We close with a couple of conjectures concerning properties of D?*2~"{ 7(w)}.

(i) All roots are simple.

(i1) There exists at most one root w, which makes 7(w) a Hurwitz polynomial. The
basis of this latter conjecture is that the parameter subspace, R?*2~", may be
partitioned into at most p + 2 sets where 7(w) has k roots with negative real parts,
0 < k < p + 1, and a given w, determines (uniquely) a point in one of these sets.
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Coefficients of p(z) for optimal (p,r) pairs. The coefficients correspond
to ascending powers of z (reading down a column)

1 2
,62500000000000E=01
+37500000000000E 00
«56250000000000E 00
e 3
-, 49337288192094E=01
,6Ub6785312u2950€E=-01
,51865uB80209038E 00
,466003954BS876E 00
3 3
-,10206365425022E=0}
«,361958320704S7€=01}
,86092355428169€E-01
<476482824705512€ 00
248348159501 219€ 00
4 4
2 1UB36957507953E-01
=,69121932149217E-03
«,10393803112690F 00
.84258500896782E=01
eS7187718333333E 00
«43365661071032E 00
s S
«,18714927257650E=01
8074708538361 3E=01
¢950599593057793E=-01
«,19390401424704E 00
268034206091446E=01
,65179939495669E 00
.ao;asaebaotsrss 00
6
«,5977647046U4942E=02
«,40027939092523£02
J471762U44240425E=01
2 69894451750726E~02
«,16878003162553E 00
294880344703724E-01
«01860109634769E 00
«41111354211436€ 00

7 6
,92163405049008E~02
e,145u6809675587E=01
-,48304895337707E-01
«97947306939138E=01
,72442509783543E=-01
-,26845526473361E 00
.79903231890597€~01
.68397907230593E 00
.38781850832280E 00
8 17
-,12945157436253E=01
L43708651u98921E-01
.22125052690577E-02
-, 16620573410212E 00
.15292714699083E 00
,19610793531520E 00
-,38565080617132€ 00
.56506829998068E<01
,743u5535496711€ 00
.369883273670S1€ 00
9 7
-, 89091448505026E=-02
.52273365805968E-02
.36113819972249€E=-01
-, U476560748936U1E=-01
«,100039U6902624E 00
.17585056164945E 00
L,10722157092790E 00
-, 34934604089284E 00
.85779797591605E=01
.7153036334S109E 00
.37645400949034E 00
10 8
.77531170545616E-02
-,23039576731772€-01
-,21648723845614E=0]
.13000342387131E 00
-,43085358541170E~01
-,27790370100636E 00
.26254546035601E 00
.,24U70889259012€ 00
«,47277597813738E 00
L64252391412316E=-01
.76720259863094E 00
.36198745434T04E 00
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