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An Algorithm for the Construction 
of Optimal Methods for the Numerical Solution of 

Volterra Integral Equations of the First Kind 

By C. J. Gladwin 

Abstract. Optimal methods for the numerical solution of Volterra integral equations of the 
first kind are outlined in [3] and [4]. An explicit algorithm for the construction of such 
methods as well as tables of coefficients for methods with order less than or equal to eight are 
displayed here. 

1. Introduction. Quadrature methods for the numerical solution of Volterra 
integral equations of the first kind are described by the ordered triple Q(C, B, r), 
where: 

(i) C E RP ' consists of the Newton-Cotes quadrature weights with step number 

P; 
(ii) B E RP + 2 are coefficients of the polynomial 

p+l 

(1.1) P(Z)= E bizP?11; 
i=o 

(iii) r is the order of the methods, r < p + 2; 
(iv) p starting values are needed prior to the implementation of the method. See 

[3], [4] and [5] for details. 
Here we shall only be concerned with giving a simple explicit algorithm to search 

for optimal methods Q(C, B, r). A table of the coefficients, B, for r < 8 will also be 
given. The constraints on B are two-fold. First, r linear conditions must be satisfied 
to attain order r, and second, the roots of the polynomial p(z) must lie in or on the 
unit circle with roots on the circle having multiplicity 1. We have available 
p + 2 - r > 0 parameters to implement the slightly more restrictive form of the 
latter condition: All roots lie strictly inside the unit circle. Furthermore, we are only 
interested in methods satisfying the above constraints which have the least number 
of free parameters. It is known that p + 2 - r = 0 for p = 0 only; see [5] or [6]. We 
first give a short digression on some classical stability results for roots of polynomi- 
als. 
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2. Schur and Hurwitz Polynomials. ([1] or [7].) All polynomials considered here 
will be assumed to be in the class 7Th, the set of polynomials of exact degree n with 
real coefficients and no roots at the origin. 

Definition 1. The polynomial a(z) = Yoaiz' is said to be a Schur polynomial if 

a(z) = 0 implies lzl < 1. 
Definition 2. The polynomial b(w) = Yn obiw1 is said to be a Hurwitz polynomial 

if b(w) = OimpliesRew < 0. 
We catalogue some relationships between these two classes of polynomials: 

(i) b(w) = (w - 1)'a((w + 1)/(w - 1)) e Tn 

(ii) a(z) = ((z - 1)/2)'b((z + 1)/(z - 1)) E= 
(iii) The coefficients of a(z) and b(w) are related by the matrix relations: 

(2.1a) B = r A, 

(2.1b) A = 2- -. B 

with A = (ao, al, ... , an), B = (bog bl, .., bn), and F = (Yi) the matrix of order 
n + 1 generated by the recursive scheme: 

-Yi-i,j-1 = Yi-,j - Yi,j--Yi,j, 
(2.2) n 1, = ( ), i, j = l(l)n. 

(iv) The polynomial a(z) is a Schur polynomial if and only if b(w) is a Hurwitz 
polynomial. 

(v) The polynomial a(z) is a Schur polynomial if and only if: 

(a) laol < lan1, 
(b) aj(z) = Yi2Jn(a an+--a0af(i+l)) z' is a Schur polynomial. 

In later applications, it will be necessary to normalize the coefficients of al(z), 
leading coefficient unity at each step, due to the rapid growth of the coefficients of 

al(z). 
We shall use the notation D1{ p(z)} to denote the ith derivative of p(z) with 

respect to z. 
(vi) If p(z) is a Schur (or Hurwitz) polynomial then D1{ p(z)}, i = O(l)n, are 

also Schur (or Hurwitz) polynomials. The contra-positive of this statement will be of 
use in the algorithm. 

3. The Algorithm. We return to the consideration of p(z), defined in (1.1), and 
also the transformed version 

(3.1) T(W) = (W - i)P?( 
W + 1) 

The order conditions imposed on p(z) are given by the linear system 
p+l 1 

(3.2) E iib = + j = O(I)r - 1, 

with the convention 00 = 1. 
It was shown in [3] that 

(3.3) T(W) = Lr-1W l ( ) Eb+-i(W 
(3.3) T(W) qi2'(w - 1)P?l1' +(w - 1)P?l1 bp?1 

w ? 
i=O 
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where q, are linear in b1, i = 0(1)p + 1 - r. This enables us to use the linear system 

(3.4) D'{T(WO)} = 0, i = 0(1)p + 1-r, 

to determine the remaining parameters so that T(w) (or p(z)) has as many equal real 
roots as possible; see also [3]. Here, w0 is selected from the at most r - 1 real roots 
of DP+2-'{ T(W)} so that T(w) is a Hurwitz polynomial, if possible. 

Unfortunately, the resulting linear relations (3.4) for the bi, i = 0(1)p + 1 - 
become quite unwieldy because of the nature of the qi. In this note, we show how 
one can solve for Tr, i = 0(1)p + 1, and then transform back using (2.1b). 

THEOREM 1. Let po(z) be as in (1.1) with coefficients satisfying (3.2) and b, = 0, 
i = 0(1)p + 1 - r. Further, let 

TO(W) = (w - 1)r lPo((W + 1)/(w - 1)) and c(w) = (w - 1)P+>rTo(W). 

Then 

(i) DP2-{ {T(w)} = DP +2r{c(W)}, 

(ii) T(W) = EP 0lrTiWi + ip+2-ri 

where c i are the coefficients of c(w) and Ti are to be determined. 

Proof. For (i), we have from (3.3) 

DP+2-r{T(W)} = DP_+2_r E bp+l-i(w + 1)'(w - i)P+li} 

Dp+2-rf(w _ l) p+2-r (w _ 1) r-1 E biO (W + 1)'( -1)-i 
I =o 

= DP+2-r{c(w)}. 

(ii) follows by integrating DP+2-r{T(w)}p + 2 - r times so that Tl, i 1= O()p + 
1 - r, are simply the integration constants which may be determined by the 
conditions (3.4). O 

Remark. For ease of notation, subscripts "p" and/or "r" will be addended to the 
polynomials p0, T0, and c only when necessary. (See also Theorem 2.) 

We now summarize the algorithm. 
(i) For each p = 1, 2, 3, .. ., consider r = p + 1(-1)2. 

(ii) Solve (3.2) with bi = 0, i = 0(1)p + 1- r, to obtain p0(z). 

(iii) Generate T0(w) using (2.1a). 
(iv) Generate c(w) = (w - _)P+2rTo(w) = L3f'0iJcw'. 
(v) Generate D'{ c(w)}, i = 0(1)p + 2 - r. Only the r coefficients cl, i = p + 

2 - r(1)p + 1, are needed. 

(vi) Solve for the r - 1 roots of DP+2-r{ c(w)}. Note that if any of these roots 
have nonnegative real parts, go to (v) and take the next r; see also Section 4. 

(vii) Otherwise, for a real root w0, solve the linear system 

p?1-r i + 

(3.5) E {i!Li)wWo')?Ti 
= - E i!$)c,woi , i = 0(1)p + 1- 

The matrix of coefficients of (3.5) is an upper triangular Wronskian with determi- 
nant Hl, Iri!. 
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(viii) Generate B E R p 2, applying (2.1b) to the vector 
(To ... . Tp+1 -r Cp+2_r, . .. Cp?+), and test if the resulting B is a vector of Schur 
coefficients using (v) of Section 2. 

(ix) If it is, proceed to (i) and increment p. Otherwise, try the next real root of 
DP+2-r{ c(w)} and return to (vii). 

(x) If none is available, proceed to (v) and try the next r > 2. 
Remark. Any method with r = 2 and p > 0 is stable (Schur). We show that T(w) 

is a Hurwitz polynomial, i.e., 
p+1 p+1 

+1- E bp+= E bi = 1 
1=0 i=O 

and 
p+1 p+1 

cp= bp+l = E bp+l-i[2i -(p + 1)] =p, 
i=O i=O 

using the first two equations of (3.2). Hence, DP+2-r{ T(w)} has a single real root at 
wo = -p/(p + 1), and thus T(w) has a root of multiplicity p + 1 at this w0. Of 
course, this method is only optimal in the case p = 1 in the sense that the number of 
free parameters is a minimum. 

4. Alternative Method of Calculation of p0(z). The calculation of the coefficients 
of p0(z) in step (ii) involves inversion of a Vandermonde matrix which can be quite 
ill-conditioned for large r and p (r = 9, p = 13). Here we derive some recursive 
relations for computing p0(z) for various r and p. Furthermore, it will be shown 
that only p0(z) for r = p + 1 need be calculated; see also (vi) of the algorithm. 

We denote 
r 

(4.1) p0(Z) E Sr,piZ 
ri 

i=l 

where 

r(i1rr - r 

Srp,i n 1! (i ) r [-(p + 1- r +j)] dx 
joi 

[8, p. 152]; i.e., p0(z) is as in (1.1) with r-order conditions (3.2) as well as bi= 0, 
i = O(I)p + 1 - r, imposed. The following lemma summarizes some recursive rela- 
tions needed. 

LEMMA 1. We have 
(i) 

Sr,pi (l)r( i j)sr,p,r + Sr-1,p-1,i, i = r(-1)1, Sr 1,p-l,r 0; 

(ii) 

E i + 1 r-i,p,r-i = (-1)r , r =p + 1, s1 -, 

(iii) 

SrP'i (1)1r(i - ) Sr1P + Sr-,p,-1 I = 1()r, Sr-l p,O 0 
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Proof. For (i), we have 

_(-1) {r-(r )j [x -(p + 2- r)] [x -(p + )] d 
Srp,pi- r-1 Vi-lJJo[x-(p + -r +i)] 

Using x - (p + 1) = x - (p + 1 - r + i) - (r - i) and splitting up the integrand, 
we obtain (i). (iii) is obtained in a similar fashion using x - (p + 2 - r)= x - 
(p + 1 - r + i) + i - 1. Finally, for (ii), we have 

Sr,p= r-1! j| [x -(p + 2- r)] [x -p]dx. 

Making the change of variable u = x - (p + 2 - r) and defining 

00 

G(t) = E Sr,p,rtr,- 
r=1 

we get the generating function 

(4.2) G(t) + t1 + pt2)rlt 

Using the expansion for log(l + t) and equating equal powers of t (for r = p.+ 1), 
we obtain (ii). fO 

Equations (i) and (ii) are used to compute po(z) for r = p + 1 and each p = l(l)oo. 
Equation (iii) will be needed to justify the need of calculating po(z) for r = p + 1 
only. 

THEOREM 2. Let 
P0,r(Z) T0,r(W)9 and Cr(w) be defined as in Theorem 1. Then 

(4.3) Cr(W) - Cr-l(W) = Sr,p,12 (W - 1) 

Proof. A simple calculation with the aid of (iii) in Lemma 1 yields 

(4.4) PO,r(Z) - P0,r-l(Z) = Sr,p,i(Z - 1)r1. 

Note that p is a fixed subscript in the recursive relation (iii). Replace z by 
(w + 1)/(w - 1) and multiply by (w - l)r-l(w - )p+2-r= (w - I)P+l. Thus we 
obtain (4.3). Fl 

Remark. Since c(w) E 7TP+l for every r (with fixed p), the coefficients ci, 
i = p + 2 - r(I)p + 1, must be invariant with r. See also (ii) of Theorem 1. Thus 
po(z) need only be calculated for r = p + 1. See also (v) and (vi) of the algorithm. 

5. Table of Coefficients. We first present a table of the optimal r for each p. This 
is given for the coefficients of p(z) as well as for po(z); i.e., for the crude choice 
bi= 0,i= O(1)p + 1-r. 

The coefficients of po(z) are the Adams-Bashforth weights (p < 5); compare also 
[2, p. 194]. The methods derived here are of use for 6 < p < 20. For completeness 
we present the coefficients of p(z) for p < 10 in Table 2. Tables and programs for 
arbitrary p and r are available from the author. 
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TABLE 1 

Optimal r; p + 2 - r is minimum 

p P(Z) Po(z) 

1 2 2 
2 3 3 
3 3 4 
4 4 5 
5 5 6 

6 5 5 
7 6 5 
8 7 5 
9 7 5 

10 8 5 
11 8 5 
12 9 5 
13 10 5 
14 10 5 
15 11 5 
16 11 5 
17 11 5 
18 11 5 
19 11 5 
20 12 5 

6. Conclusions. The coefficients in Table 2 were prepared on a Honeywell Sigma 9 
computer at the Communications Research Centre in Ottawa, Canada. Double 
precision was used, i.e., a 64-bit word. While the coefficients of DP+2-r{ T(w)} are 
rational, hence the roots necessarily algebraic, the coefficients of T(w) or p(z) may 
become algebraic when repeating an irrational w0. See p = 2, for example. If w0 is 

complex, T(w) could be made to have a repeated complex factor (w - wo)(w -w) 
= w2 - 2 Re(wo)w + IwO12, since we are really only interested in making T(w) have 
as many roots as possible of equal magnitude; see also [3]. No attempts at this have 
been made here, as it would only be practical in a case where all the roots of 
DP+ 2- r{T(w)} have negative real parts and all the real roots lead to unstable 
methods. This does occur in the (p, r) pairs: (17, 12), (18, 12), (19, 13), (19, 12), 
(20, 14), (20, 13) so that, perhaps, the orders for 17 < p < 20 may be increased, by 
consideration of complex roots with negative real parts. See also Table 1. 

Methods with less than optimal order (more free parameters than necessary) are 
not entirely " useless". It is sometimes useful to choose a polynomial p(z) so that the 
weights of the overall quadrature rule, Q(C, B, r), have the same sign. This will not 
be pursued here. 

We close with a couple of conjectures concerning properties of DP?{2- iT(w)}. 

(i) All roots are simple. 
(ii) There exists at most one root w0 which makes i(w) a Hurwitz polynomial. The 

basis of this latter conjecture is that the parameter subspace, RP'2-,, may be 

partitioned into at most p + 2 sets where i(w) has k roots with negative real parts, 
0 < k < p + 1, and a given w0 determines (uniquely) a point in one of these sets. 
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TABLE 2 

Coefficients of p (z) for optimal ( p, r) pairs. The coefficients correspond 

to ascending powers of z (reading down a column) 

1 2 7 6 
.62500000000000fO-01 ,92163405049008E"W02 
.37500000000000E 00 -,14546809675587E-01 
.5b2soooooooo0OE 00 -.48304895337707EO01 
2 3 *9794 73069391 38E-01 

-,493372881 92094r-0i . 72442509783543E-0 1 
,64678531 242950E-0 1 - 268455b647 3361E 00 
*51865480209038E 00 7Q9032318Q0597E-01 
*46600395485876E 00 6b8397907230593E 00 
33 .38781850832280E 00 

-.10206365425022E01 8 7 
" 361958320704SEJ7n01 - ,1294L51577436253Ew01X 

,86a49235428169EM01 04 3708651498921E-01 
*47642824705512E 00 .2212 5052690577E-02 
. 48348159501219E 00 -. 16620S734 10212E 00 
4 4 .15292714699083E 00 
,148369575079S3E-01 919610793531520E 00 

-,69121932149217E-03 -.38565080617132E 00 
-,10393803112690E 00 956506829998068E-01 

484258500896782E-01 774345535496711E 00 
*57187718133333E 00 936988327367051E 00 
*43365661071032E 00 9 7 
5 5 _e 49091448505026E-02 

-.18714927257650E-01 *52273365805968E-02 
*40747085383613E-01 0361 13819972249E-01 
950599593057793E-01 IM-47656074893641EM01 

-,19390401424764E 00 - 10003946902624E 00 
968034206091446E-01 .17585056164945E 00 

65179939495669E 00 ,10722157092790E 00 
*40143866201575E 00 -.34934604089284E 00 
6 5 085779797591 605E-0 1 

-,59776470464942E-02 *715303b3345109E 00 
W,40027939092523E"02 .37b?4S400949034E 00 

,47176244240425E01 10 8 
,698944I51750726E*02 .77531170545616E-02 
* 16878003162553E 00 _ .23039576731 772E0i1 
09488O1a4703724E-01 4921 648723845614E-01 
*61860109634769E 00 *13000342387131E 00 
*41111354211436E 00 w.*43085358541170E-01 

-.27790370100636E 00 
.26254546035601E 00 
024470889259012E 00 

-.47277597813738E 00 
06425239141231bE-Ol 
.76720259863094E 00 
*36198745434704E 00 
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