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How to Implement the Spectral Transformation* 

By Bahram Nour-Omid* *, Beresford N. Parlett, 
Thomas Ericsson* *, and Paul S. Jensen 

Abstract. The general, linear eigenvalue equations (H - X M)z = 0, where H and M are real 
symmetric matrices with M positive semidefinite, must be transformed if the Lanczos 
algorithm is to be used to compute eigenpairs (X, z). When the matrices are large and sparse 
(but not diagonal) some factorization must be performed as part of the transformation step. If 
we are interested in only a few eigenvalues X near a specified shift, then the spectral 
transformation of Ericsson and Ruhe [1] proved itself much superior to traditional methods of 
reduction. 

The purpose of this note is to show that a small variant of the spectral transformation is 
preferable in all respects. Perhaps the lack of symmetry in our formulation deterred previous 
investigators from choosing it. It arises in the use of inverse iteration. 

A second goal is to introduce a systematic modification of the computed Ritz vectors, which 
improves the accuracy when M is ill-conditioned or singular. 

We confine our attention to the simple Lanczos algorithm, although the first two sections 
apply directly to the block algorithms as well. 

1. Overview. This contribution is an addendum to the paper by Ericsson and Ruhe 
[1] and also [7]. The value of the spectral transformation is reiterated in a later 
section. Here we outline our implementation of this transformation. 

The equation to be solved, for an eigenvalue A and eigenvector z, is 
(1) (H - XM)z = 0, 

H and M are real symmetric n X n matrices, and M is positive semidefinite. A 
practical instance of (1) occurs in dynamic analysis of structures, where H and M are 
the stiffness and mass matrices, respectively. We assume that a linear combination of 
H and M is positive definite. It then follows that all eigenvalues X are real. In 
addition, one has a real scalar a, distinct from any eigenvalue, and we seek a few 
eigenvalues A close to a, together with their eigenvectors z. Ericsson and Ruhe 
replace (1) by a standard eigenvalue equation 

(2) [C(H - aM) -CT - v]y = 0, 

where C is the Choleski factor of M; M = CTC and y = Cz. If M is singular then 
so is C, but fortunately the eigenvector z can be recovered from y via z = 

(H - aM) -ICTy. Of course, there is no intention to invert (H - a M) explicitly. The 

Received May 14, 1984; revised December 20, 1985. 
1980 Mathematics Subject Classification. Primary 65F15. 
* This research was supported in part by the AFOSR contract F49620-84-C-0090. The third author was 

also supported in part by the Swedish Natural Science Research Council. 
* *The paper was written while this author was visiting the Center for Pure and Applied Mathematics, 

University of California, Berkeley, California 94720. 

?1987 American Mathematical Society 
0025-5718/87 $1.00 + $.25 per page 

663 



664 BAHRAM NOUR-OMID ET AL. 

operator given to the Lanczos program is A = C(H - a M) - iCT. The spectrum of A 
is related to the original spectrum by 

(3) v 

and so it is the eigenvalues of A closest to + oc which must be computed. 
In contrast to (2), we prefer to change (1) into 

(4) [(H - aM)1M - vI]z = 0. 

Our operator B = (H - aM)-1M is not symmetric, but it is selfadjoint with respect 
to the semi-inner product defined by M. At first sight it appears to be extravagant to 
work with the M-inner product, but it is not. Our investigation suggests that there is 
no trade-off. Reduction (4) is no worse than (2), and is sometimes better, with 
respect to storage, arithmetic effort, and vectorizability. In fact, B occurs naturally in 
the setting of Subspace Iteration methods, see [3]. It is only in the Lanczos context 
that it has been overlooked. 

Section 2 examines the important case of singular M. Sections 3 and 4 look in 
detail at the two reductions. Section 5 extols the spectral transformation (3), but with 
more arguments than were given in [1]. Section 6 shows that the tridiagonal T is not 
quite the projection that we want. The notation follows Ericsson and Ruhe [1] and 
Parlett [5]. Some familiarity with the simple Lanczos algorithm is assumed. 

2. Singular M. This case is merely the extreme point of the set of problems in 
which M becomes increasingly ill-conditioned. There is no sharp break in behavior 
when M becomes singular and, in fact, the situation is easier to describe. 

The main point is that there is no intrinsic mathematical difficulty here; no hidden 
pathology. The troubles that beset certain algorithms arise simply from our yearning 
for efficiency. We begin by describing the geometry of the situation because, to our 
knowledge, such a description is not readily available. Next we turn to the Lanczos 
algorithm and make four points: 

(a) The starting vector must be put into the proper subspace. 
(b) There is a simple recurrence that governs the angle separating the Lanczos 

vectors from this subspace. Usually the recurrence is unstable, but the growth in 
these angles is invisible when the usual M-inner product is used. 

(c) The Lanczos vectors can be projected back into the proper subspace, when 
necessary, but at substantial cost. 

(d) There is an inexpensive modification to computed eigenvectors that purges 
unwanted components in the null space of M. 

2.1. The Geometric Picture. The pair (H, M) is assumed to be definite, so there is 
no loss in generality in taking H itself to be positive definite. For any matrix X let 
n (X) denote its null space and r(X) its range (or column space). Recall that 
B = (H - aM)-1M. Clearly, n(B) = n(M) ?* {O}. Now 

(1) r(B) and n(B) are each invariant under B, i.e., Bn(B) c n(B), Br(B) c r(B). 
(2) u c r(B) and z e n(B) implies that zTHu = 0; i.e., r(B) 1H n(B). 
Proof. Let 0 ?* z E n(B) and u (= Bx) e r(B). Then, by definition of B, Hu = 

a Mu + Mx. Premultiply by zT to find zTHu = azTMu + zTMx = 0. Here, we use 
the fact ZTM = OT 
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(3) Rn = r(B) ED n (B). This follows from the fundamental theorem of linear 
algebra; n = rank + nullity. 

The oblique projection of RW in (3) is the relevant one for this problem. All the 
eigenvectors belonging to finite eigenvalues are in r(B). This is the good subspace. 
Note that r(B) is not invariant under M. r(B) is not orthogonal to n(M) (in the 
Euclidean sense). 

Example. 

H (_2 I) I = 0?,a=O 

n (M) = n (B) = span( ), r(M) = span( ), r(B) = span( )- 

n (B) 

r(B) 

r(M) 

FIGURE 1 
Geometric representation of the subspaces 

The example confirms that the desired eigenvectors are not orthogonal to n (M) in 
the Euclidean sense. In general, it is difficult to tell whether or not a vector is in 
r(B). The next result yields a test. 

THEOREM. Hr(B) = r(M). 

Proof. Let u (= Bx) E r(B). From the proof of property (2) above one has 
Hu = M(au + x) E r(M). Thus Hr(B) c r(M). Since H - aM is invertible, 
dim(r(B)) = dim(r(M)) = rank(M). Finally, since H is invertible, dim(Hr(B))= 
dim(r(B)) = dim(r(M)). Q.E.D. 

When M is diagonal then n(M) is known and q E r(B) if Hq I n(M). In other 
words, Hq must have zeros in the appropriate elements. Unfortunately, the test is 
not cheap. 

2.2. The Starting Vector. It is not appropriate to start the Lanczos process from a 
random vector in RW. It should be confined to r(B). In exact arithmetic the whole 
Krylov subspace spanned by q1, Bq1, B2q1, ... will then be in r(B). 

If q1 0 r(B), then all computed Ritz vectors with significant components in q1 will 
contain unwanted components in n(B). The usual way to enforce q1 E r(B) is to 
apply B to a random vector in RW. This increases the cost of the starting vector, but 
this is negligible relative to the total computation. Unfortunately, roundoff error 
drives later Lanczos vectors away from r(B). 
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2.3. The Growth in Unwanted Components. Let {ql, q2, q3,... } be the computed 
Lanczos vectors. Let z be any fixed vector in n(M) with IIZIIH = 1. Let Ti- = zTHqi. 
Since IlqillH * llqillM = 1, the Ti are not true cosines of the angles between qi and 
n(M). However, ITil is the length of the projection of qi onto z in the H-norm. Recall 
that 

qj+j+l-= Bqj - qjaj - qjlj + f 

where fj is a roundoff quantity. Premultiply by zTH to find 

Tj+ lfj+ 1= z HBq - ja - j + ZTHfj 
By property (2) z 1 H r(B) and so 

-(ajTj + /jTj_- + ZTHfj)//+1?- 

There is nothing to stop the Tj from growing steadily. However, llqj + PZIIM = 

IIq jIIM = 1 for all p, and so this growth is not visible in the standard implementation 
of the Lanczos algorithm. 

2.4. Projection of Lanczos Vectors. The matrix that projects onto r(B) orthogonal 
to n(M) in the H-norm is I - N(NTHN) - 1N TH, where the columns of N form a 
basis for n(B). NTHN is invertible since H is positive definite. It is possible to 
compute N before beginning a Lanczos run. When M is diagonal then N is 
composed of certain columns of the identity matrix. 

At the end of each step of the Lanczos algorithm one has only to form 

j+1 = qj+l- N(NTHN)-lNTHqji+. The matrix GT = (NTHN)l-NTH may be 
formed before the start of a Lanczos run. In this way, the extra cost is / dot products 
and / vector combinations per step. When M is diagonal and / is small, this 
arithmetic cost is modest. The extra storage is less acceptable. We do not use this 
modification. 

2.5. Purification of Computed Eigenvectors. A simple way to restore vectors to r(B) 
is to apply B to them. However, one goal in using the Lanczos algorithm is to keep 
down the number of applications of B to a level near the minimum. 

To compute a converged Ritz vector y, the algorithm first finds the eigenvector s 
of Ti: 

T1s = so, y= Qs, ||S||==1. 

HereQ1- (ql,q2,...,qj). 
The famous three-term recurrence can be expressed compactly in matrix form, 

BQj = QjTj + qj+lpj+4eT + F. 

where Fj = (f 1, f2,. . ., fj) accounts for local roundoff error. On postmultiplying by s, 
one finds 

By = yO + qj+1/l3+1s(j) + Fjs = [y + qj+1(flj+1s(j)/0)] + Fjs. 
Note that we have an approximation to By/O without the expense of applying B. 

It turns out that this same modification is proposed by the authors of [1]. However 
their motivation was quite different. They wanted to improve the Ritz vector 
approximations to the eigenvectors of (1). Ours is to obtain Ritz vectors in r(B). 

In practice, the effect is quite striking. Both y and qj+, may have large compo- 
nents along n(M), which are almost parallel. Then a linear combination of y and 

qj+1 almost removes the contamination. Notice that there is no analogous simple 
expression for Bq j. 
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There is one further improvement to this modification. One replaces s by 'T s! 
Thus one forms the (j + 1)-vector 

1 Tis 
W 

w tS(j)pj+l} 
Then, y = Qj+lw is the approximation to the wanted eigenvector. 

In the table below we show the actual growth in the 's and the values predicted 
by the recurrence, in a typical Lanczos run. We also show the effect of the 
modification, giving the size of the unwanted components in y and y. 

TABLE 1 

Unwanted components in the dominant Ritz vector yi and in Y, i = 1,.. ., 40. 
Corresponding growth in the T estimate and the actual unwanted components in 
the Lanczos vectors qi. 

Unwanted Components in 
Index 

i TiYi Yi 

1 3.600e-16 3.334e-16 2.801e-17 2.785e-17 
2 1. 704e- 15 1.572e-15 3.002e- 17 5.040e- 17 
3 6.180e-15 5.672e-15 6.515e-17 4.318e-17 
4 1.493e-14 1.368e-14 4.860e-17 6.820e-17 
5 1.909e-14 1.749e-14 3.652e-17 3.607e-17 
6 2.575e-14 2.358e-14 6.627e-17 4.538e-17 
7 2.920e-14 2.671e-14 2.339e-16 2.561e-16 
8 4.426e-14 4.044e-14 5.984e-16 5.551e-16 
9 5.993e-14 5.476e-14 2.059e-16 2.208e-16 

10 1.066e-13 9.743e-14 3.127e-16 2.800e-16 
11 1.570e-13 1.434e-13 7.613e-16 7.300e-16 
12 3.199e-13 2.923e-13 1.939e-15 1.945e-15 
13 5.790e-13 5.291e-13 1.507e-13 1.507e-13 
14 1.233e-12 1.127e-12 8.510e-13 8.510e-13 
15 2.978e-12 2.721e-12 5.571e-09 5.571e-09 
16 6.082e-12 5.557e-12 4.190e-09 4.188e-09 
17 1.487e-11 1.359e-11 1.077e-06 1.074e--06 
18 2.846e-11 2.600e-11 6.278e-08 6.257e-08 
19 5.618e-11 5.133e-11 3.911e-08 3.827e-08 
20 1.417e-10 1.295e-10 7.926e-08 6.911e-08 
21 3.838e-10 3.507e-10 4.000e-07 1.652e-07 
22 1.081e-09 9.878e-10 2.534e-06 1.483e-07 
23 3.535e-09 3.230e-09 1.339e-04 7.981e-08 
24 9.715e-09 8.876e-09 1.516e-02 9.076e-08 
25 2.031e-08 1.856e-08 1.499e-02 1.740e-07 
26 6.921e-08 6.323e-08 2.505e-01 1.836e-07 
27 1.888e-07 1.725e-07 8.538e-01 3.055e-07 
28 7.584e-07 6.929e-07 6.893e + 000 3.81le-07 
29 2.656e-06 2.427e-06 1.499e + 001 2.272e-07 
30 9.846e-06 8.996e-06 4.546e + 000 1.01 2e-07 
31 6.434e-05 5.879e-05 1.026e + 001 4.450e-07 
32 2.773e-04 2.534e-04 3.579e + 001 1.426e-07 
33 1.183e-03 1.081e-03 3.707e + 000 2.537e-07 
34 7.386e-03 6.748e-03 6.485e + 001 1.162e-07 
35 3.552e-02 3.245e-02 5.359e+001 1.257e-07 
36 2.992e-01 2.734e-01 5.298e + 000 2.198e-07 
37 2.027e +000 1.852e+000 3.097e + 001 1.359e-07 
38 1.172e + 001 1.071e+001 3.367e + 000 1.379e-07 
39 1.090e + 002 9.964e + 001 1.660e + 001 7.653e-08 
40 1.306e+003 1.193e + 003 2.904e-01 4.561e-08 
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We recommend using this modification in all cases, whether M is the identity, 
ill-conditioned, or singular. It should be noted that the vector y + qj+1l,t3+1s(U)/7 
is not optimal in the sense of minimizing some residual. However, given the Ritz 
vector y, and qj+ , then, in exact arithmetic, if q1 X r(B), y is the unique linear 
combination in r(B). 

When qI E r(B), and assuming the Lanczos algorithm has been run in exact 
arithmetic, other choices are possible, since all linear combinations of the Lanczos 
vectors lie in the right space. In Section 6 we examine how to construct the best of 
these other approximations. When roundoff is present, this "best" approximation 
will not in general lie in r(B). That is why we recommend the use of y. 

3. The Algorithms. The advantages of working with the matrix of (4) are twofold. 
First, the Choleski factors of M are not needed. When M is diagonal the computa- 
tional advantages are small, but for a more general case such as a consistent mass 
matrix in the dynamic analysis of structures, where M has the same zero structure as 
H, substantial saving in both cost and storage can be achieved. Second, the 
computed eigenvectors are those of (1) and there is no need to recover the 
eigenvectors of (1) from those of (2). When the mass matrix is either singular or 
nondiagonal, which is the majority of cases, then this post transformation of the 
eigenvectors can increase the overall cost of the analysis by as much as 25%. 

In a typical step, j, the generalized Lanczos process computes in order, ao, Pi+S 
and q j+ 1, to satisfy 

(qj+?1 q])Mj 0, (q,+?1 q,-1)M = 0 lj+IIM = 1, 
and 

qj+lp=+l (H - aM)'Mqj - qjaj - qj-13, 
where (u, v)M = uTMv. In exact arithmetic, M-orthogonality is preserved against all 
the previous Lanczos vectors; that is, (q, qj)m = 0 for i < j - 1. However, in 
practice some reorthogonalizations must be performed to maintain semiorthogonal- 
ity (see [5]). In matrix form, the above relations read 

(5) (H-aM) 'MQj-QjTj= qj+l,B/+3ef 

and 

QJMQj =IJ, 

where Qj= [ql, q2,.. .,qj], and TJ is a tridiagonal matrix with elements a1 and 
off-diagonal elements /i; 

a1 /32 

I2 a2 33 
/33 

TM 

L PM~~~~/3, am 

Algorithm for a Lanczos Run. Pick a shift a and factor (H - a M) = LDLT. 
Choose a starting vector ro (in r(B)), set qo = 0 and form p1 = Mro and , = 
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For j = 1, 2,..., lanmax do 
(a) if so indicated then M-orthogonalize rj1 and qj- 1 against a computed Ritz 

vector or previous Lanczos vectors, reset pj= Mrj and f3j= (pJTr 1)1/2, 

and compute any converged Ritz vectors. 
(b) q j<- rj - llp 
(c) pi -pi/pi 
(d) solve (H - aM)rj= p 
(e) rj - rj-qj-lq j 
(f) put q j_ 1 out to secondary store 
(g) aj <- rfTp 
(h) rj -rj 

- qjaj 
(i) form pj+I = Mrj 
(j) Aj+l jTp+ 

(k) update certain eigenvalues of Ti and their corresponding error bounds. Exit 
if satisfied. See [6] for more details on this. 

Although it appears from the above implementation that we require only four 
vectors, rj, qj, qj-l and pj, reorthogonalization forces us to use two additional 
vectors; one to hold each old Lanczos vector that is brought back, and the other for 

Pj- I if we reorthogonalize qj at the same time as rj. See [4] for more details. 
Below we compare the above unsymmetric transformation Lanczos algorithm 

(UTLA) to the one obtained when applying the Lanczos algorithm to the trans- 
formed problem of [1] (STLA). The current algorithm, STLA, by Ericsson and Ruhe, 
does not use the transformation described in the 1980 paper, but is essentially 
equivalent to UTLA. 

In our comparison, we concentrate on the use of these algorithms for the solution 
of two different types of eigenproblem that commonly occur in practice. Operation 
counts and storage requirements for each algorithm are included in tables below. 

(i) Diagonal but singular M. In this case M1/2 can be computed at a cost of only n 
square roots, which is negligible compared to the total cost (in Table 2 we assume a 
square root is simply one operation). Then the cost of running Lanczos is (2b + 7)n 
operations per step for UTLA, and (2b + 7r)n for STLA. b is the average 
half-bandwidth of the factored H, and r = rank(M)/n. Typically, - < r < 1. How- 
ever, STLA must recover the eigenvectors of Eq. (1) and is therefore more expensive 
than UTLA by this amount. An alternative implementation of STLA that trades 
space for time keeps the vectors, (H - aM)-lCTq, computed as part of the matrix- 
vector multiplication with the matrix of (2), in secondary store. A linear combination 
of these vectors can then be formed to obtain the eigenvectors of (1) directly, thus 
avoiding any further operations with the factored matrix. However, the need for 
secondary storage is doubled as compared with UTLA. 

(ii) Sparse positive definite M. In many applications, M has the same zero 
structure as H. In this case two factorizations are performed by STLA. This doubles 
the cost of the initial step. We should mention that if a series of shifts is performed, 
then M need not be factored again. The cost of each step of STLA is more than that 
for UTLA by an amount which is precisely the fill-in resulting from the Choleski 
factorization of M. The storage space for STLA is also more, because the factors of 
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TABLE 2 

Operation counts for the case of a singular diagonal M. 

STLA UTLA 

Initial cost (2b2 + 2)n ('b2 + 2)n 

One step of Simple Lanczos (7r + 2b)n (7 + 2 b) n 

j Reorthogonalizations 2 jrn (2j + 1) n 
Computing an eigenvector that (j + 2b + 1)n jn 
converged at step j 

M must be kept. There is also a further cost in STLA when transforming the 
eigenvectors back to those of Eq. (1). 

The FORTRAN implementation of the two versions of the Lanczos algorithm 
mentioned above are about the same length. UTLA requires no post transformation 
of the computed eigenvectors that STLA must perform. On the other hand, the inner 
loop of a Lanczos step and the reorthogonalization step are slightly longer in UTLA 
because of the M-inner product. 

TABLE 3 

Operation counts for the case of a positive definite, sparse M. 
Here mn is the cost of applying M to an n-vector. 

STLA UTLA 

Initial cost (b2 + 1)n (2b2 + m + 1)n 

One step of Simple Lanczos (5 + 4b)n (7 + m + 2b)n 

j Reorthogonalizations 2 jn (2J + m)n 
Computing an eigenvector that (j + 2b + 1)n jn 
converged at step ( 

TABLE 4 

Storage demands of the two methods for the cases under consideration. 
Here mn is the cost of applying M to an n-vector. 

Case STLA UTLA 

Diagonal M (b + 6r)n (b + 7)n 

ConsistentM (5 + 2b)n (6 + m + b)n 

4. Accuracy. We turn now to the accuracy of the eigenvalues computed by means 
of a spectral transformation. 

In [1] it is pointed out that for those XA very close to a the situation is most 
satisfactory. Their results show 
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where 0S is an eigenvalue of 
T. 

and s (j) is the bottom element of the normalized 
eigenvector of T1 corresponding to Oi. Suppose that I1X - al < IaI/100. Then, after a 
few steps, IlTjll = I100I1 > 100/Ial, and 

x i( ?+ <1 is(i) I 0 j (j)I 1 

Normally, /+, <1 I!jTjjI/10. Indeed, /j = 1jTjjj/100 is typical. In these circumstances, 
the relative error in (a + 1/08()) is four orders of magnitude less than Isl(j) . This is 
a bonus arising from the fact that 1/08() is a small correction to a. 

Unfortunately, the term 0i-2 on the right of the error bound works against us 
when determining eigenvalues much smaller than a. In these circumstances, say 

IA9g1<101/100, 

there must be two decimal digits of cancellation in the final formation of a + 1/04') 
Whatever the relative accuracy of 09, two digits will be lost in this way. Moreover, 
191 will be small relative to IITjll, and so it appears to be more difficult to attain high 
relative accuracy in 09. However, appearances are deceptive here. When a is very 
close to an eigenvalue then Tj will be a graded matrix (the first few rows of Tj will be 
much larger in norm than the rest). With graded matrices it is possible to compute 
eigenvalues to high relative accuracy. It is necessary that the criterion for acceptance 
of small eigenvalues be proportional to the magnitude of that eigenvalue and not 
IITjII. Unfortunately, some codes always use IITjII. 

It is important to consider these aspects of the algorithm, because when factoriza- 
tion of H - a M is expensive relative to a Lanczos step then it is efficient to prolong 
Lanczos runs. Long runs will produce eigenvalues quite far from a. Our remarks 
show that the only severe degradation in accuracy would arise in computing 
eigenvalues less than 10-2 from a shift a exceeding 102. Shifts should be selected to 
avoid such bizarre configurations. 

5. The Case for Spectral Transformation. The case is not self-evident. If M is 
diagonal and positive definite then the operator M-1/211-1/2 (or HM-1) is 
readily available without the need to factor H - aM (or solve a system of equations). 
In a number of applications, H - aM cannot be factored entirely within primary 
store of the computer, and expensive transfer operations may dominate the process. 
If the factorization takes as long as n Lanczos steps then we might ask whether the 
spectral transformation approach is really warranted. 

The answer is no. One of the original attractions of the Lanczos algorithm was 
that it gave a way to find the small eigenvalues of a matrix without any factorization 
at all. The price paid for this feature is that more Lanczos steps will be required than 
with the inverted operator. 

The trade-off is affected by n, and this is the point we wish to emphasize. The rate 
of convergence (more precisely, the rate of emergence) of an eigenvalue does not 
depend solely on its separation 8 from its neighbors, but on the ratio of 8 to the 
total spread of all the eigenvalues, 8/spread. Moreover, 8/spread only governs the 
rate in the early stages of the algorithm. When the number of steps j exceeds n/3 
then these estimates become too weak to be useful. 



672 BAHRAM NOUR-OMID ET AL. 

For the majority of applications using M- HM-1/2, the ratio 8/spread de- 
creases faster than l/n (more like l/n2). For large enough n it will be necessary to 
take essentially n (actually > n) Lanczos steps to find the smallest few eigenvalues. 
If reorthogonalization is used, the cost of each of the later steps is O(n 2). If no 
reorthogonalization is used, 2n or 3n Lanczos steps will be needed. 

On the other hand, the inverted operator with a good choice of a permits 20 or 30 
eigenvalues to be computed in 40 or 60 steps almost independent of n. Conse- 
quently, factorization of H - aM should be avoided only if it costs more than n/2 
matrix-vector products of the form HM - q. See [7] for more details. 

6. Projection of H. From the relations governing the Lanczos process described in 
Section 4, one can deduce that Tj is the projection of M(H - aM)-1M on the space 
spanned by the columns of Qj; that is, T. = QJTM(H - aM)-- MQj. However, it 
seems more natural to seek approximations to the eigenvalues of the original 
problem (with shift a) by using the projection of H - aM onto this space. That is, 
one would consider W. = QJT(H - aM)Qj. Indeed, the Rayleigh-Ritz approxima- 
tions are different. To establish the relation between W1 and Tj, we need some extra 
notation. Let 

WJ+1 =[T 

We premultiply the Lanczos equation (5) by QJT(H - aM). Note the M-orthogonal- 
ity of the Lanczos vectors to obtain 

(6) WjTj= Ij - -3?+ lw eJ. 

Similarly, premultiply Eq. (5) by qT+1(H - aM) and again use the M-orthogonality 
property to find 

T1w1 = -I3+ lx> + lej. 

The eigenvalues of W1 are the Ritz value approximations to (Xi - a), i = 1,..., j 
from span Q.. But it is just as convenient to determine the eigenvalues of W71. 
From (6), 

j= (Ij + pjwjef), p1 = Iy+?/(l - +le 

(7) =T + piwTiW.e 

Tj + Cje T. 

Here, 

(8) 
/32 T4 

MJ1~~/3i+ eTw. 

Equation (7) shows that W. is the inverse of a tridiagonal matrix that differs from T 
only in the last diagonal entry. 

To evaluate M1, equate the (j + 1, j + 1) elements on each side of 

Wj+l(Tj+l + I'?+le?+ieJ1-) = 11? 

to find 

(9) Pi+ lwj ej c + w+ 1(aj+1 + -j+1) = 1. 
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Now eliminate X from (8) and (9) to find 

J2 
j+l= -6j+l- I-Ij 

Next we examine how well the eigenpairs, (9, s), of Tj approximate those of WJ-1. 
The norm of the residual vectors is easily computed, 

(W1- )S = Ts - Os + je II =e Is j)I. 

Clearly, those Ritz vectors that have stabilized in the Lanczos process are least 
affected by the change of projection. Except for the occurrence of large l, it is not 
clear that, in practice, it is worth computing these modifications. 

The starting value yu is obtained directly from co = qe(H - aM)ql. That is, 

1 = ll1 - a1. When the starting vector for the Lanczos algorithm is r= 

(H - aM)1-Mu then c1 = rTMu/I2. 
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