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An Algorithm for Computing Continuous 
Chebyshev Approximations 

By Zhongqi Jing and Adly T. Fam 

Abstract. In this paper we introduce an algorithm for computing nonlinear continuous 
Chebyshev approximations. The algorithm is based on successive linearizations within adap- 
tively adjusted neighborhoods. The convergence of the algorithm is proven under some 
general assumptions such that it is applicable for many Chebyshev approximation problems 
discussed in the literature. It, like the Remez exchange method, is purely continuous in the 
sense that it converges to a solution of a continuous Chebyshev approximation problem rather 
than one on a discretized set. Quadratic convergence is shown in so-called regular cases, 
including polynomial and nondegenerate rational approximations. We believe the algorithm is 
also computationally more efficient than some other algorithms. A few numerial examples are 
given to illustrate the basic features of the algorithm. 

1. Introduction. In this paper we consider the following Chebyshev approximation 
problem. Find a parameter vector A* = (a*,..., a*) E Q2 to minimize 
maxX E AE(A, x), where E(A, x) = IF(A, x) -f(x)I is the approximating error, 
F(A, x) is an analytic function on Q x A and f(x) is piecewise analytic with, at 
most, a finite number of nonanalytic points. (We assume that if xo is a nonanalytic 
point, and [xo, xo + a) c A for some a > 0, then a suitable redefinition of f(xo) (if 
necessary) would make f representable by its Taylor series about xo in [xo, xo + ?) 
for some & > 0, where the derivatives of f at xo are replaced by derivatives from the 
right; we make the corresponding assumption if (xo - a, xo] c A for some a > 0). 
Q = { Z = (Z1, ... a Zn )T I L(Z) < 0) is', a bounded region in n-dimensional space, 
defined by a set of linear inequalities, L(Z) < 0. Because Q can always be divided 
into a finite number of convex subregions, without loss of generality we will assume 
that Q is convex. The set A is assumed to be the union of a finite number of closed 
intervals on the real axis. Thus, the problem involved is a continuous Chebyshev 
approximation problem. 

The linear Chebyshev approximation can be found by the Remez exchange 
method [18], [4]. This method has been generalized to some other functions, 
including the important rational functions. However, difficulties due to the nonlin- 
earity, the pole problem, the existence problem, and the degeneracy were encoun- 
tered when the exchange method was applied to find the best approximation [18]. 
Several algorithms were suggested to partly overcome these difficulties; see, for 
example [18], [7]. It is expected that these difficulties appear in many more general 
nonlinear Chebyshev approximation problems. Watson described a method for 
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calculating best nonlinear Chebyshev approximations [20]. However, it relied on the 
solution of a set of equations, which did not seem easy to solve except in a small 
neighborhood of the minimax point. 

In this work we propose a different algorithm, which is designed to solve a wide 
class of continuous Chebyshev approximation problems, linear as well as nonlinear. 
For the approximating function F(A, x) we only assume that it is analytic on Q x A 
and the function to be approximated, f(x), may be discontinuous as long as the 
local maxima of the approximating error function exist. The algorithm utilizes an 
iterative approach based on local linearizations. Like the multi-exchange method, at 
each iteration a discrete problem is solved on the set of points where the error 
function attains its local maxima. A technique of adaptively adjusting the lineariza- 
tion region is adopted to make the algorithm less sensitive to nonlinearity and 
degeneracy problems. A similar idea (but different scheme) was used by Madsen 
[13]. The general nonlinear Chebyshev approximation problem was treated by 
linearizing the approximating function in [5] and [9], but with somewhat different 
approaches. 

The algorithm solves a bounded parameter approximation problem. Several 
authors have studied this problem, [17], [10] and [19]. To solve an unbounded 
parameter problem we can use a sufficiently large U2. Good choices of 02 and (if 
necessary) a suitable parameter mapping (i.e., introducing A = g(W) and F(A, x) 
= F(g(W), x) = G(W, x) and applying the algorithm to the function G on a set of 
parameters W) may exclude from 02 x A possible singular points of the approximat- 
ing function F(A, x). In many cases we simply choose t2 = { Z = (z1,..., zn)T: 

VI < z u-,- i = l,... n}, where the vi's and u,'s are constants, if there is no 
specified sa. 

The algorithm is proven to have sure convergence, and in so-called regular cases it 
converges quadratically. It is interesting to note that even though a descent method, 
in a neighborhood of A* it is equivalent to the multi-exchange method in linear 
regular cases, i.e., the two algorithms actually generate the same sequence that 
converges to A*. 

E. W. Cheney, G. D. Taylor, M. J. D. Powell, I. Barrodale and others studied 
computations of discrete Chebyshev approximations [1]-[4], [10]-[12], [17]. A con- 
tinuous problem, then, can be solved by a discretization of A. However, we 
sometimes encounter difficulties in choosing a suitable discretization point set in A. 
In a nonlinear problem, the linear programming, or other methods involved in 
solving the discretized problem, are sensitive both in computational complexity and 
numerical behavior to the number of points in the set. In our proposed algorithm the 
point set is not fixed and usually contains only a small number of points. Working 
on this varying set, the algorithm converges directly to a stationary point, which is 
usually a local solution to a continuous Chebyshev approximation problem. The 
adaptive adjustment of linearization regions eliminates line searches in most of the 
iterations. All these things improve the efficiency of the algorithm. 

We first describe the algorithm, with a brief discussion on its implementation, in 
Section 2. Then we prove the convergence theorem in Section 3. Some further 
discussions of its properties are given in Section 4. Several illustrative examples are 
presented in Section 5. 
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2. The Algorithm. Before presenting the algorithm, we introduce some notation 
which is used throughout this paper. In the sequel we will assume that all local 
maxima of E(A, x) with respect to x for any fixed A E Q exist. By a local 
maximum E(A, x*) of E(A, x) we mean that there exists an a > 0 such that 
E(A, x) < E(A, x*) for all x E [x* - a, x* + a] n A. The point x*, then, is called 
a local maximum point. If the equality holds only for x = x*, it is also called a strict 
one. A nonconstant analytic function can have only strict local maxima. e(A) = 

maxX x ( E (A, x) is called the maximum function of E(A, x). The gradient vector 
with respect to A and the inner product are respectively denoted by 

vE(A, x) 
a 

( (A, x) a, X) 

and (A, B) = En27a1bi. We use two norms, denoted by AI{l = (A, A) and IIAIIOc 
= maxl<1ina,1I. The notations of sets, G(A,8) = {Z E 2IIIZ - All < 8}, G(x,a) 
= { z E AI Iz - xl < a} and S(A, 8) = { Z E 0 1IllZ - All, < SI are also used fre- 
quently. 

The objective of the algorithm is to find a sequence { Ak, k = 0, 1,... }, starting 
with some initial approximation A0 and a real positive number do, such that the 
sequence { e (Ak), k = 0, 1,... } either stops at or converges to a local minimum of 
e (A). Suppose Ak and dk have been found. Then Ak+ 1 and dk+l are generated by 
the following steps. 

Step 1. Find all local maxima of E(A, x), E(Ak, xi), i = 1, 2,. . ., N(Ak), with 
respect to x for fixed A = Ak. 

Step 2. Find Ak and ek satisfying 

ek = max [E(Ak,x+) ?(vE(Ak,x), Ak -Ak)] 

(1) min max [E(Ak, xi)+ (vE(Ak, x), A - Ak)]. 
A e S(Ak,dk) ISiSN(Ak) 

Step 3. If e-k= e(Ak), Ak is a stationary point of e(A) and the algorithm is 
terminated. Otherwise, find the smallest nonnegative integer Lk such that Ak+l = 

Ak + (Ak - Ak)Y Lk satisfies 

(2) e(Ak+l) < e(Ak) -31 
JAk+I - Akl 

(e(Ak) -ek), 

JJAI(-Ak 

where 0 < y < 1 and 0 < PI < 1 are chosen constants. 
Step 4. If 

(3) |ek- e(Ak) I> 32(e(Ak) -ek), 

set dk+l = Yl1IAk- Aklo.o Otherwise, set dk+l = Y2IIAk-AklKoo Here 32 > 0, Y2 
> 1, 0 < Y1 < 1 are chosen constants satisfying /B2 > I, and /B2 < 1 - ,1. 

Recalling the assumptions on F(A, x) and f(x) given earlier, we know that the 
first step defines a finite set of local maximum points, unless the error function 
E(Ak, x) becomes a constant in some interval. We will assume that all N(Ak), 
k = 0, 1,..., are finite numbers and consequently Step 1 is well defined. Note that 
in normal approximation problems the above exceptional case is encountered very 
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rarely. If at some A, E(A, x) reduces to a constant, we can avoid this point either by 
removing it from Q or by choosing an Ao such that e(AO) < e(A). Step 1 can be 
implemented by finding the zeros of EJ$(Ak, x) or by a one-dimensional search. 

The second step is essentially a linear programming problem, since S(Ak, dk) is 
defined by linear inequalities. In the important special case where Q= {Z= 

(z1,...,z,)TIVi < ziA ui} is defined by a set of constants ui, vi, i =1,...,n, 
S(Ak dk) iSsimply { Z = (Z1,. ,z )T|Pi , zi < qi}, where p, = max(vi, ak, - dk) 

qi = min(u1, akl + dk), and aki, i = 1,..., n, are the components of Ak. By intro- 
ducing a new set of variables Yi = (aki - pi)(qi-), i = 1,., n, and y,n+ = f 
- ek, where f = 1.2 maxi fi, fi = E(Ak, xi) + (VE(Ak, xi), P- Ak), P = 

(Pi' ..., p,)T, this step reduces to the following upper-bounded linear programming 
problem. Find Y = (y1, ..., y1)T to maximize y,7+ subject to Y > 0, y, < 1, 

i 1,..., n, and ?y=lCiY y+?~ Y+ g1, i = 1,..., N(Ak), where 

Cij = 
-E(Ak,xI)/3akj .(qj pj) 

and gi = f - fi. With the initial basic feasible solution Y = 0, this can be solved by 
the simplex method. An efficient modified simplex algorithm was developed in [8] to 
solve this upper-bounded problem. 

The new point Ak+1 is found in Step 3. We will prove that there always exists an 
Lk < oo such that (2) holds, and (2) is sufficient to guarantee the convergence of the 
algorithm. In Step 4, dk which defines the size of the linearization region, is updated 
according to the linearization error. 

The convergence of the algorithm is independent of the choice of the constants ,1, 
/252, Y, yl and Y2 as long as they satisfy the conditions given in the algorithm. 
However, a judicious choice of them may improve the speed of convergence, 
especially when AO is far from A*, and may reduce the sensitivity to numerical 
errors in the computation. Typical values we used in practice are P, = .01, fB2 = .5, 
y = .5, Y1 = .3, and 72 = 2. 

3. The Convergence Theorem. 

THEOREM 1. Let A E Q2 and E(A, xa) be a strict local maximum of E(A, x). 

Then there exists an a > 0 such that the following is true: E(A, xa) = 

maxx GE (xa,a) E(A, x), and for any given E > 0 there exists a 0 > 0 such that for any 
B, C= B + AB E G(A,0), 

(4) max E(C, x) < max E(B, x) + (VE(B, Xb), AB) + ?EIABI|, 
xEG(xa,a) x CG(xaa) 

where xb E G(xa, a) is any local maximum point of E(B, x). 

Proof. We give only the proof for the case where xa ( 3A and f (x) is analytic in a 
neighborhood of xa, since the proofs for other cases are similar. Let m < x be the 
smallest positive integer such that Exm)(A, xa) # 0, where E(m)(-, ) denotes the 
mth partial derivative with respect to x. m must be even and E(m)(A, xa) < 0. 
Thus, we are able to choose an a > 0 and a d > 0 such that [xa - a, xa + a] c A 
and E(Z, x) is analytic on S(A, d) x G(xa, a). 

We first show that in a neighborhood of (A, xa), if Z -* A, then any local 
maximum point xz of E(Z, x) approaches xa. Let Z E S(A, d) and x E G(xa, a). 
Then 

E(Z, x) = E(A, x) + (vE(Z, x), Z - A), 
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where Z E S(A, d) is some point dependent on Z and 

(XX)m (XXa)m+l 
E(A, X) E(A,Xa) + M! E Xm)(A,Xa) + (m + ) 

where g(x) is some analytic function on G(Xa, a). Further, 

aE(Z, x) (xXa) -m) X) (X-Xa)g(m 
ax (rn-i)! Ej (AXa) + M! g(x) 

(5) + 

+ ( ? 1q)! g9(x) + (VE(Z, x), Z - A) 

Denote the upper bound of IlavE(Z, x)/3xll, (Z, x) E S(A, d) X G(Xa, a), by 
M and choose d > 8 > O, a > ca > O and b > O such that E(A, Xa)= 

maxx e G(x a) E(A, x) and 

(6) 1. E(Z,Xa ? a) < max E(Z,x) forZ E G(A,8), 
X E G(Xa, a) 

(7) 2. E (m)(AXa) ; -b(m - 1)!, 

a ~b a2 b 
(8) 3. g(x 4 (m + 1)! g(x)l 4 forx E G(xa,). 

Since xz is a local maximum point and (6) is assumed, aE(Z, x,)/ax = 0. Then, 
from (5), if Z e G(A, 8), x, E G(Xa, a), 

Exm)(A, Xa) x -Xa (xZ Xa )2 ] 
(x - )m[j'l) + z,ag(x ) + ( ) g, (xz) 

= - ;: VEZ,xz), Z-A) 

In view of (7) and (8) we have 

(9) lXz - Xa 2b - All. 

We prove that with the above a the theorem holds. Suppose that B, C e G(A, 8), 
C-= B + AB, and xc = Xb + Ax, xc e G(Xa, a), is a local maximum point of 

E(C, x). Then 

max E(C, x) = E(B + AB, xc) 
(10) 

X E C (xa, a) 

() max E(B,x) +(VE(B,xj),AB) + o(llABIl), 
X e G(xaa, a) 

where limrnjAB; -. o( IABII)/IIABII = 0. Consider the second term on the right-hand 
side, 

(VE(B, xc), AB) = (VE(B, Xb), AB) + Ax( -7-VE(B, Xb + VAx), AB) 

< (IVE (B, XA) AB) + I Ax I - M - || AB |l, 

where 0 < q < 1. Note that 

|liX I (Xc - Xa) -(Xb- Xa)| < lXc Xa? + lXb Xal 
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where the last inequality holds because of (9). Thus, for any given E > 0, choose 
0 < 0 < 8 such that if 0 </3 < 0, then o(1)/3 < e/2 and (2OM/b)l/(m-1) * M < 

e/4. With this 0, in view of (10), (11), and (12), (4) is true and the theorem is proven. 

COROLLARY 1. For sufficiently small AA, 

max E(A + AA, x) = E(A,Xa)+ (VE(A,Xa), AA) + o(|AA11I)A 
X E G(Xa E a) 

Proof. This follows from (4) with B = A, C = A + AA and from the fact that 
max E(A + AA, x) > E(A + AA, Xa) 

XE G(Xa, a) 

= E(A,Xa) +( VE(A,Xa), AA) + o(\11AA). 
Recall that maxxE G(x, a) E(A, x) = E(A,Xa). OI 

In the sequel we denote the set of all local maximum points of E(A, x) by X(A). 
We also need the notation 

(13) Xm(A) {x E X(A) I E(A,x) = e(A)}. 
The maximum error e(A) is continuous on Q, but not differentiable. To investi- 

gate its behavior in a neighborhood of A, we consider 

lim (e (Z) -e (A))/Zl Z-All, 
Z -A 

where Z E Q approaches A along a given straight line. 
Definition 1. e(A) is said to be directionally differentiable at A if 

lim e(A + Oh) - e(A) 
a y->o+ 0 

exists for any h E H(A), where H(A) = {(Z - A)/IIZ - All I Z e Q, Z # A). Since 
Q is a set defined by linear inequalities, there exists a c(A) such that, for any 
h E H(A) and 0 < 0 < c(A), A + Oh E U. The limit, denoted by ae(A)/ah, is 
called the derivative of e(A) in direction h. 

LEMMA 1. e(A) is continuous and directionally differentiable at any A E U. More- 
over, for any h E H(A), 

(14) e max (VE (A, x), h). 
ah x eXm (A) 

Proof. Let xl,. . , Xr be the elements of Xm(A) and, for each xl, let a, be the 
number defined in Theorem 1. Because of the continuity of E(A, x), we are able to 
choose a 8 > O, 8 < c(A), such that for any Z E G(A, 8) 

(15) e(Z) = max r max E(Z, x)]. 
1?<i <r xc= G(x, ,a,) 

Then the continuity of e(A) results from the fact that every term in the brackets is 
continuous at Z = A according to Corollary 1. 

For h E H(A) and 0 > 0 sufficiently small, in view of Corollary 1, 

e(A + Oh) = max max E(A + Oh,x)} 
1<1<r xeG(x,,a,) 

= max 4 max E(A,x) +(VE(A,xl), Oh) + o(IIOhI|)} 
16i6r xCG(x,,a,) 

= e(A) + max [0(VE(A,xj),h) + o(IIOhII)], 
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where we used the fact that maxx E G(x ,ai)E(A, x) = e(A) for all i. Letting 0 O+ 

we obtain (14). oI 
We define A E Q as a stationary point of e(A) if minh E H(A)3e(A)/3h > 0. It is 

clear that any local minimum point of e(A) is a stationary point. 
Denote, for A E Q and d > O, 

e = mn max [E(A, x) +(VE(A, x), Z-A)] 

(16) Zce 
S(A, d) x eX(A) 

= max [E(A,x)+(VE(A,x),A-A)] 
xE X(A) 

and D(A, d) = e(A) - e. Since A E S(A, d), D(A, d) >? 0. 
Here E(A, x) + (VE(A, x), Z - A), Z E S(A, d), is the linear approximation of 

the error function E(A, x) in the neighborhood of A, S(A, d), and (16) is the 
linearization of our minimax problem. Thus, in the neighborhood S(A, d) the 
approximate solution by linearization is that at A the maximum of E(A, x) with 
respect to x obtains its minimum e. For simplicity we do not explicitly indicate their 
dependence on A and d. e- and A can be viewed as the linearly approximate local 
minimax error and minimax point, respectively. D(A, d), then, is the linear ap- 
proximation of the local maximum descent of the maximum error e(A). 

LEMMA 2. A E Q is a stationary point if and only if D(A, d) = 0. 

Proof. Assume A is a stationary point of e(A). If A = A then D(A, d) = 0, so 
assume A # A. Then maxXE x (A)(VE(A, x), h) >? 0, where h = (A-A)/IIA-AIl. 
Recalling that e(A) = E(A, x) for x E Xm(A), and using the definition of (16), we 
obtain 

(17 max [E(A, x) + (VE(A, x), -A)] 
(17) x e X,,(A) 

= e(A) + |A -A max (VE(A, x),ih) ? e(A), 
x e Xm, (A) 

i.e., D(A, d) < 0. Since D(A, d) > 0, we obtain D(A, d) = 0. 
Now suppose that D(A, d) = 0. Assume, on the contrary, that A is not a 

stationary point, i.e., there exists h* E H(A) such that ae(A)/ah* = -e for some 
E> 0. Let 8 < min(d, c(A)) be such a positive number that for any Z E G(A, 8) 

max [E(A, x) + (VE(A, x), Z-A)] 
x e X,,,(A) 

= ax [E(A,x)+(VE(A,x),Z-A)]. 
x eX(A) 

Then we have 

e- < min max [E(A, x) +(vE(A, x), Z-A)] 
Zs CG(A, 8) x e X(A) 

(18) = e(A) + min max (vE(A, x), Z - A) 
Zc G(A, 8) x CXm(A) 

, e(A) + S. max (VE(A,x),h*) = e(A)-8e, 

where we used the facts that G(A, 8) c S(A, d) and A + 6h* E G(A, 8) and Eq. 
(14). This implies that D(A, d) > 6e, which contradicts our assumption and proves 
the lemma. [1 
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THEOREM 2. The sequence { A k } generated by the algorithm either stops at a 
stationary point of e(A) or must be an infinite sequence. 

Proof. Recalling Step 3 in the algorithm, we must prove that, if Ak is not a 
stationary point, then the algorithm does not stop and there always exists an Ak+1 

satisfying (2). Since the first assertion follows directly from Lemma 2, we proceed to 
prove the second. Note that (2) can be rewritten as 

e(Ak+l) < e(Ak) - 3Y Lk(e(Ak) -ek) 

To prove the existence of Ak?1' we show that, if A E Q is not a stationary point, 
then, for any P, > 0, Ih < 1, and d > 0, there exists an a > 0 such that for any 
a > 0, a <, a, 

(19) e(A) - e(A + a(A(-A)) > fl1a(e(A) -e-) = f1aD(A, d), 

where A and e, the linearly approximate local minimax point and minimax error, are 
defined in (16). 

Since A is not a stationary point, in view of Lemma 2, D(A, d) > 0. It follows 
from (16) and a deduction similar to (17), that maxx X, (A)( VE(A, x), A -A)< 
-D(A, d). Then, for sufficiently small a > 0, according to (15) and Corollary 1, 

e(A + a(A -A)) = max max E(A + a(A -A),x) 
l < i < r x E G( x, , a, ) 

= max E (A, x) + (7VE(A, x), a(-A)) + ox (a I-AI1)I 

= e(A) + mXa(A) (VE(A,x), a(A-A)) + ox(aIIJ -A--)] 

< e(A) - aD(A, d) + max ox (aII -A 1 . 

By choosing an a > 0 such that for any a with 0 < a < a 

max ox (a 1 A--A 11) < (1 - Pi) DaD(A, d), 

we obtain (19). 
On the other hand, if Ak is a stationary point, in view of Lemma 2, D(Ak, dk) = 

e(Ak) -ek = 0 and the algorithm stops. The proof is complete. El 
Because the sequence { Ak} lies in a compact set Q and { e(Ak)} is monotonically 

decreasing, { Ak} must converge to a set of limit points. We assert that any of the 
limit points is a stationary point of e(A). In order to present this result, we first 
show the following lemma. 

LEMMA 3. If A* is not a stationary point of e(A), then there exist 8 > 0 and E > 0 
such that, for any A e G(A*, 8), D(A, d) > emin(d, 8). If, moreover, d < 8, then 
IIA -AIKO = d and - - e(A)l <f 12D(A, d), where f2 is the constant defined in the 
algorithm. 

Proof. Because A* is not a stationary point of e(A), there exists an h* E H(A*) 
such that maxx E x (A*)(vE(A*, x), h*) < 0. We first choose 8 > 0 and - > 0 
satisfying the following conditions. 

(1) For any A, Z e S(A*, 25), maxx, -x(A)[E(A, x) + (VE(A, x), Z - A)] is 
attained only at points in the set R = G(xl, a,) U G(x2, a2) U ... U G(Xr, ar), 

where xl, ..., xr are the elements of the set Xm(A*) and a1, i = 1,..., r, are 
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respectively the numbers associated with xi, i = 1,.. ., r, as defined in Theorem 1. 
This is possible, since maxxi e E(A*, x) is attained only at xl,..., Xr (thus for 

IIA - A*II sufficiently small, maxX AR E(A, x) < E(A, xI) for i-1,..., r) and, 
whenever E(A, x) # 0, vE(A, x) = sgn(F(A, x) - f(x)) VF(A, x) (so 

max( X(A)l(VE(A, x), Z - A)l < max(Bx) ExAllVF(B, x)ll IZ - All). Specifi- 
cally, letting Z = A, we know that maxx E X(A) E(A, x) is attained only at points in 
R as well. This, then, implies that maxXEE(A,x) = maxxEX(A)E(A,x)= 

maxx E R E(A, x). 
(2) (vE(A, x), h*) < -,E for any A E G(A*, 8) and x E X(A) n R. This is 

possible, since E(A, x) is continuously differentiable and any x E X(A) n R ap- 
proaches an element of Xm(A*) when A -- A*. Refer to the proof of Theorem 1. 

(3) A* + 2g E S(A*,28) for any g satisfying llgll. = 8 and g/llgll E H(A*). 
This is possible for sufficiently small 8, because Q is defined by a set of linear 
inequalities. It follows from this that, for any A E G(A*, 8), A + 6h* E S(A, 8). 

(4) If A E G(A*, 8) and IIAAIK. < 8, then for all xi E Xm(A*) 

max E(A + AA,x) x max E(A,x) +(VE(A,Xai),AA) + I|AAII, 
xeG(x,,a,) xeG(x,,a,) n 

where Xai E G (xa,a) n X(A) and E(A, Xa) = maxXEG(x, a,) E(A,x). This is pos- 
sible because of Theorem 1. 

(5) E(A + AA, x) > E(A, x) + (VE(A, x), AA) - I32ellIAll/ Vn, for any x E R, 
A E G(A*, 8), and IIAAIK. < 6. For sufficiently small 8 this is possible, because R 
and G(A*, 8) are both compact sets and E(A, x) is continuously differentiable. 

Let us, then, prove that with the above 8 and E the lemma is true. Consider any 
A E G(A*, 3). Notice that, in view of condition (3), A + min(8, d) * h* E S(A, d), 
in view of condition (1), maxX E X(A) can be replaced by niaxX E X(A) n R in the next 
equation and, consequently, condition (2) can be adopted. Thus 

e = min max [E(A, x) + (VE(A, x), Z-A)] 
ZES(A,d) xEX(A) 

< max [ E(A, x) + min(8, d) (VE(A, x), h*)] < e (A) - min(8, d). 
x E- X(A) 

The first assertion is proven. To show the second assertion let us assume, on the 
contrary, that IIA -All,, < d. Then, in view of condition (3), there exists q > 0 such 
that A + rh* E S(A, d). By the definition of A, 

xmXax [E(A,x) +(VE(A,x),A--A)] 
x E- X(A ) 

mxX(A) [E(A,x) +(VE(A,x),Ai-?qh*-A)] 

= E(A, x) + (VE(A,x), TA-A) + (vE(A, x), rh*), 

where, since A, A +rqh* E S(A*,28), we have x E X(A) n R. Because the sum of 
the first two terms on the right-hand side is less than or equal to the expression on 
the left-hand side, (VE(A, x~), rh*) > 0. This, however, contradicts our condition 
(2). Thus IA -All, > d. Because of the obvious observation that jjA-Alloo < d, 
we know that IIA -Alloo = d. 
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Let AA = A -A. Because of the conditions (1) and (4) and the fact that 
A e S(A*,28), 

e(A)= maxE(A + AA,x) 
xER 

20 < ~max [max E(A, x) + (VE(A, xjAA) \) +-I #2 1A II] 
(20) 1<i?r [ 

xeG(x,, ?,) 
A 

= max [E(A,Xai) +(VE(A,Xai),LXA)] + {32 |AA|1 e-+ {32 AA , 
I <-i <r n Fn 

where the last step results from (16) and the fact that {Xax, i = 1,..., r} c X(A). In 
view of 

(21) D(A, d) > Ed = EcjjAA?1 > E11IAA!I 

we have 

(22) e(A) - e </ 32D(A, d). 

On the other hand, according to the conditions (1) and (5), 

e(A) = maxE(A + AA, x) 
xER 

(23) > max [E(A, x) + (VE(A, x), AA)] - A_ A 11 
xeR n 

>1 e-_ #2E 
11 AA|| ) e--,2D(A, d), 

where we used (16). The last step follows from (21). The last assertion of the lemma, 
then, is the combination of (22) and (23). [ 

THEOREM 3. Any limit point of the sequence { A, i = 0,1,... }, generated by the 

algorithm, is a stationary point of e (A). 

Proof. We consider two separate cases. 
Case 1. { A,} converges to a single limit point A*. We must show that A* is a 

stationary point. Assume, on the contrary, that A* is not. Let 8 and E be the 
numbers defined in Lemma 3 at A*. In view of the continuity of e(A), there exists a 
K > 0 such that, for any i > K, A, E G(A*,8/2y2) and Ie(Aj) - e(A*)l < 2,I16e, 
where y2 and PB are the constants in the algorithm. 

We assert that there exists a k > K such that 8/Y2 < dk < 6. 
If dK < 8/y2, according to Lemma 3 and Step 4 of the algorithm, dK+l = y2dK. 

If, again, dK+l < 81/2, then dK+2 = y2dK+1. Thus, since Y2 > 1, we have dk > /mY2 
for some k > K. 

Suppose that dK > S. Lemma 3, then, indicates D(AK, dK) > E63. We note that 

AK+1 0 AK, i.e., LK = 0, where LK is the integer found in Step 3 of the algorithm. 
This is because if, otherwise, AK+ 1 = AK, then in view of the algorithm, 

e(AK) - e(AK+l) > 1l(e(AK) - eK) > fI1E6, 
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which contradicts our assumption that le(Ai) - e(A*)l < 1f3186, for all i > K. Thus 
e(AK)- e(AK) < I3D(AK, dK). Recalling that 1- f1 > I12, we have 

e(K) - eK> e(AK) - eK- ljD(AK, dK) 

= (1 - 1l)D(AK, dK) > 12D(AK, dK). 

Since the right-hand side is nonnegative, we further obtain I e(A) - eKI> 
132D(AK, dK). Then, in terms of the algorithm, dK?l = YlIIAK- AKIIL, < rydK If, 
again, dK?1 1 > 8, we have dK+2 < yldK+? . By repeating the same argument, in view 
of Y1 < 1, we know that there exists k > K such that dk < 6. Then, applying, if 
necessary, our previous discussion for the case where dK < S/Y2, we show the 
existence of k. 

Now we prove that, if dk < 8, then Ak+l =Ak. It follows from Lemma 3 that 

ek -e(Ak) > -12(e(Ak) - ek), i.e., 

(24) e(Ai) < e(Ak) -(1 - 12)(e(Ak) -ek) < e(Ak) - l(e(Ak) -ek) 

where we used the fact that D(Ak, dk) = e(Ak) -ek > 0. Then, in terms of Step 3 
of the algorithm, Ak+l = Ak 

Finally, according to Lemma 3, we have IIAk+? -Akll > IIAk+? -AkllI = 

IIAk -AkllI, = dk > S/Y2. However, this is impossible because both Ak+l and Ak 
are in G(A*, 8/2y2). Hence A* must be a stationary point of e(A). 

Case 2. There is more than one limit point of { Ai). Let A* be any of these limit 
points. To prove that A* is a stationary point, we again assume, on the contrary, 
that A* is not a stationary point and 8 and E are the numbers defined in Lemma 3 
for A*. We first show that, if Ai E G(A*, 8), then 

(25) e(A,) - e(Ai+?) > 1e min( %, - -) .1 i 

where IAA = A1+? - Ai and S = maxZ Z2 I IZl - Z211. Because S2 is a bounded 
region, S < x. 

If di < 8, then Ai+1 = Ai, a fact shown in the first part of the proof, and, 
consequently, 

e(A) - e(Ai+?) = e(Ai) - e(Ai) > fl(e(Ai) -e- 

= I3D(Ai di) > P11di > fll1IlXAi/lll , 

where (24) and Lemma 3 were used. 
If di > 8, in view of the third step of the algorithm, 

___A j__j_-__A ill I AA i11I 
e(A1) - e(Ai+?) > A1- 1 - D(Ai,di) > l S S. 

Hence, (25) is always true. 
Let r = IIA* - All, where A 0 A* is any of the other limit points, q = min(s, r/2) 

and 0 < q/2 be a positive number satisfying that for any A E G(A*, 0) 

(26) le(A)-e(A*)I < I,3l .(1 ) minI ) 
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Consider i < j < k such that Ai, Ak E G(A*, 0), Ai, Ai+l,,., Ai1 Ee G(A*, q) 
and Ai t G(A*, r). Since A* and A are both limit points, such i, j, and k exist. 
Recalling that { e(Ai)) is a monotonically decreasing sequence, we have e(Ai) > 

e(Aj) > e(Ak). This and (26) mean that 

e(Ai) - e(Aj) < e(As) - e(Ak) < 2 - min( S). 

On the other hand, in view of (25), 
j-i 

e(Ai) - e(A1) = E (e(An) - e(Am?+)) 
m=i 

( min( % ) I l AmI I> 2j1fii min( lj-, i.) 

where we used that E'-1IAAnjAmII > IIA - Aill >, /2. Being absurd, this completes 
the proof. O 

4. Discussion. The convergence rate depends on local properties in a neighbor- 
hood of a stationary point. In this section we define a special case, called the regular 
case, and show that in the regular case the algorithm converges quadratically. We 
then show that the algorithm reduces to the multi-exchange method in a regular 
linear approximation problem satisfying the Haar condition. 

Definition 2. Let A* E Q be a minimax point of E(A, x), i.e., e(A) attains its 
minimum at A*. A* is called a regular minimax point if the following hold: 

(a) There are exactly n + 1 elements in the set Xm(A*) and, moreover, for each 

xi E Xm(A*) either f(x) is analytic in (xi - a, xi + a) for some a > 0 and 

Ex"(A*, xi) 0 0, or there exists a > 0 such that for any A E S2 with sufficiently small 
A - A*II, xi is the only local maximum point of E(A, x) in G(x , a). 

(b) The minimum directional derivative of thl. maximum error function e(A) is 
positive at A*, i.e., 

(27) mn ae(A*) > 0 
gEH(A*) ag 

It follows from the above definition that for 8 > 0 and & > 0 sufficiently small, 
and for any xi E Xm(A*), if A E G(A*, 8) then there is exactly one local maximum 
point xi(A) of E(A, x) in G(xi, &). To see this, note that if 6 > 0 and & > 0 are 
sufficiently small and E.'(A*, x) 0 0, then we have E.'(A, x) 0 0 for all (A, x) E 

G(A*, 8) x G(xi, &) (so Ex(A, x) has only one zero in G(xi, &)). Now for A E 

G(A*, 8), we can define functions 

(28) fi(A) =E(A,xi(A)), i =,...,n +1. 

For some 8 with 0 < 8 < we have for every A E G(A*, 3) that e(A) = max f1i(A), 
f is analytic at A for all i, and for all i 

(29) vfi (A) = vE(A, xi(A)), 

where on the right-hand side the partial derivatives are taken with xi(A) fixed. The 
first assertion in the last sentence follows from arguments similar to those of 
condition (1) in Lemma 3. The analyticity of fi at A for IIA - A*II sufficiently small 
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holds because either the Implicit Function Theorem (applied to the equation 

E_'(A, x) = 0) implies Vxi(A) = -VEx(A, xi(A))/E$"(A, xi(A)), which implies the 
analyticity of xi(A) (and thus of fi(A) = E(A, xi(A))), or xi(A) is fixed at xi, and 
fi(A) = E(A, xi) is analytic. Finally, (29) follows either from the chain rule, or from 
the fact that xi(A) is fixed at xi. 

The following properties of a regular minimax point will be used later. 

LEMMA 4. Let A* be the above regular minimax point. Then there exists an 
E-neighborhood G(A*, E), 0 <E < S, such that for any A E G(A*, E) 

(30) (1) CMIIA - A*I >I e(A) - e(A*) IC A- A*II, 
where CM > 0 and C > 0 are some constants; 

(2) if A* is not on the boundary of 0, the matrix 

8af1(A) af1(A) 
(31) J(A) = .aa1 aa 

Lafn + (A) afn+1(A) 

8al a an 

is of full rank; 
(3) for sufficiently large d, the solution A in the linear programming problem (16) is 

determined by the intersection of the n + 1 tangent hyperplanes of fi(A), i = 1,.. ., n 
+ 1, at A, i.e, if either A' e S(A, d) (where A' denotes the intersection point) or 

IA-All. < d, then A =A'; 
(4) if A, A' E G(A*, 4), then 

(32) e (A') - e I 3(1 + 1/A2) -A' | 

where A' is defined in (3), e = f (A) + (vLf(A), A' -A) for any 1 < i < n + l and 

32 is the constant used in the algorithm. Specifically, if A = A', then e = e. 

Proof. (1) As the first relation in (30) follows from (15) and Corollary 1, we 
proceed to show the second. In view of (27), let minh E H(A*)ae(A*)/ah > C1, where 
C1 > 0 is some constant. Recalling Lemma 1 and Eq. (29), we have ae(A*)/ag = 

(vfj(A*), g) > C1 for any g E H(A*), where i is a number such that 

(VE(A*, xi), g) = max (VE(A*, xj), g). 

Then,if A =A* + tge G(A*,8), t > O, 
e(A) - e(A*) > fi(A) - e(A*) = (vLf(A*), A - A*) + o(IIA - A*II) 

> C11A - A*II + o(IIA - A*II). 
Choose C = C1/2. Then for each g E H(A*) there exists a maximal r(g) > 0, 
r(g) < 8, such that if A satisfies (A - A*)/IIA - A*ll = g and IA - A*ll < r(g), 
then (30) is true. Denote e1 = min(e-1,infgE H(A*)r(g)), where 11 > 0 is sufficiently 
small to guarantee the first relation in (30). Then (30) holds for any A E G(A*, -1). 

(2) Assume rank J(A*) < n + 1. Then there exists a vector B = (b, ..., bn+?)T + 
0 such that bn?i"+ 0, yn1b2 - 1 and J(A*) B = 0, i..e, (VE(A*, xi), B") = 
for i = 1,..., n + 1, where Bn = (bl,..., bn)'. This means that ae(A*)/aBn = bn+l 
< 0. Since A* is not on the boundary of Q, Bn E H(A*). This, however, contradicts 
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(27) and proves that rank J(A*) = n + 1. Because fi(A), i = 1,..., n + 1, are 
continuously differentiable for A E G(A*, 8), there exists an 82 > 0, 82 < 8, such 
that rank J(A) = n + 1 for all A E G(A*, 82). 

(3) The fact that rank J(A) = n + 1, A E G(A*, 82), indicates that the n + 1 
tangent hyperplanes of fi(A), i = 1,. . ., n + 1, at A intersect at a unique point A'. 
We show that if d is large enough such that A' E S(A, d) and A is close to A*, then 
A = A'. We first claim that for any d > 0, if IA - A*ll is sufficiently small, then 

e = mn max [E(A, xi(A)) + (vE(A, xi(A)), Z-A)], 
ZE S(A, d) 1in+I 

i.e., the maximum in (16) occurs at some xi(A). To see this, suppose Ai -_ A*, and 
let Zj E S(Aj, d) satisfy 

min max [E(Aj, x) + (VE(AJ, x), Z-AA)] Z eS(Aj ,1d) x e=X(Aj) 

max [E(Aj,x)+(vE(A1,x),Zj-A1)]. 

We assert that Z1 A*, for if not, suppose (going to subsequences if necessary) 
Zj -- Z* E S(A*, d); then by Lemma 1 and Definition 2 we have for some i that 
E(A*, xi) + (vE.(A*, xj), Z* - A*) > e(A*), so for j sufficiently large 

E(Aj, xi(Aj)) + (VE(Aj, xi(Aj)) Zj - Aj) > e(Aj), 

violating the choice of Z4. The claim now follows from part (1) of Lemma 3 and the 
paragraph following Definition 2. Thus for some 82 with 0 < 82 < 82, if IA - A*ll 
< 82 we have that 

e- = min max [fj(A)+(v7fV(A),Z-A)] Ze S(A, d) 1in+I 

= max [fi(A) + (vfj(A), A-A)]. 

The tangent hyperplane of fi(A) at A is written as yi = fi(A) + (vfj(A), Z - A) = 

e + (vfj(A), Z - A'), Z E Rn, where e = fi(A) + (Vfj(A), A' - A) for all i. 
Because of (27), Lemma 1 and (29), for any g E H(A*), 

max (vE(A*,xi),g) = max (vfi(A*),g) > 0. 

Since fi(A), i = 1, .. ., n + 1, are continuously differentiable on G(A*, 8), there 
exists an 83 > 0,8 3 < E2, such that, for all A E G(A*, 83), 

max (vfi(A),g) > 0 forall g E H(A*). 
1 < i <- n +1 

Thus, for any A E G(A*, 83), minZ E S(A,d) maxl 6 i < n+l[e + (vfi(A), Z - A')] is 
attained at Z = A', i.e., A = A', if A' E S(A, d). Further, if A' 4 S(A, d) then 
IA -Alloo = d, so if IIA-All. < d then A' E S(A, d) and so A A'. 

(4) We can assume 83 is so small that A' E G(A*, 83) implies e(A') = fi(A') for 
some i. Then e = f (A) + (vfj(A), A' - A), because A' is the intersection of n + 1 
tangent hyperplanes. Let 84> 0 be a number such that for any A, Z E G(A*, 84) 

and 1 < i < n + 1, 

fi(Z) - (f,(A) + (vfj(A)9 Z - A))|I < 31 + I - All. 
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Then, if E < min(e3, 5E4), (32) holds for any A which satisfies that both A and A' 
belong to G(A*, E). 

Finally, by choosing E = min(e-, e3, 84), we complete the proof. El 

THEOREM 4. If the algorithm converges to a regular minimax point A* and A* is not 
on the boundary of Q, it converges quadratically. 

Proof. Let { AJ, j = 0,1, ... } and { dj, j = 0, 1, ... } be the sequences generated 
by the algorithm, started with some initial AO and do. The sequence { A, } converges 
to A*. We must show that if AO is sufficiently close to A*, the sequence {A1} 
converges quadratically. We first assume that do > IIAO - A011,,. This assumption 
will be removed later. 

First suppose AO is close to A* such that all Ai, j = 0,1, .. ., belong to G(A*, E) 

with 8 defined in Lemma 4. We consider the system of equations 

(33) fi(W) -fn+I(W) = O, i = 1 ,2 5... ,n. 

It has a solution W = A* under the condition (a) in Definition 2. With an initial 
approximation WO = AO we apply Newton's method [16] to this equation and obtain 
a sequence { WJ } generated by the difference equations 

fi(WJ) -fn+1O(WJ) 

(34) ... + J(WJ+1 - Wj) = O, V= O,15.. 

-fn (Wj ) -fn + 1(WJ) 

where 

JT [ a a I T [tl ( y ) <,+l ( W ) l 
awl awn Lfn(Wj) -fn+l(Wi) 

{ WJ } converges quadratically to A* because rank J = n, which follows from 

j= In i 
(wi) LO .. Of 

where In denotes the unit matrix, rank J(WJ) = n + 1 for WJ E G(A*, E), and the 
elements in the last column of J( WJ) are all the same. 

To prove the theorem, we show that, if AO is sufficiently close to A* and 

do > IA0- A0IIO, then AJ = WJ for =0, 1, 2 .... We prove this by induction. 
Assume Wj = Aj and dj>HlA1-Ajll,, for j=O,1,...,k. We must show that 

Wk+l = Ak+l and dk+l > IIAk+l - Ak+lLo. 
According to Lemma 4, Ak is determined by the intersection of the n + 1 tangent 

hyperplanes of f,(A) at Ak in Step 2 of the algorithm, i.e., Ak is determined by the 
equations 

(35) E(Ak, x,(Ak)) +(vE(Ak x,(Ak)), Ak -Ak) = ek, i = 1.n + 1. 

Note that the equations (34) for j = k are equivalent to the set of equations 
obtained by cancelling ek in (35), since Ak = Wk and E(Ak, x,(Ak)) = f,(Ak). 
Thus, Ak = Wk+l. It remains to show that Ak+l = Ak and dk+l > IIAk+l -Ak+l11oo 

Suppose that Ao is close to A* such that, for all j > 0, 

(36) - 1 ||W -A*11, 
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and le(Wj?) - e(A*)l <1 Ie(J'Wj) - e(A*)j. This is possible, when A0 is sufficiently 
close to A*, because { Wj) converges to A* quadratically and the relation (30) holds. 
Then, applying Lemma 4, we obtain 

le(Ak) -e(ik) I > e(A )-e(A*) I-je(A)- e(A*) I 

(37) I I e(Ak)-e(A*) + Ak-A*3 

f2 +2 

> +1 (k k - k 1 + 
I 

|(e(Ak) - ek)e 

where the fourth inequality follows from 

|| A-A* || - 
||A-k ||-| A-A* || - || '-k || ;+2I kA A* 

aloitm thn( k )(/2 ) I em of the aloitm (39 iniae 
(38) t a-A* 11 > Ak. + 2 

Ak | > 
2 

| Ak 1- 

It follows from (37) that e(Ak)-e(Ak) > (1 + 1/f2)(e(Ak)-ek), i.e, 

(39) e(Ak) - (e(A A )2 + (e(Ak) e(Ak) > l(e(A e 

where the last step holds because, pf t2 < 1 - d and 0 < w <1, as assumed in the 
algorithm, then (2 + 1)/(2.2 + 1) > Ai In terms of the algorithm, (39) indicates 
that Ak+1 = Ak- 

It also follows from (37) that 

(40) e(Ak) - jk > > |k -e(1k) | 

which can be easily shown by separate discussions in t'he two different cases of 

e(Ak) > e-k and e(Ak) < e-k. According to Step 4 of the algorithm, (40), then, means 
that 

k+1 -2(IAk - Ak*Ioo > IIAk+l - AkIloo + II-Ak+ ?l - Ak II 

I 
-(+ 

- 
A*i11- A -A* 11) > 

n 
11 IAk -A*I11 

> 
x/ 

+ 
I*- + 

n 
IA?1 -Ak+111 > IIAk?l A- 

where we used (36) and (38). Note that (38) holds with k replaced by k + 1 even if 

dk + 1 is small, since decreasing dk + 1 will not increase IA k + 1A k + 1? 
Now we show that if do = IA 0 - A10I I then for some j we must have dj > 

IA-Ajll AI. To see this, assume dj = IlAj - Ajllo for all j. We claim that there 
exists E > 0 such that e-j - e(Aj) < -e,dj for all j sufficiently large. Once this has 
been shown, arguments like those in Lemma 3 can be used to show le(Aj) - ejl < 

/32(e(Aj) -e-j) for all j sufficiently large, so di must increase at every step from 
some point on, and this contradiction will establish the results. Note that if 
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dj = IIj - AjIloo then 

e(Ai) - ej> dj (e(Aj) -ej) 
IIA1 - A5l 

where A' denotes the intersection point of the tangent hyperplanes of fi(Aj), 
i=1...,n + 1, at Aj, and ej =fi(Aj) + (vfi(Aj), A'.- Aj) for any I < i < n + 1 

To show this, let us consider A1 = A + r(A5 - Ai), where O < r < 1 is a number 
such that A; E aS(Aj, dj). Denoting pi(A) = fi(Aj) + (Vf(Aj), A - Aj), 1 < i < 

n + 1, and e(Aj) = fk(Aj), we have ej p k(Aj) (since pk(Aj) = maxi pi(Aj)) and 

e(Aj) - e > e(A) -Pk(Aj) = Pk(A) -Pk ({j) 

111A1 _4 dj l) 
(Pk(Aj) -Pk(AJ)) I (e(Aj) - ej) 

In view of (37) (proved with A'k in place of Ak) and (32), if jlA1 - A*II is sufficiently 
small (so I1A5 - A*II can also be sufficiently small, refer to the earlier parts of the 
proof), we have 

e(Aj)-e >- Ie(Aj) - e(A;) I - Ie(A') - ejl 

> 3 ||IAj-AJ II 3(i + 1//2) IIA 3 + A2) 

and e(Aj) -j > C/3(1 + 132) * d1 for all j sufficiently large. This establishes the 
claim. The proof of the theorem is thus completed. O 

COROLLARY 2. The algorithm generates the same sequence { Aj1) as the one 
generated by the Remez second exchange method [18] in a neighborhood of a regular 
minimax point, provided that F(A, x) is linear in A, with { F(A, x): A E I Q) 
satisfying the Haar condition (i.e., no nontrivial element has more than n - 1 zeros) 
on the smallest closed interval containing A. 

Indeed, in the case of linear approximation, Step 2 of the algorithm produces an 

Ai such that E(Aj, x) is equiripple on {xi(Aj): i = 1,..., n + 1} for IlA - A*II 
sufficiently small. This and the fact that Aj+1 = Ai imply this corollary. 

The unique minimax point in a polynomial or nondegenerate rational approxima- 
tion is usually regular in the sense defined in this paper and, hence, our algorithm 
converges quadratically in these special cases. This is stated in the following 
theorem. 

THEOREM 5. Let R* = P*/Q* be the best approximation to f(x) from the 
class R[A] = {P/Q = (P,41 + ..*. +p*s1s)/(q'Tj + J * * +qT'): Q > 0 on A 

where (DJ, (DS . ' , '. . . are analytic on A. If {P1FD1 + +p p + 

R*(qlIl + * + qrIr)} satisfies the Haar condition on A with dimension r + s - 1, 
condition (a) of Definition 2 is satisfied, and S2 is sufficiently large, then the algorithm 
converges quadratically to R* from an initial Ro that is close to R*. 

Under the assumptions of the theorem, the strong unicity theorem holds [4]. Thus 
the condition (b) in Definition 2 is guaranteed and, consequently, the unique best 
approximation is regular. The algorithm has a quadratic convergence rate in a 
neighborhood of R*. 
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It is a conjecture that there are no other stationary points except the unique 
minimax point in rational or polynomial approximation. Thus the algorithm con- 
verges to the best approximation from any initial Ro E R[zA]. 

Combining Corollary 2 and Theorem 5, we reach the following conclusion. 

COROLLARY 3. The Remez multi-exchange method converges quadratically in the 
case of polynomial approximation if condition (a) of Definition 2 holds. 

This well-known result (refer to [14, p. 111], where similar hypotheses were 
employed) is obtained here in a different way. 

Finally, we have two more remarks. 
If an interval in l\ reduces to be an isolated point i (the local maximum of the 

approximating error on this interval is E(A, x) in view of our definition), the results 
in this paper still hold. Specifically, the algorithm can be applied to an approxima- 
tion problem on a finite point set. 

In Step 2 of the algorithm, { XI, ..., 
XN(A,k)} 

could be replaced by an arbitrary 
finite set X(Ak) containing Xm(Ak), on which VE(Ak, x) exists. Then the conver- 
gence is still guaranteed. If, moreover, for all k sufficiently large, (1) Xm(A*) c 
X(Ak) and (2) there exists a > 0 such that if x E X(Ak) and E(Ak, x)> e(Ak)-a 

then x E X(Ak), the quadratic convergence theorem holds. Note that the condition 
(2) is always satisfied when l\ is a finite point set. 

5. Numerical Examples. In this section we give several simple examples to 
illustrate the basic features of the algorithm. These examples were run on a CYBER 
170/730 in double precision. 

Example 1. We consider the nonlinear approximation problem discussed in [6]. 
The approximating function and the function to be approximated are respectively 
F(A, x) = a1 - (a 22-X 2)1/2 and f (x) = cosh(x) - 1. l\ is defined to be [0, 1]. The 
difficulties of using the exchange algorithm were discussed in [6]. Applying our 
algorithm, with the initial Ao = [1.2,1.2] given in [6], we obtain the following 
solution in four iterations: A = [1.206907038, 1.192213912]. The maximum devia- 
tion, .014693126, is attained at x = 0, .77414215 and 1. Quadratic convergence was 
observed in this example. 

Example 2. This is a problem of degenerate rational approximation given in [20]; 
that is, F(A, x) = (al + a2x)/(1 + a3X), f(x) = X2, 2A = [-1, 1]. Starting with the 
initial Ao = [0,0,0], we obtained the following solution in 16 iterations, A = 
[.5, -.49497483, -.98994967]. The maximum deviation .5, is at -1, .35 x 10-14, and 
1. In this example, to avoid the pole problem, we used 2 = {(a,, a2, a3): -1010 < a, 

10'?, -1010 < a2 < 1010, -1 a3 < 1}. 

Example 3. It is well known that real difficulties may be encountered when 
a solution is almost degenerate. Let us consider an example given by Rice 
in [18], where F(A, x) = (1 + alx)/(a2 + a3x + a4x2), f(x) = F(x) and l\ = 

[1.95, 3]. Applying the algorithm, we obtained the solution, A = 

[-.51282077966,2.0133138899, -1.5375272330, .25900425704]. The maximum devia- 
tion is .0074687819, which is attained at five points: 1.95, 1.9503960, 2.2835750, 
2.8047172 and 3. This solution, with one pole at 1.9499990004 and a zero at 
1.9499989854, is nearly degenerate. Quadratic convergence was observed when Ai 
was very close to A*. The evaluation of F(x) was based on the formula in [21]. 
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Example 4. Consider another degenerate problem given in [15], where F(A, x) = 

a1x + a2ex, f(x) = x2 and A = [0,2]. Starting with AO = [0,0], after 36 iterations 
we obtained a solution, A = [.18423256441,.41863121779], with 11 significant dig- 
its. The maximum deviation, .53824531817, is obtained at .40634574 and 2. Linear 
convergence was observed. In a degenerate case, it is expected that the convergence 
is slower than quadratic. It is also more difficult to obtain a highly accurate solution 
because of the "flat bottom" of the maximum error function. In this example, to get 
a solution with the above accuracy, the relative difference between e(A) and e(A*) 
must be less than 10-22. 

Example 5. Finally, we treat an example of polynomial approximation to verify 
the equivalence of the algorithm to the Remez multi-exchange method. Let F(A, x) 
= a, + a2x + a3x2 + a4x3 + a5x4, f(x) = F(x), A = [2, 3]. Starting with an ini- 
tial Ao, whose error was equiripple at 6 equally spaced points, the algorithm 
converged quadratically in 4 iterations to a solution of more than 8 significant digits. 
A , i = 0, 1, . .. , 4, were exactly the same as obtained by the Remez method. 

The optimization constants used for these examples were the ones given in Section 
2. The choices of do were not critical. 

The algorithm has been successfully applied to problems of digital filter designs. 
This will be reported in a separate paper elsewhere. For more complicated examples 
refer to that paper, or [8]. 
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