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Counting Binary Matrices with Given 
Row and Column Sums 

By Ben Johnsen and Eldar Straume 

Abstract. This paper is concerned with the calculation of certain numbers sb(p), b(p, q) 
related to combinatorial problems and graph theory. p, q are vectors of nonnegative integers, 
and sb( p) is the number of labelled graphs with vertex degree sequence p, or equivalently, 
the number of 0-diagonal, symmetric, binary matrices with row sum p. Similarly, b(p, 4) is 
the number of binary rectangular matrices with row sum p and column sum qj. The numbers 
also appear as coefficients in the expansions Hl(l + x, xJ ), Hl(l + x, yJ ). 

Explicit (i.e., nonrecursive) formulas for sb(p), b(p, q) are developed, together with 
an analysis of their complexity. Properties of p (or q), such as max{ p, }, k = Zpi, n = 

# {p, 1 O}, are incorporated into a numerical invariant which measures the total "cost" (or 
computing time). The performance of the theory for practical calculations has been thor- 
oughly tested. For example, with suitable restrictions on p one may obtain sb(p) for, say, 
n = 20 or k = 30. 

0. Introduction. Let p = (Pl, P2'... , PO) and 7 = (ql, q2,... , q,m) be vectors of 
nonnegative integers. We are then interested in calculating two nonnegative integers 
sb(p) and b( f, 4) of certain combinatorial importance: sb(p) is the number of 
labelled graphs with vertex degree sequence p, or equivalently, the number of 
0-diagonal, symmetric, binary matrices with row sum p. Similarly, b( f, 4) is the 
number of binary rectangular matrices with row sum p and column sum q. 
Algebraically, these numbers can be defined by simple polynomial identities, as 
follows. Let 

(x) = (xl, x2, , xn), (Y) (Y1, Y2, , Y.) 

be formal variables and 

T(X)p = X11x2P2 .. XPn, (Y) qyf=1 qly2q2 ... yMqm 

monomials. Then the sb- and b-numbers appear as coefficients in the expansions 

(0.1) H- (1 + xixj) = Esb(p)7T(x)P, 
i<j 

(0.2) Hl (1 + xiyj) = Eb 4) g (x) w (y) 4. 

The difficulties encountered in the calculations are due to the huge number of terms 
involved. For example, if n = 10, there are 245 _ 1013 terms if the product in (0.1) is 
multiplied out. This also illustrates the practical problems in enumerative graph 
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theory and clearly demonstrates the need for theoretical considerations before one 
embarks on (computer) calculations. 

In the literature there are several contributions to the study of enumeration 
problems of the above type (see, e.g., Read [10], [11], [12], Snapper [17], Read and 
Wormald [13], [14]). Quite often, the representation theory of the symmetric group 
Sn is involved, where n is the "dimension" of the problem (cf. [17]). Sometimes one 
is content with a solution of closed formula type, for example, with the fact that a 
certain polynomial identity holds. However, in this case the problem of picking out 
coefficients of interest may still be formidable. When recursive procedures are used, 
solutions (or data) in dimension n can be obtained once all the data in dimension 
less than n are available. Thus, in some sense, this means one should calculate 
everything or nothing. 

However, if oile is only interested in a single, or more generally, a restricted class 
of monomials, a polynomial identity or a recursive formula may contain large 
quantities of redundant information which are hard to separate or which ultimately 
add up to, say, a coefficient known to be zero a priori. Therefore, an explicit formula 
for the sb- (or b-) numbers, as developed in the present paper, cf. Theorem 3.1 (or 
4.1), has many advantages: 

First, one can take advantage of all prior knowledge of monomials having the 
same coefficient. Call a relation - on the set of monomials graphic if r(X)P - 
7T(x)4 implies sb(p) = sb(4). It is then only necessary to calculate sb(fi) for one 
monomial in each equivalence class, preferably the monomial giving the simplest 
calculation. 

-Secondly, many redundant terms can be eliminated. We shall work with ideals 
in the polynomial ring of monomials, for example, the ideal I of those monomials 
not of interest (at present). Calculations modulo I reduces the number of operations, 
terms to be stored, etc., since noncontributing quantities can be identified and 
eliminated at an early stage. This built-in flexibility allows extensions in one 
direction by putting restrictions in another. For example, in the case of sb-numbers, 
the dimension n can be increased by restricting max pi or E pi. 

-Thirdly, the explicit formula permits a detailed analysis of the complexity of the 
calculation of sb( p) for any given p. It is intuitively obvious that the complexity 
will increase with the number n of vertices, the number k of lines, the number of 
different partition numbers pi and the magnitude of these numbers. The numerical 
complexity formula of (5.1) explains precisely how these factors are related and the 
importance of each of them. In particular, this makes it possible to control the total 
complexity when some factors are increased by decreasing the others. 

In all problems of this kind, numerical calculations will sooner or later be 
impracticable owing to the usual "exponential growth barrier". However, compared 
to a recursive procedure, the economy of the explicit formula seems to make it 
possible to push the calculations (far) into dimensions not previously available. 

The paper is organized as follows. In Section 1 we define a graphic equivalence 
relation on the set of monomials, and in each class we identify a simple representa- 
tive, called root monomial. Calculation of numbers sb( p) only for a restricted class 
of monomials motivates the use of ideals, as described in Section 2. In this section 
we also recall some elementary results on symmetric functions, and certain poly- 
nomials, ykL, are defined by a simple standard construction. Here, k 2 p; iS the 
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number of edges when interpreted in the graph-theoretic sense. These polynomials, 
or rather their modified (truncated) versions Mk mod I, play a central role in the 
theory, since sb( p) is expressed as a linear combination of their coefficients. Details 
are given in Section 3, and in Section 4 for the b-case, which has been developed 
along the sanie lines as in Section 3. Finally, in Section 5 we look at the results 
obtained with possible applications in mind. This requires some theoretical consider- 
ations such as those leading to a formula for the numerical complexity of monomials. 
The latter is in fact roughly proportional to the computing time needed for sb(fp. 

The enumeration of unlabelled graphs with given vertex degree sequence 

(P1, P2 ... I P), n < 10, has been completed by Read and Wormald [13], [14] by 
recursive methods (with respect to n). Our method, restricted to the calculation of 
sb-numbers for n < 10, will give the "labelled" part of their work. Since the 
calculations in this paper are based upon an explicit formula for the sb-numbers, 
this nonrecursive method gives coefficients of individual monomials. The unlabelled 
case will be treated in a separate paper. Restrictions on E pi or max p, rather than 
n, will permit us to extend previous results in enumerative graph theory. 

1. Root Monomials. In this section we shall introduce a graphic relation on the set 
of monomials and choose a representative, called root monomial, from each equiva- 
lence class. Our choice will be justified by the fact that it is easy to perform and, 
most important, is expected to give the simplest calculation of the sb- (or b-) number 
of the class. With the notation from Section 0, the monomials r(x) P and Sr(X)PSr(y)q 

will be called sb- and b-monomial, respectively. An equivalence relation on the set of 
monomials (of fixed type) is called graphic if sb( p) (or b( p, q), resp.) is constant on 
each class. We shall now describe one such relation, - . 

First, take one class consisting of all monomials whose sb-number (or b-number, 
resp.) is zero. All other monomials are called graphic, and are characterized by the 
following results: 

1.1. THEOREM (Erdos and Gallai [2]). The monomial r(x) , with pI > P2> . 

pn and E p, even, is graphic if and only if 
k n 

, pa < kk(k-1) + , min{ k, pj} forall 1 < k < n. 
a=1 a=k+l 

1.2. THEOREM (Gale, Ryser, cf. [16, p. 63]). The monomial Tr(X)P7r(y)q, with 

Pi> > Pn, q * > > qm and pi = EYqi, is graphic if and only if 
k k 

2 qa < 2 # {l p > a} for al 1 <, k <_ m. 
a=1 a=1 

Using these two theorems, we can easily decide if a given monomial is graphic or 
not; we turn to the description of on the set of graphic monomials. 

We shall define a duality/contraction operator * on monomials, motivated by 
corresponding operations on binary matrices. If f is a 0-diagonal, symmetric, binary 
n-matrix with row sum p, or a binary n X m-matrix with row sum p- and column 
sum q, we associate with it the monomial 

(1) w(f) = s(x))P, or T (y)q, 
respectively. Then (0.1), (0.2) are equivalent to 

b(-3) = ?1(.(x)) b(p,) = ) 
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Since vectors p, q may have zero components, put 

(2) N(P) = #{laIpa > O}, K(P) = Pa. 

The action of * on p will depend only on the N(Pi) nonzero components of p up to 
a permutation; thus assume Pi > P2 >* * , and define in the sb-case 

(3) *(P) = (N(P) - 1 - PN(P), N(P) -1 PN(P)-1 * * I 

where all zero components are deleted. With p interpreted as vertex degree sequence 
of a graph with N(P) vertices, the operation *T(X)P = 7T(X)*(P) corresponds to 
taking the dual graph and deleting isolated vertices. In the b-case we are led to the 
operation *(7T(X)PfT(y)4) = 7T(x)*(P)7T(y)*(W) via the correspondence (1), where 
*(p), *(q) are defined as in (3), except that N(P) - 1 - pi must be replaced by 
N(q) - 1 - pi, and N(q) - 1 - qi by N(P) - 1 - qi, respectively. Now, let on 
graphic sb-monomials be the smallest equivalence relation such that 

(a) vT(x)t p ST(y) r if r is a permutation of 
- 

(b) v (x)P *,g (x). 
Similarly, in the b-case we choose such that 

ST(X) pST(y) _ ST(X) S()~*TX Ty 

- ST (X) 
q 

g (y) p, 

where r, s is a permutation of p, q, respectively. 
By establishing bijections like 

{f IW(f) = 7T(X)P)} { f lw(f) = *'g(X)P)} 

the following theorem is easily verified. 

1.3. THEOREM. The equivalence relation - is a graphic relation. 

Which representative of a class should be chosen as root monomial? As explained 
in Section 0, we would like to minimize the numerical complexity of 7T(x)P 
according to formula (5.1). This number will increase with N(P), K(P), maxt pi} 
and some other characteristics of p (see Sections 0 and 5), and the operator * tends 
to decrease these numbers until the process stabilizes when 

**(p) = p (assume p1 > P2 > * * * ) 
1.4. THEOREM. In each equivalence class of graphic monomials 7r(x)P there is a 

unique element 7T(x)r such that 

(a) **(r) = r; 
(b) K(r) < K(*(r)) (cf. (2)). 

Moreover, if equality holds, then we add the following condition: 
(c) r < *(r() in the lexicographic order. 

Clearly, T is obtained from p by applying * a finite number of times until (a) 
holds, indicating that 7T(X)r or v(X)*(r) should be taken as root monomial of the 
class. Then we simply use (b), (c) to make the final choice among r, *(r). However, 
this procedure may fail to give smallest numerical complexity, although in most 
cases the latter is reasonably minimized, cf. Section 5. For b-monomials, an 
algorithm for the choice of root monomials, leading to the simplest calculation of 
b( p, 4) in Section 4, can be constructed as in Theorem 1.4, but we omit details here. 
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The number of equivalence classes of graphic sb-monomials in dimensions < 12 
are listed in the last row of Table I, Section 2. Moreover, a list of root monomials (in 
certain dimensions) and the corresponding sb-numbers is given in Johnsen and 
Straume [5]. 

2. The Algebraic Setting. The algebraic calculations are considered formally to 
take place in the polynomial ring Q[x1, x2, ... ] or its quotient mod I, where I is an 
ideal containing the monomials not of interest. The effect of I during calculations is 
to identify and get rid of monomials which will not contribute to the final result. 
Such ideals arise naturally in situations where one wants to keep the magnitude of a 

characteristic feature low. 
In fact, let 8 be a function on the vectors p with values in the rational numbers 

such that 8(p) > 8(q) if pi > qi for all i. Then if d is a fixed number, the 
monomials { T (x)' 8(jp) > d } are the monomials of an ideal. Typical such func- 

tions are 
(1) K(p) Epig 
(2) S(p)= max{ pi}, 
(3) MdP) = #{i I Pi > d }, 
(4) i(p) =pi 
(5) ijp) = pi + p. 

Since ideals can be combined by the usual algebraic rules, it is clear that various 
types of restrictions can be described by ideals in this way. 

In order to calculate, say sb( p), for a single specific p, one should choose the 
largest convenient ideal I(p) not containing T(x)P, e.g., 7T(X)q E I(Jp) if qi > pi 

for some i. However, to make the later calculations of interest for all monomials, we 
shall stick to ideals of type 

(1) I(d) = { "(x)P max{ p} > d 

where d is a positive integer. The definition of numerical complexity of 7T(x)P in 

Section 5 will take the ideal I(max{ pi}) into account, and before embarking on 

calculations, it is worth checking if the monomial 7T(x) can be replaced by one with 

lower complexity. Note that no graphic sb-monomial -r(x)P with N(p) < n is 

contained in I(n - 1), hence calculations in Q[x1, x2, ... , x ] may always be 
reduced mod I(n - 1), and even mod I(n - 2) if 7T(x)P is replaced by a suitable 

monomial equivalent to it. 
Table I gives the number of equivalence classes of graphic sb-monomials having a 

representative e I and with lowest dimensional monomial (in the class) of dim n. 

The last row gives the number of root monomials of dim n (I = 0), and I = I(d) in 

the other rows. 
For the sake of convenience and easy reference we shall fix some notations and 

recall properties of symmetric functions. Let 

(z) = (Zi Z2 ...* Zm) t= EZ I = 11,2, .... 

(2.1) (X) = (X1 X2 x...Xn) S I= X 1= 1,2 ,... 
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TABLE I 

The number of graphic sb-equivalence classes. 

2 13 14 5 6 7 8 9 10 11 12 16 17 18 19 20 

3 0 0 2 6 14 16 25 25 36 36 49 81 81 100 100 121 
4 0 0 2 6 20 49 83 110 146 182 231 489 570 670 770 891 
5 0 0 2 6 20 69 202 336 504 672 924 2445 2970 3685 4400 5346 

n - 2 0 0 2 6 20 69 269 981 3647 13658 51766 

be formal variables and corresponding power sums. Applying the identification (or 
substitution) 
(2.2) (z) = (xlx2, x1x3,..., xlxn, x2x3, ..., xn_xn), 
i.e., m = (n), we get 

(2) t1=2(s72-S21), 1=1,2. 

Now, let Tk be the kth elementary symmetric function, so that 
m m 

(2.3) fl (1 + Zi) = E Tk(Z). 
i=l k=O 

It is a classical result that Tk(Z) can be expressed as a polynomial in the power sums 
tj. In particular, there are polynomials satisfying 
(2.4) Tk(Z1 Z29 ... 9 Zm) = Xk(tl, t2, * * * X tk) = /k(S11 S29 ... 9 52k) 

where gUk is derived from Xk via (2). Recursive formulas are 

(3) kXk = k (-1)'1+1t1kk, k > 1; Xo = 1. 
l=l 

From (3) we see that the modified polynomials Ak = k!Xk and I1k = k!2k,.Lk have 
integer coefficients, and moreover, that 

k 

(4) E (= l)'+(k - 1) ... (k - 1 + 1)211(S7 521) -1 

1=1 

These formulas are not suitable for getting information about coefficients, their 
magnitude or the number of terms included. Since we need this information 
explicitly, the method explained below is used for calculating A k on a computer. 

Use the notation for coefficients explained by the expansions 

(5) Xk(t) = EXk(r)7(t) = Ak(S) = 
EUk()7T(S)q- 

r 4 

Then there is the well-known formula 

(2.5) lk(r) = 1r'2r2 k r kr! if E ir2 =k 
0 O otherwise, 

so IUk (q) can be found by applying the substitution (2) to fr(t)r in (5). Technically, 
this amounts to expanding tlrl = (2(S2 - 521))rl and determining coefficients t(r, q) 
such that 

(6) sr(t) r = E (-l)q't(r #)qT(S) 
q 
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In this summation, however, the space of vectors q is unknown, but the calculations 
can be performed according to the following result, which is easily verified. 

2.6. PROPOSITION. Let r be given, E2iri = k. Then 

,r(t)r=,(1 q,t(r,q #r(Syq 
iu, v3 

where iu, v runs through all (nonnegative integral) vectors such that u + v = r, 
-= 2i + WFv, Wp = (0, v1, 0, V2,...), and moreover, 

(7) t(r,)= r1!r2! v rk! 
2y-rUlu!U2! ... vl!v2! . 

2.7. Remarks. (a) Note that the yk-polynomials are calculated from the Ak-POlY- 
nomials by a standard "Wreath product" type of substitution, called "substitution 
of polynomials" by Read [12]. Except for the sign of coefficients, Xk is identical to 
the cycle index polynomials Z(Sk) of the symmetric group Sk. For k < 10 a table of 
Z(Sk) is given in Harary and Palmer [4, p. 249]. 

(b) Of course, it is a simple matter to generate all partitions r of k (? iri = k), and 
calculate the integer coefficients k!Xk(1) Of Xk. Then, for each r one generates terms 
lT(S)q Of Ak as in Proposition 2.6, and so the coefficients of -k are calculated 
cumulatively, since different partitions T may contribute to the coefficient of the 
same term. However, it will be evident later that in order to keep the number of 
terms reasonably small as k increases, which in turn will increase the speed of 
further calculations in Sections 3 and 4, we are only interested in mod I versions of 
the above polynomials. This modification is explained below. (For the number of 
terms, see Table II, Section 5, for k < 30.) 

Now, fix k and let I c Q[xl x2,. .. ] be an ideal. We may always assume I 
contains all monomials T(x) P with pi > 2k or max{ pi} > k. We would like to 
get rid of those terms in yk(S) which belong to I when (s) is expressed by (x), cf. 
(2.1). First, let M,k(t) be the truncation of Xk(t) obtained by putting Ak(r) = 0 if 
ti = 0i < ixix- for some 1 < k such that r, > 0. Similarly, put t(r, q) =0 in (7) if 
for some 1, SI 0, q, > 0. This is the case, for example, if q1 > 0 for some I > k. 
Next, use the modified versions of Xk(s), t(r, q) to calculate a polynomial 4I4(s) as 
before. Note that 14(s) has only k variables (s1, S2 ... , Sk), it is congruent to both 
1Lk(51, S2* * and 1Lk(51..*, k. 0, ... , 0) mod I, but ,4 is not in general equal to 
the last polynomial. Define polynomials for 1 < k by 

(2.8) Ak(s) modI(l) = 4k(S1, ...,S, 0 .... 0). 

These are the candidates used for 11k in the calculations, since they are congruent to 
4(l) mod I(l) and congruent polynomials will do the same job. In the next section 

we show how these polynomials enter into the calculation of sb-numbers. 

3. Calculation of sb-numbers. We shall present a method for the calculation of 
sb-numbers which seems to be sufficiently different from those previously studied to 
be of some interest. By definition, sb(fp) is the coefficient of n(x)fi in HI (1 + xix1), 
so from (2.3), (2.4) the identities 

(1) Ysb(P)7r(x)P = ZTj(z) = EXj(t) = EtLj(s) 
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hold if the variables (x), (z), (t), (s) are related as in (2.1), (2.2). If I is an ideal as in 
Section 2, and 

(2) Tk= Tk(z) modI =-Ak(S) mod I sb(p)n(x)P 

denotes the sum over monomials w= 7r(x)P with fixed K(p) = Ypi= 2k and 
w t I, we have the recursive formula of integer coefficient polynomials 

(3) k!Tk-- (-l) f+'(k -1) ... (k -I + lI)t,(k - I1)!Tk_LI mod I 

with t = ? < jxYx mod I. 
The remainder of this section is devoted to getting an explicit (nonrecursive) 

formula for the computation of sb( p) for a single graphic (root) monomial w, or a 
certain class A = {we) of such monomials with some "similarity." We assume 
K(.p)-= 2k is fixed for all w E A, and let I be an ideal (as large as we conveniently 
can find) such that A n I = 0. In particular, I contains all nr(x)P with K(p) > 2k 
or max{ pi } > k. Note that Ak(S) in (2) can be any polynomial = pi4(s) mod I, so if 
we have generated such a polynomial, as explained in Section 2, sb( jp) will occur as 
the coefficient of '7(x)P when (s) is expressed by (x). Hence, if S(r, I) is the 
coefficient defined by 

(4) 7T(s) = ?S(?, I)7J(X)r, 

then clearly 

(5) sb(jp) = ?p4(i)S(P l) 

where 4k(l) is the coefficient of T(s)l in the polynomial t4. 
S( p, I) in (5) is obtained by an expansion of power sum products into monomials. 

This is a classical problem; see, for instance, Riordan [15] and the references given 
there. For us, however, it is important to get a formula expressed by p, 1, which 
simplifies considerably if p contains equal components. Such a formula is developed 
below. 

With ideal Ic Q[xl,...,xnj as before, let m = m(I) = max(]jsj*1 0). As 
usual, all integers encountered are nonnegative and vectors are integral. The vector 
b = (bl,..., b,) is called a ( )-partition (of dimension n) of I if Ebi = 1. The vector 
[C] = [C1, C2, ... I Ci,,] is called a [ ]-partition (of dimension m) of p if Y2ic, = p. Thus, 
if (u) is an m x n-matrix of integers, then row i is a ( )-partition of Eju1 = 1i and 
column j is a [ ]-partition of F2iiuij = p1. Let M(l, p) be the set of all such matrices, 
for given p = (Pp, * p), P (I, . 4 * , Im). Using the multinomial formula on (Sj, 
it is readily seen that 

(6) s(p,i) = (ij!) El ! 

with summation over all (u) e M(i, ). 
However, the summation space M(1, p) in (6) tends to be quite large for many 

choices of p-, so we propose the following modification for the calculation of S( p, i). 
Let A,,,(pi) be the number of [ ]-partitions of pi (of dimension m), written as 
column vectors, and let 

([Pi) = ([Ps1, [P,I2 . I p, [ (pi)) 
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be the ordered set of these vectors. Write 

ri r2 r, 

P =(Pl,---,7P2, ,P3, . Pt I Pt 

where Pi > P2 > > Pt > 0 and the first r, components of pj are equal, the next 
r2 are equal, etc. By definition, any matrix (u) E M(l, p) has the first r1 columns 
from the set ([p1]), the next r2 columns from ([P2]), etc. Furthermore, the first r1 
columns will consist of rll columns equal to [pl]j, r12 columns equal to [P112, etc., 
such that the vector (rll, r12,. .., (P1)) describes the first r, columns up to order. 
These can be arranged in 

ri 
Ql= runr2 rl, (P,) 

ways. With similar notations for the next r2 columns, etc., the array 

(r11.. r1l,(P1) 
(7) R = 

- --------- 

determines Q(R) = Q1Q2 ... Q1 matrices (u) = (u(R)) in M(l(R), p) with the 
same row sum vector l(R) and moreover, the same value of H (u(R))! = H u j!. In 
fact, 

l(R) = rl1[pl]j + r12p1P2 + . .+rt1,(p,jPt]p,)l 

u ( U(R))! = (P1J [.p2h!) (1 [P1h!) (I1J [Pt]Am(p,)!)rm 

In this notation, (6) reads 

(8) S(f p,I ) = fS l l(R)!Q(R) 
R 

with summation over the set M(l) of all arrays R such that I = I(R) and row i is a 
( )-partition of ri of dimension Ahm(jp). Combining this with (5), we have the 
following result. 

3.1. THEOREM. Let I be an ideal not containing 7r(x)P, k = p1. Then, with the 
above notation, 

sb(p) = E Hl(R)!Q(R)14(i(R)) 

with summation over all arrays R, as in (7), where row i is a ( )-partition of r, of 
dimension im(Pp). 

4. Calculation of b-numbers. In this section we show how to calculate the number 
of n X m-dimensional binary matrices with row sum p and column sum qc. This is 
the coefficient b(pq, ) of the monomial w = xfIX42 ... xPfynlyy2 ...yq,m in (0.2). 
As pointed out by Kerber [7, p. 119], this number also appears in the enumeration of 
double cosets of the symmetric group Sk. The classical Gale-Ryser theorem only tells 
us when b(p,) > 0. One method of calculating b-numbers, which utilizes the 
character table of Sk, k = Epi, is given in Snapper [17]. The method described 
below is closely connected with the calculation of sb-numbers in Section 3, and the 
formula for b(fp, ) is analogous to that of Theorem 3.1. The idea is to keep the 
(column sum) vector - fixed and calculate b( p, =) for various p-. 



746 BEN JOHNSEN AND ELDAR STRAUME 

Let I be an ideal in Q[x1, x2,... ,xn] not containing monomials '77(x) of 
interest. It is easily seen that 

(1) fql~T,(x) 
... T x)- b(p,# (x) Pimod I 

with summation over all p such that sr(x) P (y)4 is graphic and 7T(x) P 0 I. Hence, 
given T(x) x, the problem is to pick out its coefficient in the expansion (1). 

Define a mod I version of the polynomial X k as in Section 2, namely 

X'k(S) = EXV )% 

where 

XIk (r Ak(r) if r= O for all j such that sj O, 

O otherwise 
and sj-xi + + xi. From (2.4), 

(2) TqX(X) Tq,( (X) Iq1,(S) 
... 

q (S) 

Denote the polynomial on the right side of (2) by 

(3) = 

it has coefficients 

(4) E( X =?;ql(51) .. m(5m) 
with summation over all m(I) X m-matrices (v) in M(l, q) with column vectors vi. 
Here m(I) = max{ j I sj 0)}, and the set M(l, 4) is defined in Section 3. Thus, the 
polynomial (3) can be calculated by using the explicit values for the factors in (4) 
given by (2.5). Formula (4) is Theorem 1 in Levine [8], and referring to MacMahon 
[9, pp. 45-46], Levine gives some hints on how to evaluate this formula in practical 
cases. As in Section 3, the summation set M(l, 4) can be reduced (with the same 
motivation, since the case of equal p's is equally interesting here) to a set M(l) as in 
Section 3. Using pJ'(s) instead of j4(s) in Section 3, we get the analogous result. 

4.1. THEOREM. Let v(x)Pfi(y)4 be a graphic monomial and I any ideal in 

Q1X1, ... ,xn] not containing vr(x)P. With the notation used in Section 3, 

rl= E (R)!Q(R)(i(4R)) 

the summation being exactly as in Theorem 3.1. 

5. Applications and Numerical Complexity. In order to apply Theorem 3.1 (or its 
analogue 4.1), we shall give some data and analyze the complexity of the method 
with an eye towards applications. Since the numbers b( p, 4), q fixed, are calculated 
in the same way as sb( p), with the polynomial ,u,(s) playing the role of Ik(S), we 
shall stick to the sb-case and consider monomials s7(x)f. Let n be the number of 
nonzero components of p, k = !K(p) = Epi, max{ pi} m, and for convenience 

denote the different nonzero components of p by Pl, P2' , PI with pi occurring ri 
times in p. Then we have the following formula of Theorem 3.1, 

(1) sb(p) = E Hi(R)!Q(R)j4(i(R)) 
R 
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This formula works for all p with the same value of k, irrespective of n, and 
{ (iL)) are the coefficients of a polynomial calculated once and for al. Since we 
assume Pi < m, we use the ideal I = I(m), and the polynomial is chosen to be 
yk mod I(m), cf. (2.8). Define 

(#K mod I(m)) = number of nonzero coefficients of 

yk mod I(m), cf. Table II; 

b(ri, p,) = number of ( )-partitions of ri of 
dimension A ( pi), cf. Section 3. 

Then HIAi,(ri, pi) is the cardinality of the summation space { R } in (1). For each R 
one needs to calculate the vector l(R) and the matrix u(R) of dimension m x n. 
Furthermore, one must pick out a specific coefficient (corresponding to the exponent 
l(R)) of t&k modI(m), and this takes (on the average) log2 #(k modl(m)) 
operations (assuming the polynomial is available and suitably coded in the com- 
puter). Such considerations, together with testing experience, lead us to a reasonably 
simple estimate of the work needed to calculate sb(p), namely an "affine" function 
a + /3 NC(p). Here a, / are approximately constant (within reasonable bounds of 
n, k), and 

(5.1) NC(p) = nm ' 10g2{ tkmodI(m))} HI(ri, pi) 
,=1 

is called the numerical complexity. Such an estimate is of importance when NC( p) is 
large, since comparison of relative magnitudes can be very useful. Therefore, we 
shall also regard NC( p) as a rough measure of the efficiency (or computing time) of 
(1). 

Recall that monomials equivalent in the sense of Section 1 give the same number 
sb( p). Thus the above discussion suggests another definition of root monomial, i.e., 
"simplest" representative, namely the root should minimize the numerical complex- 
ity. It is, indeed, a simple matter to calculate the quantity NC(p); the factors 
,A (ri, pi) are less than 20 in our applications. In most cases, NC is actually minimal 
for the root F chosen in Theorem 1.4. In the exceptional cases it is minimal for one 
of the closest neighbors of r in the tree structure defined by the graphic relation in 
Section 1, and then *(r) seems to be a good choice. There are extreme cases, such as 
r = (666552222), *() = (666633222), where *(r) will reduce numerical complexity 
by 40-50%, that is, formula (1) is almost twice as fast when *(r) is used rather than 
r. 

Reduction to roots can be useful when some numerical quantity, such as sb(ip), is 
constant on the equivalence class of p. The number of unlabelled graphs with vertex 
degree sequence p is another example. Thus, in the table in Read and Wormald [13] 
about 21% of the entries are actually redundant (if roots were identified). A 
computer program can easily generate successively roots of a certain dimension n 
(cf. Table I, Section 2, d = n - 2, for n = 15 the number of roots is about 3 * 106). 
The table in [61 contains all roots for n < 10, defined by the algorithm in 1.4. 

Suppose one is interested in applying (1) to a large collection A of monomials 
with fixed k. Rather than using one polynomial 14, I small, one should calculate 
several polynomials modulo large ideals Ii, adapted to a suitable partition { A} of 
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A. When k is large, say k > 20, this seems to be the most economic strategy. Indeed, 
the generation of these polynomials I1k presents no serious problem in dimensions 
where (1) is applicable. However, it is difficult to control the effect of truncation 
errors in (1), so this may call for multiple-precision arithmetic. Then we propose to 
calculate the (large) integer coefficients of Ik = 2kk!Mk, since using these in (1) the 
contribution to the sum in (1) will be integral for each R. For the magnitude 10e of 
the largest coefficient of Ik mod I(m) the exponent e increases roughly linearly with 
k and relatively little with m. A few examples are 

|(k,m) (5,5) (10,5) (20,5) (25,3) (30,2) (30,4) 
(2) | e 3 8 24 25 32 34 

However, experience with (1) has shown that e may be well above the number of 
significant digits representable in the computer. We have performed calculations of 

[Lk and sb(p) for k < 30 using a CYBER 171 and standard FORTRAN with 
double-precision arithmetic (28 decimal digits). 

The growth of the numbers Yk = #(? k mod I(m)) is shown in Table II, indicat- 
ing that Yk/yk?l decreases and is at most 1.4. Note that in order to calculate sb( p) 
for all p up to dimension n, one needs I1k for k up to [n(n - 1)/4] and m at most 
n - 2 (cf. the discussion of root monomials in Section 1). For example, k < 22 or 27 
suffices for n up to 10 or 11, respectively. 

TABLE II 

The number of nonzero coefficients of I1k mod I(m) 

m 3 4 5 6 7 8 k 2k 

5 9 16 17 17 24 
7 15 31 35 48 49 49 64 

10 26 67 84 132 140 177 203 232 
14 45 147 211 388 437 614 947 1040 
18 70 274 445 937 1127 1741 
22 100 458 832 1972 2535 4276 
27 145 785 1617 4372 6086 11344 
30 176 1041 2297 6669 9722 19158 

The numerical complexity expression (5.1) tells us how effective the computing 
algorithm (1) is for a given 

- 
(if a suitable polynomial IUk is available). The different 

factors of the expression give precise quantitative information as to the effect of 
changing certain characteristics of p. Thus, we are able to predict the work (time) 
needed to calculate sb(p), and hence identify those p such that (1) works within 
reasonable bounds. It is instructive to study the variation of NC( p) for a fixed k or 
n, and compare average values, worst case situations, etc. 

Let NCk be the average numerical complexity for all root monomials p such that 
k = p pi, where roots are chosen as in Theorem 1.4. Then NCk increases exponen- 
tially with k. More precisely, based upon data for k < 22, we find the following 
linear equation 

(3) logl0 (INCc, ) = 0.65 + (0.388) k 
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by performing a simple linear regression analysis. [There is, of course, no random- 
ness involved. However, Eq. (3) explains 99.7% of the variation of log(NCk) as a 
function of k.] Although NCk represents the typical magnitude of numerical 
complexity for root monomials, the complexity can be up to 6-7 times larger in the 
worst case and very much smaller in the simplest cases (for fixed k). 

If one is interested in producing a complete table of coefficients sb( p) for all 
monomials up to a certain dimension, a recursive procedure is probably best, since 
then the information in lower dimensions can be used during the calculations in the 
next dimension. However, it was too tempting to run out coefficients sb(p-) for 
monomials 7T(x)P of dimension n < 10 (k < 22), and, moreover, in dimensions 
n < 20 with max{ pi } equal to 3, 4, .. ., to keep the complexity at a reasonable level. 
A few illustrating examples are listed below, cf. Johnsen and Straume [5]. 

TABLE III 

The number sb ( p) of symmetric zero-diagonal 
binary matrices with various row sum p. 

n = #{11lpj > 0}, k = Epi. 

k n P NC(p) sb(p) 
2 4 1111 4 3 
6 5 33222 1.3 103 7 

10 10 5222222111 1.6 104 15585 
13 8 55544111 3.7 105 6 
15 14 43322222222211 1.3 105 3810480099 
18 9 766443321 1.1 108 159 
20 10 8765432221* 1.4 109 49 
21 10 8765443221* 3.2 109 399 
26 13 44 . 44 1.2 106 52113376310985 
28 14 44... .44 1.7 106 6551246596501035 
30 15 44... .44 2.3 106 945313907253606891 
30 20 33 ... 33 1 105 976273961160363172131825 

(* indicates the worst case for the given k). 
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