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Numerical Absorbing Boundary Conditions 
for the Wave Equation 

By Robert L. Higdon 

Abstract. We develop a theory of difference approximations to absorbing boundary conditions 
for the scalar wave equation in several space dimensions. This generalizes the work of the 
author described in [8]. 

The theory is based on a representation of analytical absorbing boundary conditions proven 
in [8]. These conditions are defined by compositions of first-order, one-dimensional differen- 
tial operators. Here the operators are discretized individually, and their composition is used as 
a discretization of the boundary condition. The analysis of stability and reflection properties 
reduces to separate studies of the individual factors. A representation of the discrete boundary 
conditions makes it possible to perform the analysis geometrically, with little explicit 
calculation. 

1. Introduction. Consider the wave equation 

(1.1) Att = C2(Uxx + L y 

for t > 0 on the spatial domain Q = {(x, y): x > 0, y E Rk}. Our goal is to find 
boundary conditions that cause wave motions from the interior of Q to pass through 
the boundary x = 0 without being reflected. Boundary conditions of this type are 
desirable in a number of physical problems. See, e.g., [2], [3], [4]. In general, it is not 
possible to find practical boundary conditions that do the above task perfectly. 

In this paper we discuss difference approximations to absorbing boundary condi- 
tions of the form 

(1.2) [ii'i((cosaj)+ - -c U = 

where la., < r/2 for all j. An analysis of the analytical conditions (1.2) was given in 
[8]. Here we summarize some properties of (1.2). 

(1) The condition (1.2) is satisfied exactly by any linear combination of plane 
waves traveling out of 2 at angles of incidence + a?1, ..., +? ap with speed c. (In two 
space dimensions, consider f (x cos aj + y sin aj + Ct).) For such a linear combina- 
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tion there is no reflection. In general, the reflection coefficient is 

(1.3) jPicosaj ?cos6) 

for sinusoidal plane waves traveling at angle of incidence 6. Each factor in (1.3) has 
absolute value less than 1 when 101 < ST/2. 

(2) For any given p and any given problem, the angles aj can be chosen so as to 
distribute the zeros of (1.3) and thereby optimize the absorption properties of (1.2). 
In general, the choice of optimal aj depends on the configuration of the problem. 
For example, the angles may be chosen to take advantage of a priori information 
about the directions from which particular wave motions approach the boundary. In 
practical situations one may need to limit the value of p that is used; see the end of 
Section 3. 

(3) In Proposition 9.1 of [8] it is shown that (1.2) provides a general representation 
of absorbing boundary conditions, in the following sense. If an absorbing boundary 
condition is based on a symmetric rational approximation to the portion of the 
dispersion relation corresponding to outgoing waves, then it is either 

(a) equivalent to (1.2), for suitable aj satisfying 1a1J < ST/2; or 
(b) unstable; or 
(c) not optimal, in the sense that the coefficients in the boundary condition can be 

modified so as to reduce the magnitude of the reflection coefficient for all Fourier 
modes corresponding to nontangential incidence. 

For example, the boundary conditions of Engquist and Majda [3], [4] are based on 
Pade approximations and are equivalent to (1.2) for a,1 = = a =0. 

Various rational approximations have also been used to construct one-way wave 
equations; see, e.g., [1], [6], [11], [12]. In certain physical problems such equations are 
applied throughout the spatial domain in order to model wave propagation in one 
direction but exclude propagation in the opposite direction. These equations can also 
be used as absorbing boundary conditions when (1.1) is used as the interior 
equation; in this case the factorization in remark (3) can be considered. 

The radiating boundary conditions of Bayliss and Turkel [2] do not fit into the 
format described above. However, they resemble (1.2), with aj= 0 and certain 
variable lower-order terms added to the various factors. The absorbing boundary 
conditions of Lindman [9] resemble the first-order version of (1.2), but include 
certain correction terms that involve values of several functions that need to be 
updated at each time step. 

The purpose of the present work is to give a general analysis of difference 
approximations to (1.2). We discretize each factor with a first-order difference 
operator having a one-dimensional stencil. (See Section 3 for precise formulas.) The 
composition of these operators then gives an approximation to (1.2). This composi- 
tion has the following properties. 

(1) The stencil is one-dimensional, which simplifies implementation near corners 
of rectangular spatial domains. 

(2) The analysis of stability and reflection properties reduces to separate studies of 
the individual factors. (See Sections 2 and 3.) This leads to major simplifications in 
the analysis. 
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These remarks generally do not apply when one-way wave equations of order two 
or more are used as absorbing boundary conditions but are not factored as described 
above. (See, e.g., Section 8 of [8].) 

The analysis in the present paper is performed using geometrical constructions in 
the complex plane and involves little explicit algebraic calculation. This analysis is 
based on the representation of discrete boundary conditions given by the operator 
M( K, Z -1) developed in Section 5. The representation may have application beyond 
the present problem; see the beginning of Section 6. 

In [8] we analyzed and tested two types of discrete boundary conditions that are 
equivalent to certain discretizations of (1.2) for cos aj = X = cAt/Ax. One of these 
methods, "space-time extrapolation", is extremely easy to implement. The purpose 
of the present work is to remove the restriction cos aj = X and give a theory that 
covers a broader class of difference approximations to (1.2). 

The outline of this paper is as follows. In Section 2 we make some preliminary 
comments. In Section 3 we describe the discrete boundary conditions used here and 
state the main results of the paper. These results are proved in Sections 4 through 7. 
Some numerical tests of the boundary conditions are given in Section 8. 

2. General Theoretical Framework. In this section we define some notation and 
describe the theoretical framework to be used here. 

For the sake of notational simplicity only, we orient the paper to the case of two 
space dimensions (k = 1); the space domain is then given by x > 0 and y E R. 
However, the results also apply to problems in higher dimensions. At appropriate 
places we indicate the notational changes needed to describe and analyze the more 
general case. 

Let U>n denote an approximation to u(jMAx, m Ay, nAt), and let K and Z denote 
the forward shift operators with respect to x and t, respectively, defined by 
Kuinm = Ujn+ I'm and ZUjnm = Ujn+m We will consider boundary conditions of the 
form 

(2.1) B(K, Z-1)Un+l = 0, 

where B is a polynomial in two variables having a nonzero constant term. The 
boundary conditions used later do not involve shifts in the y-direction. In the 
interior of 2 we will use the standard second-order centered difference approxima- 
tion to (1.1); for two space dimensions this is given by 

Uj - 2UJm + un1I 

(2.2) ~(At)2 
(. [U?Im - 2UJIm + Uyl m Ujm+l - 2U Jm + U m I] 

(,Ax)2 (Ay)2 

Extensions to other interior schemes are indicated at the beginning of Section 6 and 
at the end of Section 7. 

In later analyses of boundary conditions we will use a stability criterion that is an 
analogue of one used by Gustafsson, Kreiss, and Sundstrom [5] to prove stability 
results for first-order hyperbolic systems in one space dimension. The criterion can 
be described as follows. 
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Consider solutions of (2.2) that have the form 

(2.3) UJ m = KJ(eIY) mzn, 

where K and z are complex and -q is real. The quantities in (2.3) must satisfy the 
"dispersion relation" 

z - 2 ? z-1 = (t)(K -2 ? K-1) 

(2.4) 2 

+ (c t )(e (e -2 + e -"Y) 

In the case of higher-dimensional problems, the last term in (2.4) is replaced by a 
sum of such terms. 

For each z and each RqAy, there are two solutions K1, K2 of (2.4). In Section 4 we 
show that if IzI > 1, then K1 and K2 can be defined so that KIcf < 1 and IK21 > 1. 
When Izi = 1 we define K1 and K2 to be limits of values corresponding to IzI > 1. 
The stability criterion is 

(2.5) B(KI, Z-1) $ 0 whenever I z|> 1, for all qA y. 

A physical interpretation of (2.5) is given in [8]. (Also see Trefethen [10].) A related, 
but different, interpretation is given below. 

In later sections we will consider boundary conditions defined by operators of the 
form 

p 

(2.6) B(K, Z-1)= H Dj(K, Z-1), 
j=1 

where each DJ is a discretization of a factor in (1.2). The criterion (2.5) amounts to 
requiring DJ(K1, Z -1) # 0 for each j. The factors can thus be analyzed individually. 

Reflection properties of boundary conditions will be described as follows; cf. [3], 
[8], [10]. Let 

(2.7) eitX+1nY+?ICt 

denote an oscillatory wave. This can be written in the form (2.3), with 

(2.8) K= - eitx z = eight 

Consider a linear combination 

(2.9) ClKje yZ n+ ? & cK2e'Yz 

where subscripts 1 and 2 correspond to group velocity pointing into and out of the 
spatial domain Q, respectively. This is consistent with the definition of K1 and K2 

given in connection with (2.5); see Section 4. When (2.9) is inserted into the 
boundary condition (2.1), the result is the reflection coefficient 

(2.10) R(-, z) = C1 B(K2, Z) 

(In general, one would consider wave packets formed by integrating with respect to 

-q and w, but the analysis reduces to separate studies of each pair (71, co). Also see the 
discussion of transforms given below.) We want IR(, z) I to be as small as possible. 
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If a boundary condition has the factored form (2.6), then (2.10) implies 
p 

(2.11) R(-q, z) = - R1 ( -Ri1Q z)), 
J=1 

where RJ is the reflection coefficient associated with DJ. The reflection properties 
can thus be studied one factor at a time. 

The reflection coefficient leads to an interpretation of (2.5) that suggests the 
validity of this criterion. Suppose Izi > 1. Then (2.3) consists of values of modes 
exp(yx + icy + st) for Res > 0, where K = exp(yyAx) and z = exp(sAt). The gen- 
eral solution of the interior difference equation can be built up from these modes by 
means of Fourier transforms in y and Laplace transforms in t. (The process is an 
analogue of one given in Section 5 of [7] for first-order hyperbolic systems. Reduce 
the transformed interior equation to a one-step system of difference equations in x, 
and analyze the solution.) The limit IzI -- 1 corresponds to At -- 0, if Res is fixed. 

Now consider (2.9), but with IzI > 1, IK1t < 1, and IK21 > 1. The first and second 
terms can still be associated with incoming and outgoing waves, respectively. (See, 
e.g., [7], [10], or Section 4.) The stability criterion (2.5) then means that it is possible 
to solve for incoming modes in terms of outgoing modes (see (2.10)), and the 
solvability is uniform as the mesh is refined. This interpretation is an analogue of an 
interpretation given in [7] of the Kreiss well-posedness criterion for first-order 
hyperbolic systems. 

3. Difference Approximations to (1.2); Statement of Results. In this section we 
define some discretizations of (1.2) and state the main results of the paper. Let 

(3.1) (cosoa) Ha - c Ha at ax 
denote a typical factor in (1.2). This will be approximated by 

D(K, Z-1) = (cos a) 
I 

h AZ- [(1 - a)I + aK] 
(3.2) A~t/ 

-c( K I)[(1 - b)I + bZ-]. 

The coefficients a and b give weighted space and time averages of the time and 
space differences, respectively. This formulation includes the forward Euler, back- 
ward Euler, and box scheme approximations to (3.1). (See Section 5.2.) At this point 
we place no restrictions on a and b, except that they be real. 

We will discretize (1.2) by a composition of the form 

(3.3) (H Dj(K, z1)) Un+m = O. 

The angle a and the coefficients a and b may depend on j. 
According to remarks made in Section 2, the analysis of (3.3) reduces to a study of 

individual operators of the form (3.2). In order to perform this analysis, we first 
develop the representation of D(K, Z-1) given in Lemma 1. This representation is 
used to prove the reflection property in Theorem 1 and the stability result in Lemma 
2. The conclusions of Lemma 2 are then translated into the statement about 
D(K, Z-1) given in Theorem 2. The proofs of these results are given in later 
sections. 
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The lemmas and theorems are stated for the case of two space dimensions. The 
corresponding statements about higher-dimensional problems (y E Rk) are ob- 
tained by replacing (cA t/A y)2 with E(cA t/A yj)2 and -q Ay with r- A y. 

LEMMA 1. D(K, Z-1) can be manipulated to yield 
A 

[a + b IX D(K, Z-1) 
c[ cos a 

(3.4) = I-[I + rz(Z-1 - I)] [I + rK(K - I)] 
= M(K, Z-1), 

where X = cAt/lAx and 

(3.5) rZ= ( ) b; rK ( rz 

Remarks. A motivation for the form of M(K, Z-1) is given in Subsection 5.1. 
There, we use properties of the dispersion relation (2.4) to develop a class of discrete 
boundary conditions that are approximately satisfied by outgoing waves but are not 
satisfied by incoming waves. This derivation is the process by which the author 
originally obtained M(K, Z- 1). This development uses properties of the interior 
difference scheme and does not consider the possibility of consistency with analyti- 
cal boundary conditions. 

However, Lemma 1 shows that if a + b(X/cos a) = O, then the behavior of 
M(K, Z-1) is actually equivalent to that of D(K, Z-1). This fact will be the basis of 
essentially all of the later analysis, for the following reason. 

The analysis of stability and reflection properties of D(K, Z-1) requires the 
analysis of the complex-valued functions D(K1, Z-1) and D(K2, Z - 1)* (See Theorems 
1 and 2.) Here IzI > 1, IJKJ < 1, IK21 > 1. If the given form of D(K, Z-1) were to be 
used, the analysis would appear to require a great deal of tedious algebraic 
manipulation. Such manipulation is a traditional feature of applications of the 
stability theory of Gustafsson, Kreiss, and Sundstrom [5]. However, the situation 
is different in the case of the equivalent operator M(K, Z -1). The function 1 + 
rz(z-1 - 1) maps the domain IzI > 1 to a certain disk in the complex plane; a 
similar comment holds for 1 + rK(K - 1). In later sections it will be seen that much 
of the analysis of stability and reflection can then be performed by studying simple 
geometrical properties of certain mappings in the complex plane. This does a great 
deal to simplify the analysis. 

The operator M(K, Z-1) does not help in the analysis of the special case 
a + b(X/cos a) = 0. However, this case will be handled easily by separate argu- 
ments. 

If a and b are varied so that the quantities rz and rK in (3.5) do not change, then 
M(K, Z-1) does not change. Thus different discretizations of a/at and a/ax in 
(3.1) can lead to equivalent operators (3.2). In particular, no generality is lost by 
assuming a = b in (3.2). This remark includes the case a + b(X/cos a) = 0; see 
(5.9). 

In the remainder of this section we assume that the interior difference scheme 
satisfies the Courant-Friedrichs-Lewy condition 

( At \2 A At \2 
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THEOREM 1 (Reflection property). If IZI = IK1 = I K21 = 1 and K1 K2, then 

(3.7) D(K2, z 
<) 

This holds for all choices of a and b and all 1A y. 

Remarks. Theorem 1 implies that the reflection coefficient for the general boundary 
condition (3.3) has absolute value less than 1 for purely oscillatory modes, except 
when K1 = K2 (cf. (2.11)). The constraint K1 = K2 means, essentially, that the case of 
zero normal group velocity is excluded. For details, see the proof of Theorem 1 in 
Subsection 5.3. The exceptional case is of no consequence. 

The above theorem applies to all oscillatory waves admitted by the interior 
difference scheme. It is not restricted just to those waves that are resolved well by 
the grid and thus described by consistency with (1.1) and (1.2). 

LEMMA 2 (Stability for M(K, Z -1)). Suppose that rZ and rK are positive. If 

(3.8) (2rz- 1)(2rK-- 1) < 1, 

and if strict inequality holds either in (3.8) or in the CFL condition (3.6), then the 
operator M( K, Z 1) in (3.4), (3.5) satisfies the stability condition 

(3.9) M(K1, Z-1) =AO, for lzI > 1 except if z= K1= 1, andfor all qAy. 

If strict inequality holds in (3.6), then the constraint (3.8) can be relaxed slightly; 
necessary and sufficient conditions for (3.9) are given at the end of the proof of Lemma 
2 in Section 6. 

If rz and rK are negative, then (3.9) is satisfied; no constraints need be placed on rz 
and rK in this case. 

Remarks. If M(K, Z1) is used to represent D(K, Z-1), then rz/rK = (cosa)/X 
> 0. (See (3.5).) Thus it is no restriction to assume that rz and rK have the same 
sign. Some numerical computations described in Section 8 suggest that, in practice, 

rz and rK should be positive. The exceptional case M(1, 1) = 0 in (3.9) is discussed 
below. 

Lemma 2 is used to help prove the following, final result. 

THEOREM 2 (Stability for D(K, Z-1)). If 

(3.10) a(cosa) + b <1 cosa + 

and if strict inequality holds in either (3.10) or (3.6), then the operator D(K, Z 1) in 
(3.2) satisfies the stability condition 

(3.11) D(K1, Z-1) 0 0, for IzI > 1 except if z = K1 = 1, andfor all qAy. 

In the case a = b, (3.10) is equivalent to 

(3.12) a < 2 

If strict inequality holds in (3.6), then the constraints (3.10) and (3.12) can be relaxed 
slightly; for details, see Section 7. These constraints include the possibility of negative a 
or b. 
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Theorem 2 immediately yields an analogous stability property for higher-order 
boundary conditions of the form (3.3). 

The proofs of Theorem 1 and Lemma 2 require detailed information about the 
dispersion relation (2.4). This information is developed in Section 4. In Section 5 we 
motivate the form of M(K, Z-1) and prove Lemma 1 and Theorem 1. Lemma 2 is 
proved in Section 6, and Theorem 2 is proved in Section 7. 

We conclude this section with some remarks about the behavior of (3.9) and (3.11) 
for z = K= 1. In Section 2 the stability criterion (2.5) was interpreted as a 
solvability condition. For the boundary conditions considered here, this condition 
breaks down as z -* 1 and Ki -* 1. The dispersion relation (2.4) implies that this 
case corresponds to K2 = 1 and DAy = 0, and (2.8) then implies that the frequency 
and wave numbers must be zero. A comparison with (2.10) shows that the reflection 
coefficient is a 0/0 form in this case. For neighboring z and K the reflection 
coefficient is bounded by 1, so the breakdown in (2.5) would seem to present no 
difficulty. 

However, this situation depends on a delicate balance between the effects of the 
boundary condition on incoming and outgoing waves, as the frequency tends to zero. 
Conceivably, this balance could be disrupted by perturbations from the ideal 
situation of a linear problem with constant coefficients on a uniform grid. 

Another practical difficulty is illustrated by some computations described in [8]. 
There, some second-order (p = 2) boundary conditions worked well, but some 
third-order conditions produced large reflections that increased with time. It appears 
that this difficulty is due to the fact that the initial data was nonzero (but very small) 
at a few points within the stencil of the boundary condition, but the boundary values 
at x = 0 were zero at the initial time. Thus, in effect, the boundary condition had a 
very small forcing term for a couple of time levels. A comparison with (2.1) and 
(2.10) shows that the forcing term is divided by B(K1, Z -1) when the coefficient for 
the incoming mode is found. (Strictly speaking, this remark applies to manipulations 
of the Fourier-Laplace transforms of the interior scheme and boundary condition, as 
described at the end of Section 2.) Since the denominator tends to zero, the effect on 
incoming waves can be large. The actual effect on the solution depends on the order 
of the pole in 1/B(KI, Z -1) and the number of space dimensions, since the solution 
can be represented by an inverse Fourier-Laplace transform. (Consider integration 
in polar coordinates.) The computations in question involved two space dimensions. 
In subsequent computations the incompatibility was removed, and third-order 
conditions worked better than second-order ones; the behavior of the latter was not 
affected by the change. 

The above remarks suggest that the boundary condition (1.2) is not very robust 
when p is sufficiently large. However, the breakdown in solvability can be relieved 
by replacing (1.2) with 

(3.13) [jIH (cosa+ -- + =u 0, 

where the el's are nonnegative and at least some are positive. The stability analysis 
of (1.2) given in Proposition 7.3 of [8] can be modified easily to analyze (3.13). If the 
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discrete operator D(K, Z-1) is altered by adding ?, then the leading 1 in M(K, Z-') 
in (3.4) is replaced by 1 + e(Ax/c)[a + b(X/cos a)]. The methods used to prove the 
above theorems can be extended easily to this case. 

4. Properties of the Dispersion Relation. Here we analyze the dispersion relation 
(2.4), 

z - 2 + z' = (cut) (K - 2 + K_) 

(4.1) +(c ) (eX Ay - 2 + e-"qay). 

In particular, we examine how the possible values of K vary as z varies with jzJ > 1 
and 'qzly fixed. This information will be fundamental to the development in later 
sections. Throughout this discussion we assume that the CFL condition (3.6) is 
satisfied. 

First consider the case of purely oscillatory waves of the form (2.7). In this case 
K = exp(it/x) and z = exp(iwAt), so (4.1) can be written as 

/Wit 2 / t 2 \/t 2 / t 2 
22 

(4.2) (sin 2)= (c ) sin 2 )+ ?c I sin 2 
2 Ax 2 ~ Ay! 2 

The graph of (4.2) is given in [8]. The group velocity associated with (2.7) is 
(- ao/a8, - awl/3); this vector points into (out of)- the spatial domain Q if and 
only if (Ax and wAt have opposite (same) signs. (Here we assume ItAxl < 7r, 
wAltI < ST, and 1qA yI < Sr; this is no restriction.) 

The relation (4.2) gives sufficient information about (4.1) for the analysis of the 
discrete conditions in [8]. However, in the present paper it is also necessary to 
examine (4.1) for I zI> 1 and describe how this case relates to the case IzI = 1. 

During the discussion of the stability criterion (2.5) in Section 2, certain state- 
ments were made about the roots K1 and K2 of (4.1) corresponding to Izi > 1 and 
fixed fly. Propositions 4.1, 4.3, and 4.5 give properties of the roots K of (4.1) that 
justify those earlier statements. The precise definitions of K1 and K2 are given in the 
present section; no prior knowledge of the roots is assumed here. For all z and qZy. 
the two roots K of (4.1) are reciprocals of each other, since (4.1) is symmetric in K 

and K1. 

We begin by describing the behavior of (4.1) for IzJ > 1. Later we extend the 
description to Izi = 1. 

Let D = {z e C: Izi < 1} and E = {z e C: Izi> 1); and let Du, Eu and DL, 
EL denote the intersections of D and E with the open upper half-plane and open 
lower half-plane, respectively. (See Figure 4.1(a).) Throughout this section, bAy is 
assumed fixed. 

PROPOSITION 4.1. If z E EUR then one root K of (4.1) lies in DL, and the other lies 
in Eu. The corresponding transformations map EU onto DL and EU onto EU, 
respectively. If z E EL, then one root K lies in Du and the other is in EL; the 
corresponding transformations are onto. 

Proof. First suppose z E Eu. In this case, Im(z - 2 + z -) > 0 (see Figure 
4.1(b)); a comparison with (4.1) shows Im(K - 2 + K-1) > 0. It follows that the 
roots K cannot be real and cannot lie on the unit circle, since otherwise K - 2 + K -1 
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would have to be real. Furthermore, the roots K are reciprocals of each other, 
so one root must lie inside the circle and the other must lie outside. The sign of 
Im(K - 2 + K-1) then implies that the roots must lie in DL and EU. To show that 
the maps EU -* DL and EU -EU are onto, interchange the roles of K and z in the 
above arguments. 

The case z E EL can be treated in a similar manner. r1 
From now on, we will denote by K1(z) and K2(Z) the roots K of (4.1) that lie in D 

and E, respectively, when z E EU U EL. These are labeled in Figure 4.1. For 
notational simplicity, the dependence on the parameter qAy will not be indicated 
explicitly. 

The next proposition states some facts that will be needed later. The proposition 
will be used frequently without explicit reference. 

PROPOSITION 4.2. Suppose ' is a complex number. 
(a) If ' is real, then 

-2 + > 0 if and only if > 0 and 1; 
-2 + - < _4 if and only if < 0 and - + 1. 

(b) If 1l I = 1 and ' + t-' is real, then ' is real. 

Proof of part (b). Suppose I I 1 and ' is not real. Then ' and - have different 
moduli and have nonzero arguments of opposite sign. Their imaginary parts thus 
have different magnitudes and cannot cancel. D 

PROPOSITION 4.3. If z > 1, then the roots K of (4.1) are real; one root lies in (0, 1), 
and the other lies in (1, + oo). If z < - 1, then one root lies in (- 1, 0) and the other 
lies in (- o, -1). As Izi + oo with z real, the moduli of the roots tend to O and co, 
respectively. 

EL~~~~~~D EL 

Z K1 K2 

(a) 

Z 2 K1 

(b) (C) 

FIGURE 4.1 
-415wntvt; o D ;+ A 1 
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Proof. First observe that e'5y - 2 + e-'5y < 0, with equality occurring if and 
only if q1Ay = 0. (Here we assume JqAy I < ST.) 

If z > 1, then the left side of (4.1) is positive. Thus K - 2+ K- I1 > 0, and K is 

real. The graph of K - 2+ K- I1 shows that one root K lies in (0, 1), and the other lies 
in (1, + so). As z -* + so, these roots tend to 0 and + so, respectively. 

If z < -1, then z - 2 + z-1 < -4. Thus K -2 + K-1 < -4. (Here we use the 
CFL condition (3.6).) The remainder of the analysis is similar to that of the previous 
case. F1 

For z real with IzI > 1, let K1(z) and K2(Z) denote the roots of (4.1) so that 
1K1(Z)I < 1 and JK2(Z)I > 1. This notational convention is consistent with the one 
established after Proposition 4.1; together, the conventions define maps K1: E -* D 
and K2: E -* E. The conclusions of Proposition 4.3 are illustrated as part of Figure 
4.2. 

PROPOSITION 4.4. The transformations K1: E -> D and K2: E -> E are analytic and 
one-to-one. 

Proof. Analyticity follows from the fact that the roots K1 and K2 are distinct. To 
show that the maps are one-to-one, suppose that zo and z1 are distinct points in E 
that map to the same point K. Then for this K, and the given ijAy, Eq. (4.1) has two 
roots z outside the unit circle. This is impossible, since these roots must be 
reciprocals of each other. D 

In general, the ranges of these maps are not all of D and E, respectively; see cases 
(A)-(B) and (F)-(G) in Figure 4.2. 

PROPOSITION 4.5. (a) The maps K1: E -* D and K2: E -> E have analytic extensions 
to a neighborhood of any point zo for which Izol = 1 and the roots K of (4.1) are 
distinct. 

(b) The maps have continuous extensions to the domain { z E C: JzJ > 1). 

Proof. (a) The roots are distinct when z = zo. There thus exist analytic functions f 
and g defined on a neighborhood Q of zo such that 

(1) f(z) and g(z) are the roots K of (4.1), for each z E Q; and 
(2) the ranges of f and g are disjoint. 

The functions f and g must then coincide with the functions K1 and K2 when z E Q 
and IzI > 1. 

(b) This has already been shown, except at points zo for which Izol = 1 and the 
roots K of (4.1) coincide. At any such point, let K1(ZO) and K2(zo) be the common 
value. To show continuity at zo, use either Rouche's theorem or the continuity of the 
modulus of the square root. D 

The roots K1, K2 of (4.1) are distinct except when K1 = K2 = +1, since K1K2 = 1. 
Proposition 4.5 yields a natural definition of K1 and K2 for IzI = 1. This is the 

definition that will be used from now on. Further information about these roots is 
given in the following proposition. It may be useful to interpret the conclusions in 
terms of the graph of (4.2) for ItAxl < g, IoAtl < g, and qAy fixed. 

PROPOSITION 4.6. When Izi = 1, the dependence between z and K1, K2 is that which 
is indicated in Figure 4.2. The figure illustrates the case where 0 < arg z < 'g when 
IzI = 1. If -g < argz < 0 when IzI = 1, then the signs of argK1 and argK2 should 
be reversed. Here q1Ay is fixed. 
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FIGURE 4.2 

Illustration of Propositions 4.3 and 4.6. Letters indicate corresponding values. 
Arrows indicate directions of relative movement. In this picture rqAy I 0, 
and 0 < argz < ST when Izi = 1. 

Proof. Suppose z = 1. If lqAy I 0, then K - 2 + K- 1is positive, and K, < 1 < K2. 
This is case (B) in the figure. 

For the moment, continue to assume lqAy # 0, and move z around the unit circle. 
The left side of (4.1) becomes negative. At some point, K - 2 + K-1 = 0, so that Ki 
and K2 come together to form a double root K1 = K2 = 1. This is case (C) in the 
figure. If Mqy = 0, then this coalescence occurs when z = 1. Between cases (B) and 
(C), the modes (2.3) are evanescent. 

Now move z further around the circle. Then z - 2 + z -1 becomes more negative, 
and K - 2 + K-1 < 0. The two values of K must then lie on the unit circle; this 
follows from parts (a) and (b) of Proposition 4.2. The labeling of K1 and K2 in the 
figure follows from Propositions 4.1 and 4.5. 

The remainder of the analysis is similar to the above. [1 
According to (4.2) and related discussion, a purely oscillatory mode has incoming 

(outgoing) group velocity if and only if arg z and arg K have opposite (same) signs. 
Thus K1 and K2 are associated with incoming and outgoing modes, respectively. 

A related identification of these modes is given by the following. Consider a point 
z for which IZI = IKI(Z)I = IK2(Z)I = 1, with K1 I K2. If z is perturbed so that 
Izi > 1, then K1 and K2 are perturbed so that JKuj < 1 and IK21 > 1. This is indicated 
by the dotted arrows at the positions (D) in Figure 4.3. Thus incoming waves 
(subscript 1) are associated with perturbations to modes (2.3), Kie "z n, that decay as 
x increases, when I z > 1. Outgoing waves are associated with modes that decay as x 
decreases. 

This is an example of a labeling process that is found more generally; see 
Trefethen [10]. (Also see [7].) In the proof of the general case one uses conformal 
dependence of K on z. 
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5. Properties of M(K, Z-1). The operator M(K, Z-1) was defined in (3.4) and 
(3.5). Here we motivate its form and prove Lemma 1 and Theorem 1. 

The operator will be derived withoi it reference to discretizations of (cos a) a/at - 

c a/ax. Instead, we work directly with properties of the interior difference scheme to 
produce an operator that defines a discrete absorbing boundary condition. The 
operator can be adjusted so that it does its best absorption for waves traveling at 
angle of incidence + a. (At this point we refer to waves that are resolved well by the 
grid.) After the operator is derived, we show that it is equivalent to certain 
discretizations of (cos a)a/at -c a/ax. This is Lemma 1. 

The operator also has a desirable absorption property for all oscillatory waves 
admitted by the interior difference scheme, not just those that are resolved well by 
the grid. This is given in Theorem 1. 

5.1. Construction of M(K, Z-1). In order to motivate the form of M(K, Z '), we 
begin with a description of the space-time extrapolation boundary conditions 
discussed in [8]. These use powers of the operator 

(5.1) S(K, Z-1) = I - Z-1K. 

The reflection coefficient for the first-order version is 

S(K2, Z1) 

S(K1, Z1) 

In the dispersion relation (4.1) assume -qAy # 0. Thus z # 1 when K, = K2= 1. 
(See case (C) in Figure 4.2.) If z is moved around the unit circle away from 1, then 

K' and K2 also move around the circle. The K 'S move more rapidly than does z, since 
each K moves through a complete semicircle when z moves through part of a 
semicircle. Thus at some point, K2 catches up with z. At this point, 1 - z -1K2 = 0, 

and Rs = 0. Since z = exp(icoAt) and K= exp(itAx), z = K2 implies coAt = 42Ax. 
But cd2/l cos 8 for waves that are resolved well by the grid, where 8 is the angle 
of incidence. (See Figure 4.3 in [8], or calculate group velocity.) The best absorption 
then occurs for cos 0 = cA t/A x = A. 

The operator in (5.1) is equivalent to certain discretizations of xa/at - ca/ax. 
Two examples are given in Subsection 5.2. 

The angle of best absorption for (5.1) is determined by the point where K2 catches 
up with z. Now suppose we want a boundary condition that is tuned to a different 
angle of incidence. To that end, consider the more general operator 

(5.2) M(K, z-1) = I - p(Z-1)Q(K) 

where P and Q are linear polynomials having real coefficients. P and Q will be 
chosen so that arg Q(K2) coincides with arg P(z) at frequencies corresponding to the 
desired angle. 

The following construction accomplishes this goal. Let 

(5.3) P(z-1) = 1 + rz(z 1 - 1), Q(K) = 1 + rK(K - 1), 

where rz and rK are real nonzero constants that have the same sign. When (5.3) is 
inserted into (5.2), the result is the operator M(K, Z-1) defined in (3.4) and (3.5). 



78 ROBERT L. HIGDON 

-nt- K 

Ki 

- P(Z-1) 

FIGuRuE 5.1 

Geometrical representations of P(z-1) and Q(KJ) for Izi = IKJ = 1. In these 
pictures, rz > 1, and O < rK < 1. 

P and Q map the unit circle to circles of radius IrzI and IrKI, respectively, with 
P(1) = Q(1) = 1. A geometrical interpretation of P(z-1) and Q(K) follows from the 
fact that P(z-1) - 1 and Q(K) -1 are real multiples of z-1 - 1 and K - 1, 
respectively. (See Figure 5.1.) In the figure, rz > 1 and 0 < rK < 1. In each graph 
the solid circle is the unit circle. 

The reflection coefficient for M(K, Z-1) is 

(5.4) RM = - P(z)Q(K2) 

Now consider the angles of best absorption for oscillatory waves that are resolved 
well by the grid. For such waves, wAt and (Ax are small, so z and K are close to 1. 
In the following discussion, we assume that rz and rK are positive; a related analysis 
applies to the case where they are both negative. 

First locate P(z-1) and Q(K). Figure 5.1 implies that rZ arg z1 is the (signed) arc 
length from 1 to P(z -1) along the circle of radius rz. Similarly, arg P(z -1) is the 
(signed) arc length along the unit circle to the point whose argument is that of 
P(z-1). If z is near 1 these lengths coincide to leading order, so rzargz-1 
arg P(z -1). Similarly, when K is near 1, we have rKargK argQ(K). 

In these cases, P(z-1) and Q(K) have moduli nearly equal to 1. Thus if 

(5.5) argP(z1) argQ(K2), 

then 

11 - P(Z-1)Q(K2)| << 11 - P(Z1)Q(Kc1) , 

and R M is essentially zero. But (5.5) means rz arg z rK arg K 2, SO 

(5.6) @2 _ rZ CAt 
co rK(Ax 

This implies that the reflection is essentially zero for waves traveling at angles of 
incidence 0 for which (cosO)/X rZ/rK. The boundary condition can therefore be 
adjusted to an arbitrary angle a by choosing r. and rK so that 

(5.7) rK X 
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Taylor expansions of the exponentials in (5.4) imply that, to leading order, - RM 
has the form of a factor in (1.3). The above discussion applies only to those 
oscillatory waves that are resolved well by the grid; for general reflection properties, 
see Theorem 1. 

Compositions of operators of the form M(K, Z-1), analogous to (3.3), can be 
used to yield higher-order absorption. (Cf. (2.11).) 

5.2. Proof of Lemma 1; Examples. Here we show that M(K, Z-1) provides a 
representation of the difference operator D(K, Z-1) defined in (3.2). 

The definition (3.4) of M(K, Z1) implies 

(5.8) - M(K, Z-1) = rz(Z-' I) + rK(K - I) + rZrK(Z -' I)(K - I). 

A manipulation of D(K, Z-1) yields 

cAx D(K, Z-1) (cos a - - I) +(K -I) 

[ 
a 

A ) ](Z I)(K I). 

When (5.9) is multiplied by 

( cosa)[a( co ) +b], 
the right side is the same as the right side of (5.8), with 

(5.10) rz = A ) +b, rK a 
a+b cos 

Thus, 

(5.11) 
Ax +b )x D(K, Z-1) = M(K, Z-1). c cos a 

This completes the proof. E 
The parameters defined in (5.10) satisfy the constraint (5.7). We now give some 

specific approximations to (3.1) that are included in the general form D(K, Z-1). 

(a) Forward Euler: a = 0, b = 1. The stencil has an "L" shape. Here rz = 1 and 
rK = A/cos a. 

(b) Backward Euler: a = b = 0. The stencil has inverted "L" shape. In this case, 
M(K, Z-1) cannot be used to give a representation of D(K, Z-1). However, 
stability and reflection properties for this case will be handled easily by separate 
arguments. 

(c) Box scheme: a = b = 1/2. In this case, rz < 1 < rK or rK < 1 < rz, unless 
X = cosa. 

The stability properties of these examples are summarized in Section 7. 
After Lemma 1 was stated in Section 3, it was pointed out that different pairs 

(a, b) can lead to equivalent operators D(K, Z -1). An example of this is given by 
the space-time extrapolation operator (5.1); this is equivalent to both the forward 
Euler and box scheme approximations to X a/at - c a/ax. 

5.3. Proof of Theorem 1 (Reflection Property). Here we show 

(5.12) D(K2iZ1) 1 
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when Izi KIJ = IK21 = 1 and IL K2. The dispersion relation (4.1) implies K1K2 = 1, 
SO K1 and K2 coincide only when Ki = K2= ? 1. Except when z = K, = K2 = 1, this 
case corresponds to zero normal group velocity; this can be determined from the 
graph of (4.2) for fixed -qAy (see [8]), or from the group velocity (-a/at, 
-a /a'q). 
If z = K1 = K2 = 1 then -qAy = 0 (see (4.1)), and the mode (2.3) corresponds to 

frequency zero. In this case the behavior of neighboring frequencies is described by 
the consistency of D(K, Z-1) with (3.1). 

If z, K1, and Kc2 lie on the unit circle with K1 I K2, then these numbers cannot be 
real. This is implied by Figure 4.2. 

In order to prove (5.12), we need to consider two different cases. 
Case I: a + b(X/cos a) #* 0. In this case (5.12) is equivalent to 

(5.13) ~ ~~M(K2, 
Z1) <1 

(5.13) M(ic2z1) 
< 

(see (5.11)), or IRMI < 1. The formulas in (5.10) imply that rz and rK have the same 
sign. 

Consider the factors P(Z-1) and Q(K) in M(K, Z-1). P(z-1), Q(K1) and 
Q(K2) are not real, since z-1, K1, and K2 are not real. Figure 5.1 shows that 
argP(z-1) and argQ(K1) have the same sign, whereas argP(z-1) and argQ(Kc2) 
have opposite signs. Furthermore, IQ(KI)l = IQ(K2)I and argQ(K1) =-argQ(K2). 

The line through P(z-1) and the origin is therefore the set of all points in the 
complex plane that are equidistant from P(z-1)Q(Kl) and P(z-1)Q(K2). (See 
Figure 5.2(a).) P(Z-1)Q(K2) lies on the same side of this line as 1. A comparison 
with (5.4) and (5.2) yields (5.13). 

Case II: a + b(X/cosa) = 0. In this case M(K, Z -) cannot be used to represent 
D(K, Z -1). However, (5.9) now reduces to the simplified form 

- c D(K, Z- )=( A )(Z- - I) + (K - I). 

A typical configuration of z1 - 1 and K -1 is given in Figure 5.2(b). Clearly 
ID(K2, Z-1)l < ID(K1, z-1)I, and (5.12) follows. [ 

1 ~~P(z-')Q(K2) 

\Q rg(,2) Q (K2) 
K2 - 

argQ( )( z (C - 1)(cos a)/X 

'q P(z-1)Q(KI) K1 - 1 

(a) Case I (b) Case II 

FIGURE 5.2 

Illustration of Theorem 1. 
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6. Proof of Lemma 2 (Stability for M(K, Z - 1)). Here we show M(K1, z-1) I 0 for 

Izi >? 1 except when z = K = 1, subject to the conditions described in the theorem. 
Equation (5.2) shows that the desired conclusion is equivalent to the statement 

(6.1) P (Z -1) Q (K1) I 1 for I z I > 1, except when z = K, = 1, and for all 'q Ay. 

It is assumed that rz and rK have the same sign. (This is no restriction.) 
First consider the special case where 0 < rz < 1 and 0 < rK < 1. This case is 

covered by the general analysis given below, but here it is possible to use a special 
argument that is much simpler than the general one. In this argument, the only fact 
about the dispersion relation that is used is that IKJ < 1 when IzI > 1; this suggests 
the possibility of easily extending this method to other interior schemes or other 
problems. 

If 0 < rz < 1, then the formula 

(6.2) P(z-1) - 1 = rz(z-1 - 1) 

(see (5.3)) implies that the map z1 - > P(z 1) is a contraction toward 1, as indicated 
in Figure 6.1. In each graph the shaded area is the domain of possible values of the 
specified quantity. P(1) = 1, but otherwise IP(z1)l < 1 for Izi > 1. An analogous 
conclusion holds for Q(K1), since JKIJ < 1. Thus IP(Z1-)Q(K)l < 1 for Izi > 1, 
except when z = K, = 1, and (6.1) follows. 

Similar analyses hold if 0 < rz < 1 and rK = 1, or if rz and rK are both negative. 
In the latter case, (6.2) implies that P(z-1) lies outside the unit circle if Izi > 1 and 
z ? 1. A similar conclusion applies to Q(K1), SO IP(Z-1)Q(K1)I > 1 except when 
Z K1 = 1. 

The above arguments fail for other choices of rz and rK. In such cases it is 
possible to have IP(z-1)Q(KD)I = 1 in situations other than z = K, = 1. These cases 
are of interest; for example, the box scheme can yield rz > 1, or rK> 1, or 

rz= rK = 1. (See Subsection 5.2.) A more careful analysis is therefore needed. In the 
following discussion we assume bqAy is fixed, rz > 0, and rK > 0. 

Case I: IzI > 1, z not real. First suppose z E Eu. Figure 4.1 shows z1 E DL and 
K1 E DL in this case. The geometrical interpretations of P(z-1) and Q(K1) imply 
that P(z-1) and Q(K1) must then lie in the lower half-plane. (Cf. Figure 5.1.) Since 
their arguments are between - It and 0, their product cannot be real and positive. In 
particular, P(z-1)Q(K1) I 1, which is the desired conclusion. 

Next suppose I z = 1 and Im z > 0. Then z -1 lies on the lower unit semicircle, 
and P(z - 1) is in the lower half-plane. Cases (B)-(F) in Figure 4.2 show that Ki lies 
either on the lower unit semicircle or on the real axis. Thus Q(K1) is either in the 

Z-I P(Z-1) 

FIGURE 6.1 

P(z-') for zI >? l and 0 < ri < 1. 
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Q(K1 ) 

1 t slope = r1 slope = rK 

FIGURE 6.2 

Values of P(z'-) and Q(KI1) for IzI > 1, with z real. 

lower half-plane or on the real axis. In the first case, P(z-')Q(KI) cannot be real 
and positive, so P(z-')Q(KI) A 1. In the second case, P(z-I)Q(KI) can be real only 
if Q(K 1) = 0. But then the product would be zero, and we still have P(z-')Q(K1) A 1. 

Therefore, P(z-')Q(K1) A 1 if Izj> 1 and Im z > 0. A similar analysis applies to 
the case Im z < 0. 

Case II: I z > 1 with z real. This is the only case that can yield instability, and it is 
the only source of restrictions on rz and rK. 

Here -1 < z-1 < 1. Figure 4.2 shows that K1 also lies in [-1, 1], and, in fact, is 
often restricted to a proper subinterval of [-1, 1]. The corresponding values of 
P(z-') and Q(K1) are graphed in Figure 6.2. (Cf. (5.3).) On the given domains, 
P(z-') < 1 except if z = 1, and Q(K1) < 1 except if K1 = 1. Thus the only way to 
have P(z-')Q(KI) = 1 (except when z = K, = 1) is for P(z-1) and Q(K1) both to 
be negative. 

We now obtain the sufficient condition (3.8) given in Lemma 2. If P(-1) > 0, 
then P(z-') > 0 whenever -1 < Z-1 < 1; (6.1) must then hold, regardless of the 
behavior of Q. Similarly, if Q( 1) > 0, then (6.1) holds, regardless of the behavior 
of P. Thus (6.1) can fail only if P(-1) < 0 and Q(-1) < 0. So suppose that P(-1) 
and Q(-1) are negative, and now also assume P( - 1)Q(-1) < 1. Then for any z -1 

and K1 in [- 1, 1] for which P(z'-) < 0 and Q(KI1) < 0, we must have P(Z-1)Q(K1) 
< 1, except if P(-1)Q(-1) = 1 and z = K = -1. (This follows from the signs 
and monotonicity of P and Q.) For any other z -1 and KI in [-1, 1], it has already 
been established that P(z-')Q(KI) = 1. Thus for the case where P(-1) and Q(-1) 
are negative, the stability condition (6.1) is satisfied if 

(6.3) P(-1)Q(-1) < 1 

and if either strict inequality holds in (6.3) or it is not possible to have solutions of 
the dispersion relation for which z = K = -1. The ideas behind Propositions 4.3 
and 4.6 show that z = Ki = -1 is impossible if and only if strict inequality holds in 
the CFL condition (3.6). Thus, for the case where P(-1) < 0 and Q(-1) < 0, the 
stability condition (6.1) is satisfied if (6.3) holds and if strict inequality holds in 
either (6.3) or (3.6). 

We now describe the above conclusions in terms of conditions on rZ and rK. 

Throughout this discussion we have assumed rz > 0 and rK > 0. The case where 
P( -1) > 0 and Q( -1) is unrestricted thus corresponds to 0 < rz < 1/2 and 
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rK > 0. The case Q(- 1) > 0 corresponds to 0 < rK < 1/2 and rz > 0. In the case 
where P( -1) and Q( -1) are negative, we have rz > 1/2 and rK > 1/2. The 
formulas (5.3) for P(z'-) and Qi(K) show that (6.3) is equivalent to 

(6.4) (2rz - 1)(2rK - 1) < 1. 

The union of the sets of all (rz, rK) described here is defined by (6.4) and the 
constraints rz > 0 and rK > 0; consider the region in the (rz, rK)-plane bounded by 
the positive coordinate axes and the hyperbola (2rz - 1)(2rK - 1) = 1. The desired 

sufficient condition (3.8) has thus been established. 
If strict inequality holds in the CFL condition (3.6), then the constraints imposed 

by (3.8) can be relaxed slightly. The analysis is similar to the above, but more 
tedious, so here we merely outline the results. 

If strict inequality holds in (3.6), then K1 can never equal -1 for z < -1. An 
analysis of the dispersion relation (4.1) shows that the most negative K1 (for z < - 1) 
occurs when z = -1 and 'qAy = +?. The extreme K1 is -d + (d2 - 1)1/2, where 

( At / At2 
(6.5) d = -1+21- ) ) (C Ax 

(The CFL condition (3.6) is satisfied if and only if d > 1.) An analysis similar to the 
above shows that (6.4) can be replaced by 

(6.6) (2rz - 1)[(I + d -(d2- _1)"2)rK - ] < 1. 

A study of hyperbolas in the (rz, rK)-plane shows that (6.6) represents a loosening of 
the restriction (6.4). 

The inequality (6.6) is necessary and sufficient for the stability condition (6.1) to 
hold, except for the following technicality. If P(O) < 0, Q(O) < 0, and P(O)Q(O) = 1, 
then P(z'-)Q(K1) > 1 for z < -1 and P(z'-)Q(K1) < 1 for z > 1. However, this 
situation is sensitive to perturbations in rz and rK. This case is of little practical 
significance, since (3.5) shows that rz and rK depend on the mesh ratio and wave 
speed. The definition (3.4) of M(K, Z-') shows that P(O)Q(O) = 1 if and only if 
M(K1, Z-1) -o 0 as Izi -> oc and Iic1 -* 0. This situation could therefore be avoided 
by requiring uniformity in (3.9) and (6.1) as IzI -> o0. 

7. Proof of Theorem 2 (Stability for D(K, Z-1)). The goal is to show 

(7.1) D(KI1, Z-1) 0 0, for I zI 1 except if z = KI = 1, and for all ?)Ay, 

subject to the conditions described in the theorem. This conclusion immediately 
yields an analogous stability property for the general boundary condition (3.3). 

Lemma 1 states that if a + b(X/cos a) is nonzero, then D(K, Z-1) is a nonzero 
multiple of M(K, Z-'), with 

(7.2) az ( coA ) b; r ()Xr 

In this case, (7.1) is equivalent to the statement (3.9) that is obtained by replacing 

D(K1, Z -1) with M(K1, z -1). The analysis then amounts to an application of Lemma 
2. The case a + b(X/cos a) = 0 will be handled separately. 
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Lemma 2 gives separate descriptions of the cases where rz and rK are both 
positive and both negative. Therefore, we finally divide the proof of Theorem 2 into 
the following cases: 

Case I: a + b(X/cos a) < 0. Here rz and rK are negative, and Lemma 2 implies 
that (3.9) and (7.1) hold. 

Case II: a + b(X/cosa) = 0. Here M(K, Z') cannot be used to represent 
D( K, Z l). However, (5.9) implies 

- -D(IK, Z') = (cosA )( 1) +(K 
- 

1) 

in this case. If jzj >? 1, then z-1 - 1 has negative real part except when z = 1. 
Furthermore, IKcJ < 1, SO K1 - 1 has negative real part except when K1 = 1. Since 
jal < ST/2, we can conclude D(K1, Z-') = 0 except when z = KI = 1. This is (7.1). 

Case III: a + b(X/cosa) > 0. Here Lemma 2 can be applied, with rz > 0 and 
rK > 0. For this case, Lemma 2 states that (3.9) (and (7.1)) must hold if 

(7.3) (2rz - 1)(2rK - 1) < 1 

and if strict inequality holds either in (7.3) or in the CFL condition (3.6). When (7.2) 
is substituted into (7.3), the result is 

(7.4) a coA ) + b < cosa + ) 

Cases I-III then imply that if (7.4) holds, and if strict inequality holds in (7.4) or 
(3.6), then the stability condition (7.1) must hold. This completes the proof of the 
part of Theorem 2 associated with (3.10) and (3.12). 

Some numerical computations described in Section 8 suggest that Case III is the 
case of greatest interest in practice. 

The above analysis gives a condition that is sufficient for (7.1) to hold. We next 
apply the condition (6.6) that is essentially necessary and sufficient for the stability 
condition to hold for M(K, Z-1), when rz and rK are positive. This condition is 
equivalent to 

(7.5) a( coa) + b < (ca) 1 
a 

HereB = 1 + d - (d2 - 1)1/2, where d is given in (6.5). The CFL condition (3.6) is 
satisfied if and only if 3 <, 2. 

This completes the proof of Theorem 2. El 
We conclude with some examples. According to remarks made after Lemma 1 in 

Section 3, every operator D(K, Z-1) of the form (3.2) is equivalent to an operator of 
that form for which a = b. For this case (7.4) says a < 1/2. 

The general necessary and sufficient condition (7.5) involves a, X = cAt/Ax, and 
cAt/Ay. If Ax = Ay, then the CFL condition (3.6) implies X < 2-1/2 = .707. (This 
assumes two space dimensions.) In the numerical computations described in Section 
8, we use Ax = Ay and X = .625, and in most cases we assume a = b. Under these 
assumptions, (7.5) says a < .684 when a = 0; if a = 7r/6, then (7.5) says a < .674. 
The right side of (7.5) approaches 1/2 as jal > -r/2. 
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Next consider the specific discretizations mentioned in Subsection 5.2. 
(a) Forward Euler: a = 0, b = 1. In this case (7.4) is equivalent to cos a > X. The 

necessary and sufficient condition (7.5) says cos a > X(/3/2). 
(b) Backward Euler: a = b = 0. This is Case II discussed above. For this example 

no restriction is placed on a or on the mesh, except that the CFL condition (3.6) 
must be satisfied, and we need jal < 7/2. The stability analysis of this case depends 
only on the fact that JIJ < 1 when Izi > 1, and it thus may extend easily to other 
interior schemes or other problems. 

(c) Box scheme: a = b = 1/2. In this case the stability condition (7.1) holds 
whenever strict inequality holds in the CFL condition. 

8. Numerical Computations. Here we give the results of some numerical computa- 
tions involving the boundary conditions described in this paper. We present separate 
series of tests which 

(1) illustrate the stability limit (7.5), 
(2) demonstrate how the amount of reflection varies with the choice of a, and a2 

in (1.2), and 
(3) illustrate the behavior of the boundary conditions near a corner. 
The format of these computations is similar to that used in [8]. We use wave speed 

c = 1, mesh size Ax = Ay = 1/25, and mesh ratio At/Ax = At/Ay = .625. For all 
tests the initial condition is 

(a) u~x~yO)= e30r2, r <.45, 
(8.1) (0) (,O 

y 
(e 

) 
0 r> .45; 

(b) u, (x, y, 0) 0, 

where r2 = (x _ .5)2 + y2. The Fourier transform of the Gaussian is a Gaussian 
centered about wave number zero. A comparison with the graph of the dispersion 
relation (4.2) shows that the wave motion is composed of Fourier modes associated 
with all possible directions of propagation. There will therefore be a broad range of 
angles of incidence present at each boundary used here. 

In Tests #1 and #2 we compute solutions to the wave equation on the domain 

01 = {(x, y): 0 < x < 2, -2 < y < 2}, 

with various choices of boundary condition at x = 0. The solutions are analyzed 
only on the smaller domain 

2= {(x,y): 0< x < 1, -1.5 <y < 1.5}. 

(See Figure 8.1(a).) The boundaries of i1 are chosen so that reflections from the top, 
bottom, and right boundaries of i21 are not able to reach 02 during the time interval 
on which solutions are computed. The computations thus test reflection properties of 
the boundary conditions imposed at x = 0, without interference from any other 
boundary. The support of the initial data is contained in i2. 

With the initial condition (8.1) we also compute a solution on the larger domain 
{(x, y): -1 < x < 2, - 2 < y < 2}. The restriction of this solution to Q 2 is the 
"free-space" solution corresponding to zero reflection. This will be used to compute 
reflected errors. 
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(a) Tests #1 and #2 (b) Test #3 

FIGURE 8.1 

Domains used in the computations. 

For each computation in Tests # 1 and # 2, we calculate L2-norms of the 
reflection on i22 at times .25, .50, .75,... .,2.00. These reflections are then expressed 
as percentages of the L2-norm of the initial value (8.1)(a). In the results given in 
Tables 8.1, 8.2 and 8.3, we give only maximum reflections (from those at the stated 
times). 

Test #1. Effects of different values of a. Here we use the boundary condition 

(8.2) D(K, Z-1)Un-1 = 0 

with a = b. This is the first-order version of (3.3). Solutions are computed using 
various values of a and with a = 0 and a = 30 degrees. (a is the angle of incidence 
for which the factor (3.1) is designed to be perfectly absorbing.) The purpose of this 
set of computations is to illustrate the effects of different choices of a, and, in 
particular, illustrate the stability limit (7.5). 

TABLE 8.1 
Test #1. Percent reflection for first-order boundary condition 
with a = 0. For each value of a, the amount of reflection given 
is the maximum observed at times 0.25,0.50, ... .,2.0. 

a - 10 - 1 0 0.1 0.2 0.25 0.3 0.4 

Reflection 34.4 13.3 9.06 8.88 8.78 8.77 8.78 8.86 

a 0.5 0.6 .65 .68 .69 .70 .71 .72 

Reflection 9.03 9.28 9.43 9.54 9.57 660. 105 108 

TABLE 8.2 

Test #1. Percent reflection for first-order boundary condition 
with a = 30 degrees. 

a 0 0.25 0.5 0.6 .67 .68 .69 .70 

Reflection 7.23 6.94 7.33 7.67 7.95 8.00 350. 105 
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TABLE 8.3 
Test # 2. Percent reflection for second-order boundary condition 
with various combinations of a1 and a2. The angles are 
measured in degrees. 

a1 = 30 al =40 a1 = 50 a, = 60 

a2 = 30 2.91 
a2 = 40 2.71 2.57 
a2 = 50 2.61 2.51 2.46 
a2 = 60 2.77 2.62 2.91 3.80 

The results for a = 0 are given in Table 8.1. For every value of a except the last 
three, the maximum reflection from times .25, .50, ... , 2.0 occurs either at t = 1.25 
or t = 1.50. For a = .70, .71, and .72 the solution displays an obvious instability, 
and the reflections for these are given at t = 2.0. 

Some results for a = 30 degrees are given in Table 8.2. The reflections for this 
case display the same general variation with a that is seen for a = 0, so here we 
show mainly the results that illustrate the onset of instability. In general, the 
reflections for this case are less than those for a = 0; the reasons for this are 
included in the discussion of Test #2. 

In Section 7 it was stated that if a = b, Ax = Ay, and X = .625, then the stability 
limit (7.5) says a < .684 when a = 0 and a < .674 when a = 30 degrees. This is 
consistent with the behavior observed in Tables 8.1 and 8.2. 

Test # 2. Effects of different a1 and a2. Here we use the boundary condition 

(8.3) D1(K, Z-')D2(K, Z-') u n+1 = 0 

at x = 0, where D1(K, Z-l) and D2(K, Z-') are discretizations of (3.1) with a = a, 
and a = a2, respectively. Equation (8.3) is a discretization of (1.2) with p = 2. 
Solutions are computed using various values of a, and a2. In D1(K, Z-1) and 
D2(K, Z-1) we use a = b = .25. 

If al = a2 = 0, the maximum percent reflection on Q2 is 3.48; if a, a2 = 10 

degrees, the reflection is 3.41; if a, = a2 = 20 degrees, the reflection is 3.22. Table 
8.3 gives an array of reflections corresponding to various other a, and a2. In all of 
these cases, the maximum reflection from times 0.25,0.50, ... , 2.00 occurs either at 
t = 1.25, t = 1.50, or t = 1.75. 

In this particular series of computations the minimum reflection is found when a, 
and a2 are each near 50 degrees. As a, and a2 are increased from zero, the effect is 
to spread out the zeros of the reflection coefficient (1.3) and thereby broaden the 
range of angles of incidence where the boundary condition is highly absorbing. 
However, as expected, the effectiveness of the boundary condition is reduced if a, 
and a2 are made too large. 

Figure 8.2 shows the reflection patterns for the cases a, = a2 = 0 and a, = a2 = 

50 degrees. In each graph the plotted quantity is the solution computed with 
boundary minus the free-space solution. The vertical scale is exaggerated in order to 
make the patterns visible; on the surfaces in Figures 8.2(a) and 8.2(b), the maximum 
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A.. 

(a) a1 = a2 = (b) a1= a2= 50 degrees 

FIGURE 8.2 

Test # 2. Reflection patterns at time t = 1.25. 

ordinates are 0.022 and 0.014, respectively. The positive x-axis points to the right, 
and the positive y-axis recedes into the background. The graph shows every other 
grid point in the x direction and every third point in the y direction. 

In the above tests, L2-norms of reflections were also computed on the interior 
domain [1/3, 1] x [- 1.5, 1.5]. These norms are minimized when al and a2 are each 
near 45 degrees. 

In general, the choice of optimal a, and a2 depends on the configuration of the 
problem. For example, on a short boundary segment, large angles of incidence might 
not be possible, so a, and a2 should be reduced accordingly. 

Test #3. Behavior near a corner. In the analysis given in this paper, the spatial 
domain is assumed to be a half-space. This can be regarded as a study of a localized 
problem in a neighborhood of a flat portion of the boundary of a bounded domain. 
However, this analysis does not consider the effects of the boundary conditions in a 
neighborhood of a corner. Here we give some empirical evidence which suggests that 
no difficulties are encountered in this case. It is assumed that an absorbing boundary 
condition is imposed at each of the intersecting boundary segments. These computa- 
tions were performed because Engquist and Majda [4] found that instabilities could 
arise if boundary conditions of their form were matched improperly at the point of 
intersection. 

We compute solutions on the domain {(x,y): 0 < x < 2, -1 <y < 1} with 
initial condition (8.1). The solutions are analyzed only on the smaller domain 

93 = {(X, y): 0 < X < 1, -1 < y < 1}. 

(See Figure 8.1(b).) The boundary conditions being tested are imposed at x = 0 and 
y = ?1. With the given initial condition we also compute a solution on {(x, y): 
-1 < x < 2, - 2 < y < 2}; the restriction of this solution to Q3 is used to calculate 
reflected errors. 

For each boundary condition that is imposed at x = 0, we also compute a 
solution on the domain 9, defined earlier. The amount of reflection on Q3 is then 
calculated. The comparison of the two sets of computations indicates the effects of 
the boundaries y = + 1 and the corners (0.1) and (0. -1). 
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The following sets of boundary conditions are tested. 
(a) Second-order space-time extrapolation at x = 0 and y = + 1. This boundary 

condition uses the square of the operator S(K, Z-1) defined in (5.1); the condition 
at the boundary x = 0 can be written as 

un+1 = 2un - n-1 
UO,m - I',m U2, m 

This method is equivalent to the box scheme and forward Euler discretizations of 
(X38/dt - c 8/8x)2u = 0. Here, X = .625, so cos 1X _ 51.3 degrees. 

(b) General second-order boundary condition (8.3) at x = 0, with a = a2 = 30 
degrees and a = .25, and second-order space-time extrapolation at y = + 1. 

The discrete boundary conditions used here have one-dimensional stencils, so 
there is no difficulty with implementing them near the corners. This is different from 
the case where the boundary conditions involve tangential derivatives. (Cf. [4].) 
Because of the form of the interior difference scheme (2.2), the corner points are 
never used in the computation and are excluded from the calculation of reflected 
errors. 

The results of the computations are shown in Figure 8.3. For each computation 
the percent reflections were calculated for times .25, .50,.. ., 2.00. In each graph the 
dotted line gives the reflections for the computation with boundary x = 0, and the 
solid line gives the reflections with boundaries x = 0 and y = + 1. In each case the 
additional boundaries yield additional reflection, but there is no evidence of any 
instabilities arising from the effects of the corners. 

Reflection Reflection 

5- 5- 

1WA 1 , H/f=, t 

1.0 2.0 1.0 2.0 

(a) (b) 

FIGURE 8.3 

Tests #3. Effects of a corner. In each of cases (a) and (b), the dotted line 
gives the percent reflection without a corner, and the solid line gives 
reflections with a corner. 

Note Added in Proof. It has recently come to the author's attention that R. G. 
Keys has independently derived analytical boundary conditions of the form (1.2). 
See Geophysics, vol. 50, no. 6, June 1985, pp. 892-902. 
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