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The Numerical Viscosity of Entropy Stable Schemes 
for Systems of Conservation Laws. 1* 

By Eitan Tadmor** 

Abstract. Discrete approximations to hyperbolic systems of conservation laws are studied. We 
quantify the amount of numerical viscosity present in such schemes, and relate it to their 
entropy stability by means of comparison. To this end, conservative schemes which are also 
entropy conservative are constructed. These entropy conservative schemes enjoy second-order 
accuracy; moreover, they can be interpreted as piecewise linear finite element methods, and 
hence can be formulated on various mesh configurations. We then show that conservative 
schemes are entropy stable, if and-for three-point schemes-only if they contain more 
viscosity than that present in the above-mentioned entropy conservative ones. 

1. Introduction. The systems of conservation laws referred to in the title are of the 
form 

(1.1) u + E a [f(k)] = 0 (x t) E Rd x [0 oo); at 
k1 aXk 

here f(k).f(k)(u) - (f(k) f.. k))T are smooth nonlinear flux functions of the 
conservative variables u u(x, t) = (u1,..., UN)T. Owing to the nonlinearity of the 
fluxes f (k), solutions of (1.1) may develop singularities at a finite time, after which 
one must admit weak solutions, i.e., those derived directly from the underlying 
integral conservative relations. 

Yet, such weak solutions of the conservative equations are not unique. Additional 
criteria are required in order to single out a unique physically relevant weak solution, 
the latter being identified as, roughly speaking, a stable limit of a vanishing viscosity 
mechanism. Entropy stability is then sought as the usual criterion to identify such 
vanishing viscosity solutions. Lax [10] has shown that entropy stability is in fact 
equivalent to a vanishing viscosity mechanism, at least in the small-in the large for 
scalar problems, e.g., [8]. 
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We study entropy stable approximations to such systems of conservation laws. 
Here entropy stability manifests itself in terms of a conservative cell entropy 
inequality. We note in passing that, if it holds for a large enough class of entropy 
functions, such a cell entropy inequality is intimately related to both the question of 
convergence toward a limit solution as well as the question of this limit solution 
being the unique physically relevant one, e.g., [1], [4], [17] and the references therein. 
It should also be mentioned in this connection that there are different kinds of 
estimates, other than the cell entropy inequality, which guarantee convergence and 
uniqueness, e.g., [19]. 

Starting with von Neumann and Richtmyer [13], it has long been a common 
practice to ensure the entropy stability of conservative schemes by tuning their 
numerical viscosity. In this paper we quantify precisely how much numerical 
viscosity is to be added. As in [20], this is accomplished by means of comparison: We 
show that entropy stability is achieved, if and-for three-point schemes-only if 
there is more numerical viscosity than that present in certain entropy conservative 
schemes. To this end we proceed as follows. 

In Section 2 we begin by discussing the entropy variables associated with systems 
of conservation laws. As observed by Mock [12], [5], such systems are symmetrized 
with respect to these variables. Such symmetrization provides us with a natural order 
which then fits our goal to compare the numerical viscosities of different schemes. 
Expressed in terms of these entropy variables, we then turn to construct the 
above-mentioned entropy conservative schemes. The entropy conservative schemes 
-discussed in Sections 3 and 4-are second-order accurate and can be interpreted 
as piecewise linear finite element methods. In Section 5 we compare the amounts of 
viscosity present in different conservative schemes. It is shown that conservative 
schemes containing more viscosity than that of an entropy stable scheme are also 
entropy stable. In particular, comparison with the previously discussed entropy 
conservative schemes leads us to a sufficient and-for three-point schemes-neces- 
sary criterion for entropy stability. Since our entropy conservative schemes are 
second-order accurate, such a comparison applies to first- as well as second-order 
accurate entropy stable schemes. 

We remark that Osher [14] has previously characterized entropy stable schemes 
with the help of a certain cell entropy identity, which subsequently is used to verify 
entropy stability for a number of well-known, first- as well as second-order accurate 
schemes [14], [15], [16]. The novelty of our equivalent entropy stability characteriza- 
tion presented in Section 5 lies in the notion of order; this becomes transparent once 
the entropy variables-rather than the conservative ones-are used, and the entropy 
conservative finite element schemes are constructed. Specific examples will be 
demonstrated in a subsequent paper. 

Finally, in order to simplify the presentation, we treat the one-dimensional case; 
the multidimensional extension can be worked out dimension by dimension. 

2. The Entropy Variables. We begin our discussion with the one-dimensional 
model 

(2.1) au+ a [f(u)] = 0. 
at a 
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We assume that the system (2.1) is equipped with a generalized 
Entropy Function: a convex function U = U(u) augmented with an entropy flux 

function F = F(u) such that the folio wing compatibility relation holds, 

(2.2a) UuTA = FuT. 

Here, A = A (u) is the Jacobian matrix 

(2.2b) A(u) f=u 

We note that the entropy functions, U(u), are exactly those whose positive Hessians 
Uuu > 0 symmetrize the system (2.1) upon multiplication on the left [2], [21]: 

(2.3) U~uA = [ U~uA] T. 

Mock [12], [5] has pointed out a more fundamental symmetrization of system (2.1), 
preserving both the strong as well as the weak solutions of the system. To this end 
one makes use of the entropy variables 

(2.4) v v(u) = au(u). 

Thanks to the convexity of U(u), the mapping u -* v is one-to-one. Hence we can 
make the change of variables u = u(v) which puts the system (2.1) in its equivalent 
symmetric form 

(2.5a) a~at [u(v)] + ax [g00) = 0, g(v)--f(u(v)). 
The system (2.5a) is symmetric in the sense that the Jacobians of its temporal and 
spatial fluxes are 

(2.5b) H H(v) = a+[u(v)] >0, B B(v) = a 100] 

This follows from the compatibility relation (2.2), equivalently expressed as 

(2.6) vTB(v) = GV, G(v) F(u(v)), 
which in turn implies 

(2.7a) u(v) = av, 0 0(v) = [vTu(v) -U(u(v))], 

(2.7b) g(v) = aft _ A(v) 
= [vTg(v) - G(v)]. 

Indeed, the Jacobians H(v) and B(v) in (2.5b) are the symmetric Hessians of the 
corresponding expressions inside the brackets in the right of (2.7). 

Finally, we note that in contrast to the symmetrization on the left, quoted in (2.3), 
the use of the entropy variables symmetrizes the system (2.1) on the right [18], i.e., 
the original Jacobian A = fu is replaced here by the symmetric one, B = gv, 

(2.8) B=AUu-u' [AU U]T 

3. Entropy Stable Schemes. We consider conservative discretizations of the 
form*** 

(3.1) du >(t) = [f>+1/2 - fv-1/2b 

***Both the differential and the discrete formulas will employ the same notations. The distinction 
between the two is made by the use of Greek indices in the discrete formulation. 
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serving as consistent approximations to the system of conservation laws 

(3.2) Yu + f(u)] = 0. 

Here, u,(t) denotes the approximation value along the gridline (xvI vAx, t), Ax 
being the spatial mesh size, and 

(3.3a) f>+1/2 = Of kv-P+1* Uv+p) 

is the Lipschitz continuous numericalflux consistent with the differential one, 

(3.3b) 'of (W.W. * * *,W) = f(w). 

To discuss entropy stability, we let (U, F) be a given entropy pair associated with 
the system (3.2). Multiplying by UUT and employing (2.2), we conclude that under the 
smooth regime we have the additional conservation of entropy 

(3.4) au+ aF 0 
at ax 

Taking into account the nonsmooth regime as well, following Lax [10] and Kruzkov 
[8] we postulate as an admissibility criterion an entropy stability requirement, 
expressed in terms of the following 

Entropy Inequality: We have, in the sense of distributions, 

(3.5) aU + aF < O. 

Similarly, for the scheme (3.1) to be entropy stable, a discrete cell entropy inequality 
is sought [4]: 

(3.6a) d FU(u1(t)) + f [J1/2 - F>172] , 0; 

here, F+1/2 is the numerical entropy flux 

(3.6b) F, 1/2 F(U _p+ * * +P) 

consistent with the differential one, 

(3.6c) OF(WI WI ... I W)= F(w). 

In order to examine the entropy stability question, we first study the case in which 
equality holds in (3.6a), i.e., we study entropy conservative schemes. 

4. Entropy Conservative Schemes. In this section we identify particular schemes 
which satisfy a cell entropy equality. The numerical viscosity present in such entropy 
conservative schemes will then be used as the building block for the identification of 
entropy stable schemes. 

In order to carry out the program above, it will prove useful to work with the 
entropy variables rather than the usual conservative ones. Thus, associated with an 
entropy function U(u) are the entropy variables v = Uu(u). Expressed in terms of the 
latter, the system of conservation laws considered is, see (2.5a), 

(4.1) + [u(v)] + a [g(v)] = 0, g(v) = f(u(v)). 
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It is augmented by the corresponding entropy inequality 

(4.2a) aV + aG < 0 

where (V, G) is the appropriate entropy pair 

(4.2b) V V(v) = U(u(v)), G G(v) = F(u(v)). 

In a similar manner, we interpret the conservative scheme (3.1) in terms of the 
appropriate entropy variables v, = Uu(u,). Thus, (4.1) is approximated by 

(4.3a) dt [U(V>(t))] 
I 

[gv+=/2 
- 9P-1/2] 

where g+1/2 is the numerical flux 

(4.3b) gv+1/2 = 4g(Vv-p+,... +P) g( ... *.)-f *-- U(V') *.. ) 

consistent with the differential one, 

(4.3c) g(ww,. . ., w) = g(w). 

The corresponding cell entropy inequality takes the form 

(4.4a) 7 V(vp(t)) + [G+12 - G- 1/2] 0. 

Here, GP+ 1/2 is the numerical entropy flux 

(4.4b) GV+1/2 = *G(VP-P+11... IVp+p) 

consistent with the differential one, 

(4.4c) *G ( w, ... , w) = G (w). 

We seek entropy conservative schemes, i.e., schemes for which equality holds in 
(4.4a). To this end we multiply the scheme (4.3a) on the left by vT(t) Uu(uP(t)) 
obtaining 

+V(vv(t)) - U(U,(t)) = j-lVT9P+1/2 - 9v-1/2] 

It follows that the expression on the right is conservative, i.e., 

(4.5a) Vv 9P+1/2 - 9P-1/2] = GP+1/2- GP-1/27 

if and only if the expression [v,+l - v,] g,+l/2 is, namely, if and only if there exists 
a grid function 4, such that 

(4.5b) AV^+1/2g+1/2 
= 4?+l - 4', AV,+1/2 VP+1 - VP. 

Indeed, in view of the identity 

VV [g + -/2 g9,-1/2] - {[2v + Vv+l] gv+1/2 
- [Vv,1- + VV] 9v-1/2 

-[r[v,,? - VV] g,?l/2 + V -1/2] 

the equality (4.5b) implies (4.5a) with 

(4.5c) G I= [VP + VP+I] gp+ 
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Hence, schemes which fulfill (4.5b) are entropy conservative, i.e., we have 

(4.5d) d V(vp(t)) + Lx [G+112 - GV1/2] = 0. 

Our entropy conservative schemes fulfilling (4.5b) will be determined by setting 
the numerical flux 9P+1/2 to be 

(4.6a) 9 +1/2 = g*+1/2 g(v12()) d , 

where the following abbreviations are used: 

(4.6b) Vp+1/2(M) VP + OYPV+l/2, AV+l/2 -VP+l - VV 

With this choice of numerical flux we have 

(4.7) Av+7 1/2g, 2 - f_ 12 AV I1/2g(v? + Ov?+1/2) dt. 

It is here where we make use of the entropy variables formulation: Thanks to the 
symmetry of gv, the expression on the right equals the path-independent integral, see 
(2.7b), 

Av^+ 
1/2 

9P*+l= 
f1 

AvT+I/2g(vp 
+ 

OAVY+1/2) df 
(4.8) v 

= JV+ dvTg(v) = 4(v1) - p(vV), 

and therefore the conservation requirement (4.5b) is fulfilled in this case with 

Av= 4(v). 
Let us summarize what we have shown in (2.7), (4.5) and (4.8) by stating 

THEOREM 4.1 (Entropy conservative schemes). The conservative scheme 

(4.9) dt [U(v1(t))] = - x [ + - 
g19-1/2, g*+1/2 

- f0 9 g(v +1/2(()) df 

is also entropy conservative, i.e., it satisfies the following cell entropy equality 

(4.10a) dtV(vp(t)) + x [Gr+172- v-1/2]= 0. 

Here, GV172 is the consistent numerical entropy flux given by 

G =[V + VP?I]Tg*?7 [~~~ G>*+ 1/2 =2 [V v+ + 1/2 - 2 [ +(Vv) + (VP +J1)] 

(4.10b) = Vr+ Vv+] + [G(vT)g+ 

24[-v g(v ) + V +1g(v +1 ] 

Remark. Another way of deriving the entropy conservation of scheme (4.9) follows 
from Osher's formula [14, Section 3]. Expressed in terms of the entropy variables, v., 
Osher's formula asserts that for any conservative scheme of the form (4.3) the 
following identity holds, 

dt V(vv (t)) + Ax [ G+?12 - 12 x+I dVT[gP?1/2 - dg(v)] 
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Hence, in view of our choice g^+1/2 = g*+1/2 in (4.8), the (path-independent) 
integral on the right-hand side vanishes in this case, and entropy conservation 
follows. 

We close this section by noting that the scheme (4.9), besides being entropy 
conservative, is also second-order accurate. Indeed, by the trapezoidal rule we have 

g*+l/2 =11 g(v(+/2))d- = 2 [g(v,) + g(v+)] + (L vl/2 ) 

and hence, for smooth functions, the right-hand side of (4.9) amounts to the usual 
second-order accurate central differencing modulo O(1Ax)2 local truncation error, 

- IX [g - = - 2Ix 
[f(U,+I) -f(u ?)] + O(L\x)2. 

To shed a different light on this conclusion of second-order accuracy, we now 
demonstrate that the entropy conservative scheme (4.9) can be interpreted as a 
piecewise linear finite element method. Such a finite element formulation was exten- 
sively studied by Hughes and his collaborators, cf. [7]. 

Since we are interested in the semidiscrete case, we turn to consider the spatially 
weak formulation of (4.1), 

(4.11) f J-a-[u(v)]dxdt= f g(v) dx dt. 

Let the trial solutions v v(x, t) - ikvk(t)Hk(x) and the weighting test functions 

X -~ ~2~(x, t) Ekwk(t)Hk(x) be chosen out of the typical finite element set spanned 
by the CO "hat functions" 

( Xk-1 

(k _ 1 
I Xk-1 < X < XXk, 

Hk(x) = Xk+- XI Xk < X < Xk+l 

Xk+1 Xk 

The spatial part on the right of (4.11) yields-after change of variables-our 
entropy conservative differencing 

(42a_ 0 (x) g[v(x t) = 3 Vk(t)Hk(X)] dX 

(4.12a) '- IL - 1 

= 1/IG- g((vP +/2(M)) dt - f_1 g(v-1/2(M)) dc] 

A second-order accurate mass lumping of the temporal term on the left of (4.11) 
leads to 

at (xt) = E Vk k(X)dx 
V-1 L Vk )k() 

(4.12b) - [- u(v(t)) + 2 

+ 2 [t U(Vp(t)) + IAVP+1/21 
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Equating (4.12a) and (4.12b), and neglecting the quadratic error terms, we arrive at 

a( [U(Vl(t))]=xi -2 1 9[, g(v + /2(M)) d 

-Il t o(Vv-1/2(0))d(]. 

Observe that (4.13) also suggests the natural extension of the entropy conservative 
schemes (4.9) to nonequally spaced meshes. Finally, we point out that a global 
entropy conservation for the unlumped version of (4.11) follows at once by selecting 
the test functions CZ(x, t) to coincide with the trial function v, so that in view of 
(2.6), Eq. (4.11) yields 

T 
V_ 

0 V V g(v)-a dxdt - -V(v) + G(v)Adxdt. at lu(^)Ij ax ~ ~ at a 
The mass lumping in (4.12b), which results in the explicit scheme (4.13), enables the 
localization of the entropy conservation to each cell. 

5. Numerical Viscosity and Entropy Stability. The essential role played by the 
numerical viscosity has long been recognized, starting with von Neumann and 
Richtmyer [13]. In this section we quantify the amount of numerical viscosity 
required in order to guarantee entropy stability. As in [20], this will be done by 
means of comparison. 

To begin with, we consider the entropy conservative scheme (4.9). Integration by 
parts of its numerical flux formula (4.6a) yields 

(5) f+/2 '=_ g(v + /2(M)) d( = 2- (Vv+1/2 

(5.1)0/ 

I- dtg(vP+ 1/2() . 

Recalling the notation for the Jacobian gv, see (2.5b), 

(5.2a) B(v) = gv1 
the right-hand side of (5.1) can be rewritten as 

(5.2b) g*?l/2 
= 2 [g(vv) + g(vp+1)] - 

2 Af (2= - 1)B(vv+172(()) d=Avv+l/2. 

Inserting this into (4.9), our entropy conservative scheme assumes the viscosity form 

d 
I~~ [g(vp+1) -gv-) 

(5.3a) u(v? 2x [Qv+ l/)- 
t 

- 
x 

+2 Adx [ QP*+1/2 AVv+ 1/2 - Q*- 1/2 AVP _1/2 ] 

Here, Q^? 1/2 is the numerical viscosity coefficient matrix given by 

(5.3b) Q^?l/2 = (24 - 1)B(V +l/2(M)) d(. 

We note that the second brackets on the right of (5.3a) mimic a diffusive-like term 
Ax(Q* vX). Yet, though the viscosity matrix Q^*?1/2 is symmetric, it is not neces- 
sarily a positive definite one; rather, it is determined so as to counterbalance the 
dispersive flux central differencing inside the first brackets on the right of (5.3a). 
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Motivated by the discussion above, we would like to consider schemes given in a 
similar viscosity form [20] 

(5.4) -jd [u(v^(t))] = - [g(v) - g(v ] 

(5.4) 
dt +2Ax- 

+ 2/ Qv+112AVV+112 -Qv-112AVv-112]- 

The matrix Qv+1l2 on the right will be referred to as the numerical viscosity 
coefficient matrix. 

Remark. We observe that the above definition of the numerical viscosity coeffi- 
cient depends on the specific entropy function under consideration, U(u). The 
special choice U(u) = Iu2 corresponds to our earlier viscosity definition [20] in the 
scalar case. 

Which schemes admit a viscosity form like (5.4)? To answer this question, we 
observe that the numerical flux determined by (5.4), 

(5.5) g+p1/2 =4g(Vv-p+l, ...,VV+P) 

- {[g(Vv) + g(Vv~l)] - 
-Qv+ /2[Vv+I v 

satisfies the consistency relation 

(5.6) Ag(VP , .+. ., vpi, I, WWI V+2 ... ,v+p) = g(w). 

The consistency relation (5.6) is slightly more stringent than the usual one in (4.3c). 
It characterizes the class of essentially three-point schemes, a class which includes, 
beside the standard three-point schemes, most of the recently constructed second- 
order accurate TVD schemes, e.g., [3], [16], [6]. In the Appendix we show that the 
converse of the above implication holds, namely we have 

LEMMA 5.1. The consistent conservative scheme (4.3) can be written in the viscous 
form (5.4) if and only if it is an essentially three-point scheme. 

Granted the viscosity form (5.4), we now turn to discuss the question of entropy 
stability. We say that one scheme contains more viscosity than another scheme if the 
viscosity coefficient of the first scheme, say Q($)1/2, dominates that of the second 
one, Q(2) 1/2 i.e., if we have 

(5.7a) (v-i2Qv)/~~l2$ (5 .7a) ~Avv+ 1/2Q ( )1/2 AVv +1/2 < AV + 1/2QV '+ 1/2 AVv +1/2- 

A strengthened formulation of this in terms of the natural order among symmetric 
matrices is 

(5.7b) Re Q (212 < Re Q(jz 1/2 

In case the entropy variables were used to begin with, they would lead to symmetric 
viscosity coefficients very much the same way as they led to symmetric Jacobians, 
e.g., (5.3b), and we would arrive at the natural hierarchy 

(5.7c) Q( ) 1/2 < Q'1/2 

Remark. The last three inequalities are equivalent when dealing with scalar 
equations. Otherwise, the quadratic-like inequality (5.7a) is in fact-due to the 

dependence of QV+1/2= Q(...., vv +1,---) on /Av + 1/2 -nonlinear; hence, the in- 
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equalities (5.7b) and (5.7c) may serve as sufficient (but not necessary) criteria for 
verifying the entropy stability by comparison, as outlined below. 

Equipped with the above terminology, we now turn to a particular comparison 
with the entropy conservative scheme (5.3). Thus, we consider a conservative scheme 
in its viscosity form (5.4) and let 

(5.8) DP+1/2 = QP+1/2 - QP+1/2 

denote the deviation of its viscosity from that of the entropy conservative scheme 
(5.3). The scheme considered in (5.4) then takes the form 

5jdt [U(vP(t))] 
= -X [g+1/2 - 

gP+1/2] 

+ 
2Ax [DV+1/2AVV+l/2 

- 
DPl1/2 AV-l/2]- 

Multiplying the last equality by UuT(uP(t)) = v^T(t) on the left yields 

(5.10) dt V( (t)) + AxvV [g*+1/2 - gp* 1/2] 

_ 1 AAr [ DP+ 1-2DVP+1/2 A _DP1/2 V -1/2] 

By Theorem 4.1 the second expression on the left-hand side of (5.10) equals the 
conservative difference 

(1 V [g+/2 - g1/2] = _vT(t) d [u(vP(t))] 

- 
-dtV(vP(t)) = Ax [G*+1/2 - 

G*1/2]- 

Regarding the right-hand side of (5.10), the following identity puts it as the sum of 
familiar quadratic terms plus a conservative difference: 

2AX VPT DP + 1/2 AVP+1/2 
- DP-_1/2 AVP-1/2] 

(5.12) - 

-2Ax 

[ 

2\AV^+?1/2 

D+1/2AV +1/2 
+ 

2 v- 
1/2D 

-1/2AVV -1/2 +2Ax 2 +2?ID _11r i 
+ -[ 

I 
[Vv +1/2Av?+1/2 2 [Vp-1 + V]TDP 1/2 v-1/2j 

Using the last equality, we conclude the main result of this section, namely 

THEOREM 5.2 (Entropy stability). (i) A conservative scheme which contains more 
numerical viscosity than that present in the entropy conservative one is entropy stable. 
Moreover, the entropy dissipates in this case at a rate governed by the cell estimate 

d( V(v (t)) + 1 [GP+112 - GP 1/2I 

= 
-4x [LV +1/2D +1/2AvP+1/2 + 

V-1/2 v- 1/2 vV 1/2 
< ? 

Here, GP + 1/2 = "G(vp, v+1) is the consistent numerical entropy flux 

(5.13b) GP+ 1/2 = G*+ 1/2 - 4[Vv + VV+lI D?+ 1/2 AV +l/2. 
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In the case of three-point schemes the converse also holds, namely, 
(ii) A three-point conservative scheme which is entropy stable contains more numeri- 

cal viscosity than that present in the entropy conservative one. 

Proof. Inserting (5.11) and (5.12) into (5.10), we obtain 

dt V(v(t)) + 
I 

[G+12/2 -G,-1/2 
(5.14) dt Ax 

= -4XiAx v+ 1/2 Dv + 1/2 AVP + 1/2 + 4V- 1/2 Dv _1/2 AVP _1/2], 

where G?+1/2 is the consistent numerical entropy flux given in (5.13b). Now, if the 
scheme considered contains more viscosity than the entropy conservative scheme, 
then by (5.8) the right-hand side of (5.14) is nonpositive, and entropy stability 
follows. To prove the converse, we borrow from the arguments used in [17, Theorem 
7.3]. To this end, assume that our three-point scheme is entropy stable, i.e., that it 
satisfies a consistent cell entropy inequality of the form 

dt V(VP(t)) + 
Ax [V+?1/2 - Gl-1/2] 0 0, Gv+l/2 = tG(VvVv+1). 

Subtracting this from (5.14), we get after mutliplication by Ax 

(5.15a) H 172- Hp-[1/2> -I[AV+1/2DP++A1/2VAVI+1/2+ 4?-1/2DP-1/2 AV- 1/2] 

Here, HP+1/2 = H(v, vp +) stands for the difference between the two-point entropy 
fluxes, GP+ 1/2 - G+ 1/2, and hence satisfies the consistency relation, see (4.4b-c), 
(5.15b) H(w,w) = 0. 
Choosing vP1= vP in (5.15a), we obtain, in view of (5.15b), 

(5.16) P HP+ 1/2 > - 41 AVT+ 1/2DP+ 1/2AV + 1/2 
Similarly, taking vp = vP+ 1 in (5.15a) yields, in view of (5.15b), 

(5 .17) -Hp - 1/2 >1 - 1AV^T- 1/2 DP- 1/2 AV;P- 1/2 

Adding (5.16) together with (5.17)?+1 implies 

0 = HP+1/2-Hp+ 1/2 > - 2 AV? + 1/2DP+ 1/2 AV+ 1/2 

or, according to (5.9), 

(5.18) AV^+1/2Q*+ 1/2AV+11/2 < AV^+1/2Qv+ 1/2AVP+1/2- 

Thus the scheme considered, (5.4), contains more viscosity than that present in the 
entropy conservative one, (5.3), as asserted. [1 

We recall that the entropy conservative scheme (4.9) is second-order accurate. 
Hence, Theorem 5.2 allows us, in particular, to tune additional numerical viscosity 
so that we retain both the entropy stability and second-order accuracy [14]-[16]. 

Finally, using arguments similar to those employed in the proof of the last 
theorem, we conclude with the following extension of [20, Theorem 6.1], dealing with 
systems of conservation laws. 

THEOREM 5.3 (Entropy stability by comparison). Conservative schemes containing 
more viscosity than an entropy stable scheme are also entropy stable. 
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APPENDIX 

A. The Viscosity Form of Essentially Three-Point Schemes. We consider conserva- 
tive schemes in the viscous form 

( -[u(v(t))] = x +/2 - -/2] 2x [g(v ) - l) 

+ 2 f Q + 1/2iVv + 1/2 Qv -1/2AiVP _1/2 ] 2Ax[Q+7 +/ 

The numerical flux associated with scheme (a.1), 

(a.2) g+1/2 = g(Vv p+l, ... l +p) 

= {[g(v ) + g(?v+ )] - 2{Q+ 1/2[v + l V- 1 

satisfies the essentially three-point consistency relation 

(a.3) Pg(Vv p+1,...,v l,W,W,VV+2,... v,+p) = g(w). 

Conversely, consider a conservative scheme 

(a.4) [U( = - IX [Ag(Vv-p+1i. v v^p) -g(v - ' 'VP+P-1)]- 

Subject to the essentially three-point consistency relation 

(a.5) 4'g(v- p+i'... *'-,WWJv+2, VP+P) =g(w), 

the scheme (a.4) can be put into the viscosity form (a.1) provided a numerical 
viscosity coefficient, Ql + 1/2' can be found such that 

(a.6) Ql,+1/2AvA,+l/2 = g(v,) + g(vp+?) - 24g(Vvp+,.... I V+p). 

Using the consistency relation (a.5) we can rewrite the right-hand side of (a.6) as 

[-g( .... V(P, VP,, . . . )- g( ... VP, VP+1, * * * )] 

+ [ +g( . . ., VP+I, 1VP,+l 1. .. )-Ag( *.*.* SVP,Svl VP * ) 

and equality (a.6) is then fulfilled by setting the numerical viscosity coefficient to be 

g= -... aVPV [4'g(.. * * *v^ 1/2((),***)] dt 
(a.7) ?1 6 

(a.7)~ ~~~ +t0 6a [+g(- -7VP+1/2(0)VP+1 
... d(. 
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