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Convergence Analysis
for a Nonsymmetric Galerkin Method
for a Class of Singular Boundary Value Problems
in One Space Dimension

By Kenneth Eriksson and Yi-Yong Nie*

Abstract. For the method and problems under consideration we estimate the error in the
maximum norm as well as at individual nodal points. In order to obtain full superconvergence
at all nodal points we have to introduce local mesh refinements, even though the exact
solution is smooth for the given class of problems.

1. Introduction. In this paper we continue the analysis of a ‘“nonsymmetric”
Galerkin type piecewise polynomial approximation procedure introduced in
Eriksson and Thomée [1] for a class of singular boundary value problems in one
space dimension. We extend the results of [1] to the case of mildly nonlinear
problems with the same type of singularity, and analyze the discretization of the
stationary problem more closely with respect to superconvergence properties at the
nodal points.

We consider thus two related problems, namely the singular two-point boundary
value problem

Lu(x) = -u"(x)— %u'(x) =f(x,u(x)) forxel=(0,1),
w(0) = u(1) = 0,
and the corresponding time-dependent problem

u,(x,t) + Lu(x,t) = f(x,t,u(x,t)) forxel, t>0,
(1.2) u (0,2) =u(1,t1)=0 fort>0,
u(x,0) =u’(x) forxel,

(1.1)

where b is a constant, b > 1, u’ = u, = du/0x, and u, = du/dt. We shall always
assume that these problems are well posed, i.e., that the nonlinearities and the data
given by the functions f and u° are such that (1.1) and (1.2) admit unique solutions
which are sufficiently smooth for all our purposes. (One can prove that this is the
case, e.g., if f is sufficiently smooth and if the derivative of f with respect to u
admits a certain upper bound depending on b.)
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Problems of the form (1.1) and (1.2) arise naturally from spherically symmetric
problems in higher dimensions. For example, if u = u(x) is the solution of the
Dirichlet problem

~-Au = f(|x|,u) in B,
u=20 on dB,

where X = (x,,...,x,) and B = {x: |x| <1} is the unit ball in R", then, under
suitable assumptions (cf., e.g., [2]), u depends only on [x|, and introducing polar
coordinates with x = [x| one finds that u(x) = u([x|) is the solution of (1.1) with
=n-—1
Also, the problem of finding a bounded solution of the problem

-U"(y)=F(y,U(y)) forye (1,0),
U(1) = o,

reduces to (1.1) by means of the transformation of variable y = x~* for a > 0,
giving b = 1 + a and f(x,u) = a’x~272%F(x~ %, u).

Note that for a smooth solution of the equation in (1.1) or (1.2) the boundary
condition at x = 0 is automatically satisfied because of the singularity in the
equation.

For the approximate solution of (1.1) and (1.2) we consider a family of finite-di-
mensional spaces { S} }o< <1/, With S, consisting of all continuous functions which
vanish at x = 1 and which reduce to polynomials of degree at most » — 1 on each
subinterval I, = (x;_;, x;) of a partition 0 = x; < x; < --- < xy =1 of I, where
h=max,_; _yh;and h, = x, — x;_,.

Following the arguments in [1] we are led to pose as a discrete analogue of (1.1)
the problem of finding u, € S, such that

(1.3) B(u,,v) = (xf(x,u,),v) YveES,,
where

B(w,v) = ‘/: (xwv" = (b= 1)w'v) dx,

and
1
w,v) = wodx.
(w0) = [

Clearly, (1.3) is motivated by the fact that the equation (1.1), after multiplication by
xv and integration by parts, can be written in variational form as

(1.4) B(u,v) = (xf(x,u),v) Yvoe W,

where W = {v € W2(I): v(1) = 0}.
In the same spirit we pose for the approximation of (1.2) the semidiscrete problem
of finding u, = u,(¢) € S, such that

(uy,0) + B(uy,v) = (xf(x,t,u,),v) VveES,, >0,

(1.5) .

u,=u, fort=0,

where u)) € S, is a suitable approximation of u°.
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As for the continuous problems, we shall not dwell on the questions of existence
and uniqueness of solutions of the nonlinear problems (1.3) and (1.5) but simply
assume that these problems are well posed and admit unique solutions. (Again, one
can prove that this is the case under appropriate assumptions on the functions f.)

In our analysis we shall first consider the time-dependent problem and show that
for a particular choice of discrete initial data uj we have the maximum norm error
estimate (Theorem 1)

I = ). = 0f (108 3 7).

We shall then use smoothing properties of the time-dependent problems to show
that for a general initial data approximation of order O(4") we have (Theorem 2)

I = )., = 02 1og 3 ).

We shall then turn to the stationary problem and show, under suitable assump-
tions on f (Theorem 3), that for r > 2 and # sufficiently small,

lu = wpllo, < CHTu oo,

where u(" is the rth derivative of u, and the constant C only depends on b, f, and
r. For r = 2 we derive a logarithmic modification of the same estimate.

So far, our results are extensions to the present situation of results obtained in [1]
for the case of linear problems.

We next address the question of superconvergence at the nodal points for the
discrete solution of the stationary problem. We first consider the case of a general
mesh. It appears then (Theorem 4) that the rate of convergence depends on b as well
as on r, and that the error bound depends on the particular nodal point under
consideration in such a way that the superconvergence disappears as we approach
x = 0. In order to obtain high-order rate of convergence uniformly for all nodal
points and independently of b, we are led to adopt an appropriate mesh refinement
strategy near x = 0. Using such refined meshes we can show (Theorem 5), in the
case of a linear equation, that

max |(u = u,)(x,)| = O(h2),

i.e., we obtain the same order of superconvergence in the present situation as for the
standard Galerkin method for nonsingular problems.

We have organized the paper as follows: In Section 2 we prove some basic lemmas
to be used in our subsequent analysis. In Section 3 we analyze the semidiscrete
approximation of the time-dependent problem, whereas the discretization for the
stationary problem is analyzed in Sections 4 and 5, where the latter contains the
superconvergence considerations. Finally, in Section 6 we present some results from
test calculations which will illustrate and support our theoretical results.

In the sequel we shall denote by P,, the set of polynomials in x of degree m. The
usual L -norms on / = (0,1) will be denoted || - || ,, or just || - || for p = 2. For the
corresponding norms on a subset J of I we shall write || - ||, ;. Throughout the
paper we shall denote by C various positive constants which are independent of /
and of any particular nodal point under consideration. Let us also recall that we
have defined W to be the set of all functions v for which v(1) = 0 and v’ € L_(1).



170 KENNETH ERIKSSON AND YI-YONG NIE
2. Preliminaries. Here we state and prove some basic lemmas to be used in our
subsequent analysis below.
LeMMA 1. If v vanishes at x = 1, then
(i) lolleo < lo"1l1,
(ii) loll <llx'2"]),

andifv € S,, then
1\2
(i) Il < Cliog 3| 101,

where C only depends on r.

Proof. The first two inequalities of the lemma follow at once from the identities

v(x) = flx v'(s)ds = flx sV 2%V 2 (s) ds

by means of Holder’s inequality. To obtain the third inequality, we first use the
equivalence of the L,-norms over I, = (0, x,) and (x,/2, x;) for functions in §,,
and then apply Holder’s inequality. O

Our next lemma gives the necessary information about a certain interpolation
procedure.

LEMMA 2. Let v be an appropriately regular function vanishing at x = 1, let m be an
integer such that1 < m < r — 1, and let i € S,, be the interpolant of v determined by
5'11 € Pm’
5()‘;—1) = U(x,—l),

5(x,;) = v(x,),

lim6®(x, +5) = limv®(x, +5) fork=1,...,m—1,
- -0
§<(()) §<0

j=1,...,N.

Then, forj=1,...,Nand 1 < p < 00, we have

(o = 8Y Iy, < A7

(o = 8) ., <kl P, ,, k=01
Proof. For x € I, we put

i ) —(xj—x)m(y—xj_l)m/(hj'"m!) forx, , <y<x,
x,y) = . m .
PN =) mt = (= )" (= x, )" (hrmt) forx <y < x,.

noting that
WO (xx, ) =0 fork=0,om = 1,
h(x,x,) =0,
h.(vm+1)(x, y) = 8(x —y),
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where the subscripts y indicate that the derivatives are taken with respect to the
second variable of & = h(x, y), and & is the Dirac delta distribution. Hence, using
integration by parts and the fact that 7| I is a polynomial of degree at most m, we
have (with a slight abuse of the notation of an integral)

(v =)o) = [ K7D )0 = D))

- (—1)'"“[[ h(x, y)o*D(y) dy.

J

Differentiating this identity with respect to x, and using the fact that
max [, (x, y)/y| < h~!/x,
ye€l,

we obtain by obvious arguments,

lx(o=8) Ml < 2 llx(0 = 8) ],

< ymax emax |1, (x, ) o0
yel,

x€l
< hy ™ Py,

which shows the first desired estimate of the lemma. The proof of the L, estimates is
similar. O
Our third lemma is a local stability type result.

LEMMA 3. Let g and h be given functions and assume that 0 € S, satisfies
B(6,v) = (xg,v") +(h,v) VYveES,.
Then

100, < C(1ls, + 1) forl <)< N,
where w, = (0, x,), and C only depends on b and r.
Proof. Following the proof of Lemma 4 in [1] we introduce a basis { ¢,, } for S, by
~h; for0 < x < x,_y,
(P,k(X)= (_l)k_lhl((x_'xl)/hl)k fOI'X,_l <xXs< X,
0 forx, <x <1,

and then have for some coefficients ¢,,, i = 1,...,N, k=1,...,r — 1,
6= Zalk(pik‘
1k
Since the first derivatives of the basis functions ¢,, are uniformly bounded and
vanish outside /,, we have
160")l0.7 < leilxlﬂ,kl forl <i<N,C=C(r).
In the proof of Lemma 4 of [1] it is demonstrated that it is possible to construct
another basis {{,, } for the test functions such that
B((p,k,xpj,) =0 forj#i,1<k,I<r—-1,

such that the matrix B; with elements B(g,,, {;,) (where k is the column index) is
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nonsingular with
B, < Cx'h;Y, €= C(r),
and such that
|]x¢;/ Ll < Cxihy, C=C(b,r),

where ¢,, is obtained by modifying ¢,, on (0, x,_,) so that, in particular, ¢, = 0 on
(x,, ).
From the representation of 6,,:

Y B(@¥,)0,=B(0,4,)= (x8,‘l/:/) +(h,¥u), [=1,...,r—1,
k

we thus obtain
mfx|0ik|< | Bz_lnoo(”g"oo,w,mflx “x‘l/;I”Lw, + ”h”oo,w,m?'X | ‘P:/”l,w,)

< (I, +10l).

which completes the proof of the lemma. O
Finally, we shall need some results for an elliptic projection associated with the
bilinear form B(-, -).

LEMMA 4. Let Py be the projection onto S, defined for all appropriately regular
functions u by

(2.1) B(u — Pgu,v)=0 Yve€ES,,
and put p = u — Pgyu. Assuming that u(1) = 0 we then have
lo"lleo < Ch™Hu " e,
Ioll. < C{log | Wl forb =1,
ol < Chu]|u forb>1,
where the constants C only depend on b and r.
Proof. Let &1 € S, be the interpolant of u defined as in Lemma 2. Then
ICu = @)l < CR"Hu | .
Further, using Lemma 3 with g = (4 — @) and h = —(b — 1)(u — @)’, we have
”(f‘ - PBu)l”oo =“(PB(1~4 - u))’”oo < (& = u) |,

where C = C(b, r). The estimate for p’ then follows by the triangle inequality.
In order to estimate p for b = 1, we introduce the Green’s function

v(x,y) = {

by which we can represent p(x) in terms of p’ as

p(x) = B(p,v(-,x)),
where the dot indicates that we integrate with respect to the first argument of y. By
the definition of p, we may subtract from y(-, x) in the second argument of B(-, -)
any function v € §,. In particular, taking x to be a nodal point x, and v to be the

~lny for0<x<y,
-Inx fory<x<l,
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interpolant ¥ of y = y(-, x,) as in Lemma 2, noting that the interpolation procedure
of Lemma 2 is well defined and that the corresponding error estimates hold also in
the case of a piecewise smooth function such as y(-, x,), we obtain

lo )l <lolollx(y = 7Yl <lelloo X 2 llxv" N,

Jj>i
’ 1 -1 ’ 1
<Jlolooh [~ x 7 dx =o'l oo In—-.

Now assume that the maximum of |p| is attained at the point x, and let x, be a
nodal point such that x, — 24 < x < x; and x; > h. Then

lol =1o(x)1=[o(x) + [ () s

<lp(x)|+2h]p'll

< (g + 2) 1ol < Cllogg | 11u.

which is the desired bound for p in the case b = 1.
For b > 1 we similarly use the Green’s function

( )= 1 (y=®D—1)xb"1 for0
eI T (1—-xt71 for y

to obtain as above with y = y(+, x,), and with 7\ x, = (0, x;) U (x,, 1),
lo(x) [ <lo'l(lx(y = %)l +(b = DIy = %lh)

< CO)lp' ok (v ., + 177 11) < C(B) Al oo,

from which the desired estimate for ||p||, follows as before. O

Remark 1. The factor log(1,/4) in the estimate for [|p||,, in Lemma 4 can in fact be
removed for b = 1, r > 2. However, for r = 2 there is an example showing that the
given estimate is best possible (cf. Jespersen [3]).

3. The Time-Dependent Problem. In this section we shall consider the time-depen-
dent problem (1.2) and derive error estimates for the solution of the associated
semidiscrete problem (1.5) for different choices of discrete initial data u}.

Writing the continuous time-dependent problem in the same variational form as
(1.5) we find at once, by subtracting the two, that the error e = u — u,, satisfies the
equations

(xe,,v) + B(e,v) = (xq,v) VYveES,, t>0,

where ¢ = f(u) — f(u,), and f(u) is a shorthand writing for f(x, ¢, u(x, t)).
Since we already have estimates for p = u — Pzu, we write the error with
0 = Pgu — u, as

e=p+40,
and note that for § we then have

(3.1) (x6,,v) + B(0,v) = (xq,v) —(xp,,v) Vv€ES,, t>0.



174 KENNETH ERIKSSON AND YI-YONG NIE

In the following lemma we collect some basic estimates for 6.

LEMMA 5. Let u and u,, be the solutions of (1.2) and (1.5), respectively, and set
0 = Pgu — u,,. Then fort € [0,T] we have

(i) |x%6, ] < c(r> +1x720]" + | x26,[ x*8])).

(i) |x'26(e) | + [ B(6.6) dr < C(h* +|x26(0) ),
0

(iii) | 26,00 | < c(n2 + |26 ) | +[x6,0) ).

where the constants C are independent of h, but may depend on b, f,u, r and T.

Proof. We first put v = § in (3.1) to obtain
|x128,|" < B(6,6) = (xq,8) — (xp,,8) —(x6,,8)

2 2
< (162l + 572, + 17201 +|x728, 1201,
where we have used the fact that
gl < Cle|< C(le|+]8]),
since f is smooth. The estimate (i) then follows in view of Lemma 4, since
p, = (u— Pgu),=u, — Pgu,.
With the same choice of v in (3.1) we also have
ld
2 dt
Hence (ii) follows after integration, by Gronwall’s lemma.

For the proof of (iii) we differentiate (3.1) with respect to ¢ and then put v = 4, to
obtain

Ix20|” + B(6,8) = (xq,6) —(xp,,8) < c(h* + ||x1/20”2)~

(xatt’ot) + B(or,az) = (th’ot) _(xptt’at)’

or
316 + B(8.6) < x| + 57, + |
Here,
q: = fr(u) _ft(uh) +fu(u)ut _fu(uh)uh,t
=fx(u) _f;(uh) +(fu(“) "fu(uh))uz +fu(uh)(ut - uh,:)’
so that

1724, < c(lx e + 7%, |)°

< C(hz’ +||x'/%0 HZ + || x1729, ”2)
Using also (ii) and the fact that ||x'/%,,|| < Ch’, we may thus conclude
(32 2226 + B(6,6) < c(h + ]8O +] 78,

from which (iii) follows after integration, using again Gronwall’s lemma. This
completes the proof of Lemma 5. O
We can now prove an error estimate for a particular choice of discrete initial data.
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THEOREM 1. Let u be the solution of (1.2) and u, that of (1.5) with u) = Pgu®.
Then fort € [0, T] we have

Ch’loghl forb =1,
1
le(£) 1l <

1/2
Ch’(logh—) forb > 1,
1

where C only depends on b, f,u, r and T.

Proof. In view of Lemma 4 it suffices to estimate § = Pgu — u,,.
By (i) and (iii) of Lemma 1 we have

/2

1

(3.3) 101 < ciog-| " I+l
1

From (3.1) with v = 6, we have

2
”xl/Zat” + B(a’et) = (Xq’at) _(th’at)

(3.4)
< c(h + |20 ) + 3|,

For t+ = 0 we have by our choice of initial data that §(0) = 0 and hence, by (3.4),
that

|x1726,0)|” < cn?".

The desired estimate for 8 thus follows from (3.3) and Lemma 5. O
We shall now consider the more general situation of arbitrary discrete initial data
of appropriate accuracy. For this we have

THEOREM 2. Let u be the solution of (1.2) and u,, that of (1.5) with initial data u)
such that

Jx172(u® — uf) | < Cyh".

Then for t € [0, T'] we have

(3.5) |x'%e(t) | < Ch"

and

(36) Je(0) 1 < €17 log |,
1

where the constant C only depends on b, f,u,C,, rand T.

Proof. Again, in view of Lemma 4 it suffices to estimate § = Pgu — u,.
By our choice of initial data we have

||x1/20(0) ” < ||x1/2p(0) ” + lel/z(uo _ u?,) “ < Ch'.

The estimate (3.5) thus follows at once by Lemma 5 (ii).
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In order to prove (3.6) we first note by (3.3) and Lemma 5 (i) and (ii) that

).

16]% < c(loghll)(h2' + h'|x/%6,
so that it suffices to show that
(3.7) [|x2/26, || < Cz-l(loghll)h’.
For this purpose we rewrite (3.2) as

1d 2
_2_;17(t2”x1/20t” ) t t2B(0t,01)

< c?(n +])x728) + o 26,
< c(n +dx7]).
In order to estimate the last term we note from (3.4) that
|x1728," < ch? + 2| B(6,6,)],
where we also used Lemma 5 (ii). In view of (1) and (iii) of Lemma 1 we have

1B(6,6,)|<|x726,[|x'76,.[ + (b - DI6.]N6.1.,

< Cl1ogg 20, 1156,
1

< c(loghl)3(0,0)1/23(0,,0,)‘/2
1

2
< CEt‘l(loghi) B(6,0) + e1B(6,,6),
1

so that with & suitably small we conclude from above that

22 (2x,) + 2B(6,.0,

1

2
<cC h2r+(1oghl) B(6.0)] +21°8(0,.6).
1

After integration, using Lemma 5 (ii), we finally obtain that

26" + [ 52B(6,.6,) ds
0

2 2
< Ch + C(log l) [B(6.0)ds < c(logl) he,
hy] Yo hy

which gives the desired estimate (3.7) for ||x!/%6,|. This completes the proof of
Theorem 2. O

4. The Stationary Problem. We now turn our attention to the stationary problem.
Assuming that
(4.1) A=supf,(x,u) <A,

xel
u
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where
A, = inf Blo,0)
vew (xv,v)
v#0

we shall first show that the maximum norm error in the discrete solution of the
stationary problem, determined by (1.3), is of optimal order O(h"), apart from a
logarithmic modification for b = 1.

We state this in precise terms as

THEOREM 3. Assume that f is appropriately regular and satisfies (4.1), and let u and
u, be the solutions of (1.1} and (1.3), respectively. Then, for h sufficiently small and
withe = u — u,, we have

1 o
lel.o < Ch{log ) ul.s,
where C only depends on b, \/\,, and || f,||.,, and where 6 =1ifb=1, and 6 =0
otherwise.
Proof. We shall first show that
(4.2) le'lle < Ch™Hu®loo + Cllelloo.

In view of Lemma 4, this will follow if we show that |6||, < C|le||.,, where
0 = Pyu — u,. However, this estimate for 8 follows at once from Lemma 3, since by
our variational equations for v and u,, and the definition of Pzu, we have

B(0,v) = (x[f(x’u) _f(x’uh)]’v) = (xfu(x,u*)e,v) Vv e Sh
for some function u,.

We shall now complete the proof by showing that

1\°% ,
(43) lell < c{1og ) I/l

For this we assume that the maximum modulus of e is attained at the point x, and
take x, to be a nodal point such that x, — 24 < x < x; and x; > h. Then, in
particular, we have

lelleo = <le(x;)|+ 2]’

e(x,)+ fxx e'(s)ds

In order to estimate |e(x,)|, we let g = g, be the solution of the linearized dual
problem of (1.3), namely

(4.4) B(v,g) —(xpv,g) =v(x,) Yve W,

where p(x) = f,(x, us(x)) with u, as above. We claim that (4.4) admits a unique
solution g = g, such that

Clog;z- forb =1,

1

C forb > 1,

(4.5) lxg” 1y, re, 118l <

where C only depends on b, A/A,, and || £, || .-
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Assume for a moment that this has been proved. Then, taking v = e in (4.4), we
find that
e(x,) = Ble,g) = (x[f(x,u) = f(x,u))]. 8)
- B(e,g — ) = (x[f(x,u) = f(x,u,)], g~ v) VoS,

where in the last step we have used (1.1) and (1.3). Taking v = g, where § is the
interpolant of g defined as in Lemma 2, we deduce that

le(x) < Clelle(lx(g = &)l +lg = 2lh)

< C||e’||°0h(||xg”||l‘,\x’ + ”8/”1),
so that (4.3) now follows if we take into account (4.5).

To complete the proof we have to verify our assertions about g and, in particular,
(4.5). For this we write (4.4) as an integral equation:

(41-17) g(x) - Kg(x)=v(x,x,), x€l,

(4.6)

Kg(x) = fol y(x,y)yp(y)e(y) dy

with y defined as in the proof of Lemma 4. The existence of a unique solution

g € C(I) of (4.7) follows by Fredholm’s third alternative, since clearly K is

compact, and since the corresponding homogeneous problem, which we may write as
B(v,9)=B(v,9) —(xpv,9)=0 Vve W,

has only the trivial solution since B(-, -) is positive as a consequence of (4.1). To

prove the estimate (4.5), we write g as y + ¢ in (4.4) with y = y(-, x,), and note that

then

B(v,9) = (xpv,y) Voe W.
Taking v = ¢ we find that

A
(1= 3 Jl=% 1 < B(.) = o) < clol,

where C only depends on b, A/A; and || p||,,, and hence, in view of (ii) of Lemma 1,
we conclude that ||g|| < C, and consequently ||g|| < C with a constant C only
depending on b, || p||.., and A/A,. Differentiating (4.7), we find that

|g'(x) | < [ve(x,x) [+ Cllve(x, ) lllglls
and thus that ||g’||; is bounded as in (4.5). Finally, noting that g satisfies the
differential equation
-xg"(x) +(b—2)g'(x) —xp(x)g(x) =8(x —x;) forx eI,
we have that [|xg”|l; \,, admits the same bound. This completes the proof of
Theorem 3. O

Remark 2. The number A; can be computed relatively easily. In particular, one
can show that

1/2,
A s int B2V _ g g
oS x|

(The number 5.783... is the square of the smallest root of the Bessel function of
order zero.)
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Remark 3. The factor log(1/h) for b =1 in the estimate of Theorem 3 can be
removed for » > 2 (cf. Remark 1). This will be clear from our subsequent analysis.

5. Superconvergence. We shall now carry out a more precise analysis of the size of
the error at the interior nodal points x, for our discretization of the stationary
problem, looking for superconvergence, i.e., convergence better than O(4"), at these
points. Our analysis, together with some numerical tests which will be presented
below, indicate that the rate of convergence at a given such point is not always of
order O(h?"~?) in the present situation, even for a smooth solution, but may depend
on b. Furthermore, it appears that the extra convergence that is obtained at the
nodal points in general decreases and disappears as we approach x = 0. In order to
obtain superconvergence of order O(h*"~?) independently of b and uniformly at all
nodal points x,, we shall introduce nonuniform meshes with local refinements near
x=0.

For simplicity, we shall consider here only the case of linear problems. For a
general mesh we can then prove the following

THEOREM 4. Assume that f(x, y) = p(x)y satisfies (4.1), i.e., that sup, o ;p(x) <
A,, and that p is appropriately regular, and let u and u, be the solutions of (1.1) and
(1.3), respectively. Then, for h sufficiently small we have at the interior nodal points x,,
forb =1,

Ch*x;! forr =3,
le(x,)] < { ChS(log(1/x,)log(1/h) + x[%) forr =4,
C(h"*2log(1/x,) + h¥~%27")  forr > 4,

and for b > 1,
Ch*r 22" forr <b+1,
le(x,)| < { Ch*~2log(1/h)x?™" forr=10b+1,
ChrHo=1x1=b forr>b+1,

where the constants C depend on b, f, and u.

Proof. We recall from the proof of Theorem 3 that

le(x) < Clella(lx(g = &)l +1g = 2lh),

where g = g, is the associated Green’s function, and g € S, its interpolant as in
Lemma 2.
As in the proof of Theorem 3, we have

lelleo <llolloo + 116" < CA™™ [u]lo + Clle]|eo
< ChHu® .

1t now remains to show the appropriate bounds for the interpolation error g — g.
In order to do this we need to determine the regularity of g = g,.

In the proof of Theorem 3 we showed that |g|| < C for some constant C
independent of i. In fact, in view of (4.7), it then follows that

Clog(2/x,) forb =1,
(5.1) gl <
C(b) forb > 1.
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Differentiating (4.7), we find for b = 1 that
X
g (x) =Y (xx) + e [Cap(1)8(0) dy

m—1j-1

+ X X euux g0 ) [xp ()],

j=1 k=0
where the last sum drops out for m = 1. We therefore have for b = 1,

|8 Gy (e, x) [+ € [ ylg() 1y

m—2

+C Z Ig(k)(x) |x—m+k+2,
k=0

and consequently, using this inequality iteratively, i.e., to estimate also the quantities
|g®)(x)| appearing on the right, and then (5.1) and the definition of y, we obtain

|8 () <[y x) [+ Cxom [T ylg(0) | dy

m—2
+C Z |.Y(k)(x, X,)‘X_m+k+2

k=0
Cx "*?log(2/x;) for0 < x < x,,
Cx™™ forx, <x <1,

again with the convention that the sum drops out for m = 1. Similarly, we have for
b>1,

g (x) = y"(x,x,)

+cbmxb“"”(—f0x yp(y)g(y)dy + fxl y(y' - 1)P(y)g(y)dy)

m—2

+ Y 8P (x)xm DTk,
k=0

giving first
|8 (x) | <[y (x, x,) |+ CxP71o '"f ylg(y)ldy

m—2

+Cf (= Dls)dy+ € I ls®( e,

and then, by the same arguments as above,

m—2
g™ (x)]|< |y('")(x,x,-) | +Cy Iy(k)(x’x,)Ix—(m—2)+k
k=0

ree o [Dylslar+ [0t = Dls()]| )

C(x!"? = 1)x>~1"" for0 < x < x,,
Cxb-1-m forx, < x < <1lif b <3,
Cxb=1=mlog(2/x) forx, <x < 1if b =3,

Cx2™m forx, <x <1if b > 3,

N
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where in the last step we have used the fact that
lg(x)|< CxPx}7? forx < x,;

this follows easily from (4.7) by the regularizing effect of K, once we know that g is
bounded.

Now let x,, be a nodal point such that 4/2 < x,, < 3h/2, and note that we may
as well assume that x, > x,,, in view of Theorem 3. Using Lemma 2, we then have

2 (”x(g - g)I”u, +lg - g”l,l,)

Jjsm
< Ch Z (”x8””1,lj + ”g’”1,1,)
Jj<m
log(l/x,-)fxmydy < Clog(1/x,)h® forb =1,
0
< Ch

x,l_”f " yb=2dy < Cx!th? for b > 1.
0

Similarly, we have for b = 1,

)y (||x(g - g)’“l,lj +lg— g”1,1,)

Jj>m

<can ' Y (|, +1g V)

j>m
2 1
r—1 = 3-r 1-r
< Ch (logxlj;",y dy+j;’y dy)
hxt for r = 3,

< C{ h*(log(1/h) log(1/x,) + x;2) forr = 4,
(h3log(1/x,) + A" x27") for r > 4,

whereas for b > 1 we have

2 (”x(g - g)’”u, +lg - g”l,l,)

Jj>m
< Ch’_l(x,l_”fx' yrrdy + fly‘“‘""’"'“)(log(l/y))T’dy
T forr<b+1,
< C{h tlog(l/h)x2" forr=1b+1,
hbx}—b forr>b+1,

where b = 1 if b = 3, b = 0 otherwise. Together, our estimates now prove Theorem
4. O

We shall now consider meshes which are refined near x = 0 in such a way that
phxt < h, < hx} fori=1,...,N,
where p is a positive constant, and « € [0,1) is a parameter. Note that the number

of mesh points in such a partition is of the same order O(1/h), if a <1, as for a
quasi-uniform mesh which corresponds to the case a = 0.
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We can now prove the following

THEOREM 5. Let f and u be as in Theorem 4, and assume that we are given a family
of refined meshes as above and the corresponding spaces S, such that (r — 2)/(2r — 2)
<a<lifb=1,(r—2)/Qr—2)<a<1lifb>1, andlet u, € S, be the solution
of (1.3). Then, for h sufficiently small we have

<is

max [e(x,)|< Ch* ~?|u”]|o,
<N

where C only depends on b, A/Ay, || flloes M 7, and a.

Proof. From (4.6) we have

le(x;)| < Z”e/”oo,ll(“x(g - g)’”u] +(b-1)llg-g) ”1,1,)

+CY e ooz 1 (g = &) l1.s,

J

(5.2)
< C Nl (Ix(g = &)y +l1g — &l )

+ : =&l
C}g}gNle(x,)Ilellg gl
where in the last step we have used the fact that
el <lex) |+ el

Let us first estimate the local error |le'|[, ;. With p = u — Pgu and § = Pyu — u,
as before, and with w, = (0, x,), we have

lellon o, <N N, + 167l

Using Lemma 3 with # as in Lemma 2, g = (&t — u), and h = —(b — 1)(&t — u)’,
we obtain

10 oo, <Mt = @) llen o, + [(Po(E = w)) ||,

< Cll(u = ) .0, < ChT 4,0,

where C = C(b,r). By another application of Lemma 3, now with g =0 and
h(-) = p(-)e(-), where p is defined as in the proof of Theorem 4, we have

18], < Cllel, < € max [e(x) [+ hleln )
1<j<N
where C = C(b, f, r). We conclude that if # = max; 4, is small enough, then

(5’3) ”e,”oo,l S”e/”m,m, < Ch;_lllu(r)”oo,w, + C max le(xj)l'
' 1g/<N
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Let us now estimate the interpolation error g — g in the norms appearing in the
first sum in (5.2). On I; we have, using Lemma 2 with m = 1 and then (4.5),

(54)  lx(g = &)lhr +1lg = &llun < Chy(lxg” s, + 118’ lhr,) < Chy.

On the remaining subintervals I, we similarly use Lemma 2 with m =r — 1 to
obtain

(5.5) x(g = &)l 1, +lg— gl < Chi™ 1(||xg")||1 I, +[ g 1)”1,1,)-
Using (5.3), (5.4), and (5.5), we now have from (5.2),

()< €l 5+ 20+ 12l )|

J>1

€ max leCo) |+ Z (Il +12hs)

(5.6)

< Cllu® nw(hf/ﬂ-w Fh2r2 E o (|xg 0, + gD ||1,,J))
j>1

+— max [e(x)[

if h is small enough, since in view of our above estimates for g‘”(x), we find that
-1 -1
> h 7 lxg s, + 1)
Jj>1
tends to zero with 4. We thus have

max [e(x,)]

1<i<
< O 700 4 12772 T g ).

j>1

To complete the proof, we now note that for a > (r — 2)/(2r — 2) we have that
h/0=® < p27=2 and for a > (r — 2)/Qr—2)if b=1, a> (r—2)/Q2r - 2) if
b > 1, we have from our estimates for g that

Z 5l 7l + g )
C(log(l/x,)f :ya(Zr—2)+3—rdy + /‘1 ya(Zr—2)+1—rdy) <C,
X1 X,

X, 1 . 1 b
C x}-—hf ya(Zr—2)+b—rdy+f ya(2r—2)+mm(b—r,3—r)(log;) dy

X1 X,

for b =1 and b > 1, respectively, where b = 1 if b =3, b =0 otherwise. This
completes the proof of Theorem 5. O

6. Numerical Tests. Here we present some numerical results from test calculations
using our above discretization method (1.3) for the stationary problem (1.1). The
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results support our theoretical conclusions in Theorems 4 and 5 and indicate that the
results obtained there are best possible.

We have considered two cases as follows:

Case 1. We take b=25and f=1—-¢e — x — 25(e* — 1)/x — u, which corre-
sponds to an exact solution of (1.1) given by u =1 — e — x + ¢* We compute
approximate solutions u, on uniform meshes with 4 = 1/N, N = 4,8,12, 16 and
with r = 4.

In this case, » > b + 1, so that according to Theorem 4 we should have

le(x,)[ < Ch**xts.

In order to check the rate of convergence in terms of h, we fix x; = % and plot in a
log-log diagram (Figure 1) the error |e(x,)| as a function of # = 1/N for N =
4,8,12,16. We find that the computed rate of convergence agrees quite well with 5.5,
which is predicted by Theorem 4.

We then fix & = {5 and plot the error |e(x,)]| as a function of x, in another log-log
diagram (Figure 2). We then find a relation between |e(x;)| and x; which again is in
good agreement with the theory, and together our results indicate that the error
bound given in Theorem 4 is sharp.



GALERKIN METHOD FOR SINGULAR BOUNDARY VALUE PROBLEMS 185

- Inje(x.) |
i
25
24
23
N Xe  Xg 2‘<4 % X, X, [1n x.l|
0 1 2 3
FIGURE 2

Case 2. Here we take b=15and f=1—-e — x — 1.5(e* — 1)/x — u, which
corresponds to the same exact solution u as before, but now we consider nonuniform
meshes with r = 3, h, = hx!/4 h = 1/N, N = 4,8, 12, 16 as suggested in Theorem
5, and then expect to have

max |e(x;) | < Ch*.

To check this, we now plot max,|e(x;)| as a function of A = 1/N and find in Figure
3 a computed rate of convergence which again agrees with our theoretical result.
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