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Convergence Analysis 
for a Nonsymmetric Galerkin Method 

for a Class of Singular Boundary Value Problems 
in One Space Dimension 

By Kenneth Eriksson and Yi-Yong Nie* 

Abstract. For the method and problems under consideration we estimate the error in the 
maximum norm as well as at individual nodal points. In order to obtain full superconvergence 
at all nodal points we have to introduce local mesh refinements, even though the exact 
solution is smooth for the given class of problems. 

1. Introduction. In this paper we continue the analysis of a "nonsymmetric" 
Galerkin type piecewise polynomial approximation procedure introduced in 
Eriksson and Thomee [1] for a class of singular boundary value problems in one 
space dimension. We extend the results of [1] to the case of mildly nonlinear 
problems with the same type of singularity, and analyze the discretization of the 
stationary problem more closely with respect to superconvergence properties at the 
nodal points. 

We consider thus two related problems, namely the singular two-point boundary 
value problem 

(1.1) Lu(x) = -u"(x) - -u'(x) =f(x, u(x)) for x G I = (0,1), 

u'(O) = u(1) = 0, 

and the corresponding time-dependent problem 

U,(x, t) + Lu(x, t) = f (x, t, u(x, t)) for x E I, t > 0, 
(1.2) u(O, t) =u(1, t) = 0 for t > O, 

u(x,0) = u0(x) forx E I, 

where b is a constant, b > 1, u' = UX= au/ax, and ut = au/at. We shall always 
assume that these problems are well posed, i.e., that the nonlinearities and the data 
given by the functions f and u? are such that (1.1) and (1.2) admit unique solutions 
which are sufficiently smooth for all our purposes. (One can prove that this is the 
case, e.g., if f is sufficiently smooth and if the derivative of f with respect to u 
admits a certain upper bound depending on b.) 
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Problems of the form (1.1) and (1.2) arise naturally from spherically symmetric 
problems in higher dimensions. For example, if u = u(x) is the solution of the 
Dirichlet problem 

-Au =f(Jxj,u) in B, 
u = O on3B, 

where x = (x,...,xn) and B = {x: IxI < 1) is the unit ball in Rn, then, under 
suitable assumptions (cf., e.g., [2]), u depends only on jxj, and introducing polar 
coordinates with x = lxi one finds that u(x) = u(lxl) is the solution of (1.1) with 
b = n - 1. 

Also, the problem of finding a bounded solution of the problem 

-U"(y) = F(y, U(y)) for y E (1, so), 

U(1) = 0, 

reduces to (1.1) by means of the transformation of variable y = x-a for a > 0, 
giving b = 1 + a and f(x, u) = a2x -2 - 2aF(x -, u). 

Note that for a smooth solution of the equation in (1.1) or (1.2) the boundary 
condition at x = 0 is automatically satisfied because of the singularity in the 
equation. 

For the approximate solution of (1.1) and (1.2) we consider a family of finite-di- 
mensional spaces { Sh } < h <1/2 with Sh consisting of all continuous functions which 
vanish at x = 1 and which reduce to polynomials of degree at most r - 1 on each 
subinterval Ii = (xi 1,xi) of a partition 0 = xO < x1 < ...< = 1 of I, where 
h = maxl<i<Nhi and hi = xi - 1. 

Following the arguments in [1] we are led to pose as a discrete analogue of (1.1) 
the problem of finding Uh E Sh such that 

(1.3) B(uh, v) = (xf(XIuh), v) Vv E Sh, 

where 

B(w, v) = f (xwv' -(b - 1)w'v) d, 

and 

(W v) wv A. 

Clearly, (1.3) is motivated by the fact that the equation (1.1), after multiplication by 
xv and integration by parts, can be written in variational form as 

(1.4) B(u,v) = (xf(xu),v) Vv E W. 

where W f v E W, (I): v(1) = 0). 
In the same spirit we pose for the approximation of (1.2) the semidiscrete problem 

of finding Uh = Uh(t) E Sh such that 

(1.5) (Uhi, v) + B(uh, v) - (xf(x, t, Uh), v) Vo E Sh, t > 0, 

(1.5) Uh hUo forn t =0, 

where u~ 0 S is a suitable approximation of u 0. 
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As for the continuous problems, we shall not dwell on the questions of existence 
and uniqueness of solutions of the nonlinear problems (1.3) and (1.5) but simply 
assume that these problems are well posed and admit unique solutions. (Again, one 
can prove that this is the case under appropriate assumptions on the functions f.) 

In our analysis we shall first consider the time-dependent problem and show that 
for a particular choice of discrete initial data uo we have the maximum norm error 
estimate (Theorem 1) 

(U - Uh)(t) = lo((og h h). 

We shall then use smoothing properties of the time-dependent problems to show 
that for a general initial data approximation of order O(hr) we have (Theorem 2) 

I(U - Uh)(t) Wo = 0(t-l/2(log 1 )hr) 

We shall then turn to the stationary problem and show, under suitable assump- 
tions on f (Theorem 3), that for r > 2 and h sufficiently small, 

|| a - Uh Lo < Chr|| U(r) 11r, 

where u(r) is the rth derivative of u, and the constant C only depends on b, f, and 
r. For r = 2 we derive a logarithmic modification of the same estimate. 

So far, our results are extensions to the present situation of results obtained in [1] 
for the case of linear problems. 

We next address the question of superconvergence at the nodal points for the 
discrete solution of the stationary problem. We first consider the case of a general 
mesh. It appears then (Theorem 4) that the rate of convergence depends on b as well 
as on r, and that the error bound depends on the particular nodal point under 
consideration in such a way that the superconvergence disappears as we approach 
x = 0. In order to obtain high-order rate of convergence uniformly for all nodal 
points and independently of b, we are led to adopt an appropriate mesh refinement 
strategy near x = 0. Using such refined meshes we can show (Theorem 5), in the 
case of a linear equation, that 

max I(u - Uh)(Xl) I =O(h ), 
1 ~< I < X 

i.e., we obtain the same order of superconvergence in the present situation as for the 
standard Galerkin method for nonsingular problems. 

We have organized the paper as follows: In Section 2 we prove some basic lemmas 
to be used in our subsequent analysis. In Section 3 we analyze the semidiscrete 
approximation of the time-dependent problem, whereas the discretization for the 
stationary problem is analyzed in Sections 4 and 5, where the latter contains the 

superconvergence considerations. Finally, in Section 6 we present some results from 
test calculations which will illustrate and support our theoretical results. 

In the sequel we shall denote by Pm the set of polynomials in x of degree m. The 
usual Lp-norms on I = (0,1) will be denoted j, lip, or just 11 * II for p = 2. For the 
corresponding norms on a subset J of I we shall write 11 * Ilp j. Throughout the 
paper we shall denote by C various positive constants which are independent of h 
and of any particular nodal point under consideration. Let us also recall that we 
have defined W to be the set of all functions v for which v(1) = 0 and v' E LOO(I). 
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2. Preliminaries. Here we state and prove some basic lemmas to be used in our 
subsequent analysis below. 

LEMMA 1. If v vanishes at x = 1, then 

(i) llv1000 < 11 V' 111, 

(ii) ~~~~~~~~~~11 V 11 _< 11 Xl2V,1, 

andifv E Sh, then 

(iii) llv' ~~1101 < C log h- li Vl/2v' 

where C only depends on r. 

Proof. The first two inequalities of the lemma follow at once from the identities 

V(X) = V'(S) ds = -112S 1/2 v'(s) ds 

by means of Holder's inequality. To obtain the third inequality, we first use the 
equivalence of the L1-norms over I, = (0, xl) and (xl/2, xl) for functions in Sh, 
and then apply Holder's inequality. E 

Our next lemma gives the necessary information about a certain interpolation 
procedure. 

LEMMA 2. Let v be an appropriately regular function vanishing at x = 1, let m be an 
integer such that 1 < m < r - 1, and let V Ee Sh be the interpolant of v determined by 

v1, E PmE j 

i(xj11) = v(x,-,) 

i5(xj) = V(XJ) 

lim 5(k) (X1 + S) = lim V(k) (X1 + S) fork = 1,.. .,m -1, 
s<O s<O 

j= 1,...,N. 
Then, forj= 1,...,Nand1 pA < ,we have 

1x-(v 
- 

< hmj|xv 
m" 

lHj, 

II(v - V)(k) || I < hj1v (m+k) lip I, k = 01. 

Proof. For x E IJ we put 

h -(x -x)m(y - x1)m/(hmm!) for x1 < y < x 

l (y -x) /m! -(x1-x)m(y - x _ )m/(hmm!) forx <y x 

noting that 

h(k) (X, Xj_j = for k = O,.. .., m -1, 

h(x,xj) = 0, 

h (m+l)(x, y) = (X- y), 
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where the subscripts y indicate that the derivatives are taken with respect to the 
second variable of h = h(x, y), and 8 is the Dirac delta distribution. Hence, using 
integration by parts and the fact that v I K is a polynomial of degree at most m, we 
have (with a slight abuse of the notation of an integral) 

(v - )(x) = f h(m+l)(x, y)(v - 0)(y) dy 

= (-1) mIl h(x,y)v(m l)(y)dy. 

Differentiating this identity with respect to x, and using the fact that 

max Ih'(x, y)/y h1 -l/x, 
yElj 

we obtain by obvious arguments, 

IIx(v - 
5)'|lj < hj|Ix(v - 

ma hjmax xmax | (x y)lYI llxv( ) Ill., 

< h mI 11xv(m+ 1) III, 

which shows the first desired estimate of the lemma. The proof of the Lp estimates is 
similar. E 

Our third lemma is a local stability type result. 

LEMMA 3. Let g and h be given functions and assume that 9 E Sh satisfies 

B(O,v) = (xg,v') +(h,v) Vv E Sh. 

Then 

ll01l010 <C(IlgIKx, ?,+ h 1K0 ,) forl sI j < N, 

where O = (0, xj), and C only depends on b and r. 

Proof. Following the proof of Lemma 4 in [1] we introduce a basis { (P,k } for Sh by 

{-hi forO < x < x, 

Tik(X) = (_,) hl((x - x1)/h,)k for xi_1 < x xI 
t0 for xi < x < 1, 

and then have for some coefficients Oik, i = 1, .. ., N, k = 1, ..., r - 1, 

= EoikTik- 
ik 

Since the first derivatives of the basis functions Tk are uniformly bounded and 
vanish outside Ii, we have 

IIO'IK00,h < Cmax I Oik I for 1 < i < N, C = C(r). 

In the proof of Lemma 4 of [1] it is demonstrated that it is possible to construct 
another basis { 4ik } for the test functions such that 

B(T~kI/j) 
= 0 for j i, 1 < k, < r -1, 

such that the matrix BA with elements B(Tik, 4i,) (where k is the column index) is 
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nonsingular with 

|B7-1|| < Cx-1h-l, C = C(r), 

and such that 

llx~i,,+11~,?11 < Cxih1, C = C(b, r), 

where 4,l is obtained by modifying qg, on (0, xi~) so that, in particular, 4 0 on 

(X, 1). 
From the representation of oik: 

EB~plk, 4')@ik = B(, 4il) = (xg, K) + (h, 4il), 1 = 1,.. r-1, 
k 

we thus obtain 

max <Jik|:||B. 11100 I1gIO maX IIx+ ,1I1,,Z + lhIIOO, m/aXl11A,111XI 

< COI g llX,W, + 11 h 1101,),) 

which completes the proof of the lemma. R 
Finally, we shall need some results for an elliptic projection associated with the 

bilinear form B(*, .). 

LEMMA 4. Let PB be the projection onto Sh defined for all appropriately regular 
functions u by 

(2.1) B(u - PBu, v)=O 1V E Sh, 

and put p = u - PBU. Assuming that u(1) = 0 we then have 

Ilp' 110 < Ch r- 
II l U(r) 11 oo r 

1 P Ilo < C(log ) hrI urIo(r) 1100 for b = 1, 

IIPIIK < ChrI u(r)IK forb > 1, 

where the constants C only depend on b and r. 

Proof. Let " Ee Sh be the interpolant of u defined as in Lemma 2. Then 

II(u - 0,)'l < Chr-l| u(r) IIo. 

Further, using Lemma 3 with g = (u - fi)' and h = -(b - 1)(u - fi)', we have 

II(" - PBU) Iloo = (PB(" - U))'loo < CO(K - OILl 

where C = C(b, r). The estimate for p' then follows by the triangle inequality. 
In order to estimate p for b = 1, we introduce the Green's function 

f -In y for O < x < y, 
-In x for y < x <1, 

by which we can represent p(x) in terms of p' as 

p(x) = B(p, y(-, x)), 
where the dot indicates that we integrate with respect to the first argument of y. By 
the definition of p, we may subtract from y(-, x) in the second argument of B(-, *) 
any function v E Sh. In particular, taking x to be a nodal point xi and v to be the 
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interpolant j of y = y(, xl) as in Lemma 2, noting that the interpolation procedure 
of Lemma 2 is well defined and that the corresponding error estimates hold also in 
the case of a piecewise smooth function such as y(, xl), we obtain 

Ip(x,) I < IIp'II.IIx(y - Y)'||1 < IIp'll. E h,||x-y''lll I 
j>i 

< || p'l | h Jx -1 Ax = || p'l | h In I. 
x ~~~~~x I 

Now assume that the maximum of IpI is attained at the point x, and let xl be a 
nodal point such that xl- 2h < x < xi and xi > h. Then 

x II P |1 =|P (X ) |I= |P (X.) + |p'(s ) ds < I p (x, ) I + 2 h| '|o 

( (nI + 2) hIIP'1 < C (log ) h Ur) I 

which is the desired bound for p in the case b = 1. 
For b > 1 we similarly use the Green's function 

Y(X,) A 1 [ (y-(b-1) _ l)Xb-1 forO < x < y, 
b- I (1 - Xb-l) fory < x <'1, 

to obtain as above with y = y(*, xl), and with I\ x = (O, xi) U (xi, 1), 

p (x,)I < IIp'llOO(IIx(y - Y)'I +?(b - 1) 1y -Y ) 

<s C(b)jjp'j|h(jjx-y''lijx, + 11y'111) < C(b)h|lp'11? 

from which the desired estimate for iIPIIO follows as before. L 

Remark 1. The factor log(I/h) in the estimate for II I K in Lemma 4 can in fact be 
removed for b = 1, r > 2. However, for r = 2 there is an example showing that the 
given estimate is best possible (cf. Jespersen [3]). 

3. The Time-Dependent Problem. In this section we shall consider the time-depen- 
dent problem (1.2) and derive error estimates for the solution of the associated 
semidiscrete problem (1.5) for different choices of discrete initial data u'h. 

Writing the continuous time-dependent problem in the same variational form as 
(1.5) we find at once, by subtracting the two, that the error e = U - Uh satisfies the 
equations 

(xet, v) + B(e, v) = (xq, v) Vv E Sh, t > 0, 

where q = fU() - f(Uh), and f(u) is a shorthand writing for f(x, t, u(x, t)). 
Since we already have estimates for p = u - PBU, we write the error with 

O = PBU - 
Uh as 

e = p + 0, 

and note that for 0 we then have 

(3.1) (x0t, v) + B(0, v) = (xq, v) - (xpt, v) Vv E Sh, t > 0. 
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In the following lemma we collect some basic estimates for 6. 

LEMMA 5. Let u and Uh be the solutions of (1.2) and (1.5), respectively, and set 
6 = PBU - Uh. Then for t E [O, T] we have 

(i) || x1/2x 112 < C h2r + 11 x/21 112 + 112 x1/2oIIIx1/2o ii), 

(ii) lx 1/2@(t) 112 + j B(6, 6) dt < C(h2r + IIx1/26(0) 12) 

(iii) (|X1"26t(t) 11 < C(h2r + IIX"/20(0) 112 + (IX 1/260t) 02) 

where the constants C are independent of h, but may depend on b, f, u, r and T. 

Proof. We first put v = 6 in (3.1) to obtain 

jjx1/26O 112 < B(6 ,) = (xq, ) -(xp, 0) -(x6,, ,) 

C11 c 1/2p II2 + 11 X1/2p jj2 + 11x1/2 112 + 11 x1726t 4 11x126 1) 
where we have used the fact that 

IqI -<- C e|I < C(I pI + I 01), 

since f is smooth. The estimate (i) then follows in view of Lemma 4, since 

Pt= (U - PBU)t = Ut - PBUt. 
With the same choice of v in (3.1) we also have 

I d IIx1/26II2 + B(6,6) = (xq,6) -(xpt,6) < C(h2r + IIx1/2112). 

Hence (ii) follows after integration, by Gronwall's lemma. 
For the proof of (iii) we differentiate (3.1) with respect to t and then put v = O, to 

obtain 

(x6tt, Ot) + B(6t, Ot) = (xqt, t) -(xptt, Ot), 
or 

Ild 1 12t12 _<2 
2 

12. 
+ B( Ot, Ot) X112qt 11 + 11 x1/2p12 + 11 X1126t 

Here, 

qt = ft(u) -ft(Uh) +fu()Ut u fU(Uh)Uh,t 

=f (u) -ft(Uh) +(fU(U) -fU(uh))Ut + fu(Uh)(ut - Uht), 

so that 

l~x1/2q 112 < C(IIxl/2e II + 1" X112et 11)2 

< C h 2r + IIx l/2 112 + Ix1/2t 112). 

Using also (ii) and the fact that Ijx"12pttjA < Ch', we may thus conclude 

(3.2) 2ldt |X1/2,I2 + B(6, 6) < C(h2r + llX1/260(0) 112 + 1x1/26 X I2)1 

from which (iii) follows after integration, using again Gronwall's lemma. This 
completes the proof of Lemma 5. El 

We can now prove an error estimate for a particular choice of discrete initial data. 
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THEOREM 1. Let u be the solution of (1.2) and Uh that of (1.5) with u? = PBU0. 

Then fort E [O, T] we have 

Ch log1 for b = 1, 

lle(t)l. ( 
rlog 

l 1/2 

{chr(logh ) for b>1, 

where C only depends on b, f, u, r and T. 

Proof. In view of Lemma 4 it suffices to estimate 0 = PBU - Uh. 

By (i) and (iii) of Lemma 1 we have 

( ) 11 11r 4 ( ghl ) 
1/ 

1 2l 

From (3.1) with v = St we have 

34x1/2t 112 + B(O, Ot) = (xq, t) -(Xpt, at) 

C( h2r + 1! Xl/20 112) + Ij 1/21 X1 l2. 

For t = 0 we have by our choice of initial data that O(0) = 0 and hence, by (3.4), 
that 

x1/2ot (0) l 2 < Ch2 . 

The desired estimate for 0 thus follows from (3.3) and Lemma 5. EZ 

We shall now consider the more general situation of arbitrary discrete initial data 
of appropriate accuracy. For this we have 

THEOREM 2. Let u be the solution of (1.2) and Uh that of (1.5) with initial data Uh 

such that 

x /2(u - u0) | < Clh. 

Then for t E [0, T] we have 

(3.5) ~~~~~~~~lx1/2 e ( t) Al < Ch r 

and 

(3 .6) Ile ( t) 11 o Ct -1/2 (log h)hr' 

where the constant C only depends on b, f, u, C1, r and T. 

Proof. Again, in view of Lemma 4 it suffices to estimate 0 = PBU - Uh. 

By our choice of initial data we have 

xl/20(0) || x12p(0) || + ||X1/2(UO - u5?) || < Ch . 

The estimate (3.5) thus follows at once by Lemma 5 (ii). 
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In order to prove (3.6) we first note by (3.3) and Lemma 5 (i) and (ii) that 

1OQ <1 C(log )(h2r + h jX1/2o|), 

so that it suffices to show that 

(3.7) ||x1/2Ot '< Ct-1(logj )hr. 

For this purpose we rewrite (3.2) as 

Ikd (t2 1 X1/22)t 112 + t2B ( Ot, Ot) 

/ 2t 

< Ct2(h~r + lxl1/2 Ot 11) + tIIXI12O 112 

C h 2r + t .x"1/2 Ot 2)1 

In order to estimate the last term we note from (3.4) that 

1|x/26 1 < Ch 2r+2 B( I 
where we also used Lemma 5 (ii). In view of (i) and (iii) of Lemma 1 we have 

IB(O, Ot) I| xl/2OX X1/2otx || +(b -1)jj@xjj1jj8tjj 

C (lo h ) || 1/20x||| X1120tx 

C c(log I) B(, )I/2 B()t, + tB)(12 

-< Cet-1 log h )B(O, ) + etB(Ot, OJ9 

so that with E suitably small we conclude from above that 

( d 
t2||x1/20t 2) + t2B(Ot,Ot) 

'< C hr (oh) B(O' @) + 2t B(Ot, at). 

After integration, using Lemma 5 (ii), we finally obtain that 

t2 X 20 112 + tj 2B(0 O) d 

< Ch2r + C(log +)f|B(o, 0) ds < C(log )2h2r, 

which gives the desired estimate (3.7) for I1x1/2OtlI. This completes the proof of 
Theorem 2. E 

4. The Stationary Problem. We now turn our attention to the stationary problem. 
Assuming that 

(4.1) X = supfu(x, u) < X1, 
x E I 

U 
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where 

Al1= inf B(v, v) 
v E W (xv , v) 

we shall first show that the maximum norm error in the discrete solution of the 
stationary problem, determined by (1.3), is of optimal order O(hr), apart from a 
logarithmic modification for b = 1. 

We state this in precise terms as 

THEOREM 3. Assume that f is appropriately regular and satisfies (4.1), and let u and 
Uh be the solutions of (1.1) and (1.3), respectively. Then, for h sufficiently small and 
with e = u -Uh, we have 

Ilell.0 < Ch ~logh ||-)|O 

where C only depends on b, X/X1, and IfullooI and where a = 1 if b = 1, and a = 0 
otherwise. 

Proof. We shall first show that 

(4.2) II e' ll < Ch r-lu(r)IIKO +CII e 11 
In view of Lemma 4, this will follow if we show that 11I'11, < ClIellI, where 

O = PBU - Uh. However, this estimate for 0 follows at once from Lemma 3, since by 
our variational equations for u and u h and the definition of PBu, we have 

B(O, v) = (x [f (x,u ) -f (x, Uh)], v) = (xfu(x u*)e, v) Vv E Sh 

for some function U*. 
We shall now complete the proof by showing that 

(4.3) I e ll., < Ch (log- h l e'1100 

For this we assume that the maximum modulus of e is attained at the point x, and 
take xi to be a nodal point such that xi - 2h < x < xi and xi > h. Then, in 
particular, we have 

11 el 11= e(xi) + f e'(s) ds < Ie(xi) I + 2he' e0ll. 

In order to estimate le(xi)l, we let g = g, be the solution of the linearized dual 
problem of (1.3), namely 

(4.4) B ( v, g) -(xpv, g) =v (xi) Vv E W. 

where p(x) = fu(x, u*(x)) with u* as above. We claim that (4.4) admits a unique 
solution g = gi such that 

C log2 for b = 1, 
(4.5) <x~J~ g~ x 

C forb > 1, 

where C only depends on b, A/A1, and IIfuII.. 
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Assume for a moment that this has been proved. Then, taking v = e in (4.4), we 
find that 

(4.6) e(x) =B(e, g)-(x [f (x, u)-f (x, Uh)]J, g) 

- B(e, g - v) -(x[f(x,u) -f(x,Uh)],g - v) Vv E Sh, 

where in the last step we have used (1.1) and (1.3). Taking v = g, where k is the 
interpolant of g defined as in Lemma 2, we deduce that 

e(x,) | C|e'l l, (||x(g - g)' 1 + || g - 

Cl e'|ooh h(|xg" Al I\X + 11011) 

so that (4.3) now follows if we take into account (4.5). 
To complete the proof we have to verify our assertions about g and, in particular, 

(4.5). For this we write (4.4) as an integral equation: 

(4.7) g(x) - Kg(x) = y(x, xi), x E I, 
where 

Kg(x) = f y(x, y)yp(y)g(y) dy 

with -y defined as in the proof of Lemma 4. The existence of a unique solution 
g E C(I) of (4.7) follows by Fredholm's third alternative, since clearly K is 
compact, and since the corresponding homogeneous problem, which we may write as 

(v, Ip) = B(v,9)) -(xpv, I) = 0 Vv E W. 
has only the trivial solution since B(-, -) is positive as a consequence of (4.1). To 
prove the estimate (4.5), we write g as -y + p in (4.4) with y = y(, xi), and note that 
then 

(v, Ip) = (xpv, -y) Vv E W. 

Taking v = 9) we find that 

II- X 1||X2/2g'112 < B()= xgy) C||g||,' 

where C only depends on b, X/X1 and II pIIK and hence, in view of (ii) of Lemma 1, 
we conclude that 11(pl < C, and consequently 1igil < C with a constant C only 
depending on b, II PrIof and X/X1. Differentiating (4.7), we find that 

g'(x) I <I -X(X X,) I + C yX(x I) IIII II 

and thus that II g'l1 is bounded as in (4.5). Finally, noting that g satisfies the 
differential equation 

-xg"(x) +(b-2)g'(x)-xp(x)g(x) = 8(x-xi) forx E I, 

we have that iixg'lllJ\x, admits the same bound. This completes the proof of 
Theorem 3. 0 

Remark 2. The number Xi can be computed relatively easily. In particular, one 
can show that 

A? inf III = 
5.783.... 

vE= W 1 x/2v 112 

(The number 5.783 ... is the square of the smallest root of the Bessel function of 
order zero.) 
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Remark 3. The factor log(1/h) for b = 1 in the estimate of Theorem 3 can be 
removed for r > 2 (cf. Remark 1). This will be clear from our subsequent analysis. 

5. Superconvergence. We shall now carry out a more precise analysis of the size of 
the error at the interior nodal points xl for our discretization of the stationary 
problem, looking for superconvergence, i.e., convergence better than O(hr), at these 
points. Our analysis, together with some numerical tests which will be presented 
below, indicate that the rate of convergence at a given such point is not always of 
order O(h2r-2) in the present situation, even for a smooth solution, but may depend 
on b. Furthermore, it appears that the extra convergence that is obtained at the 
nodal points in general decreases and disappears as we approach x = 0. In order to 
obtain superconvergence of order O(h 2r-2) independently of b and uniformly at all 
nodal points xi, we shall introduce nonuniform meshes with local refinements near 
x = 0. 

For simplicity, we shall consider here only the case of linear problems. For a 
general mesh we can then prove the following 

THEOREM 4. Assume that f(x, y) = p (x) y satisfies (4.1), i. e., that sup-, Ip (x) < 

XI, and that p is appropriately regular, and let u and Uh be the solutions of (1.1) and 
(1.3), respectively. Then, for h sufficiently small we have at the interior nodal points xl, 

forb = 1, 

(Ch4xl1 forr = 3, 

|e(xi) | < Ch6(log(1/xj)log(1/h) + xl2) for r = 4, 

C c(hr+2 log(1/x1) + h2r-2x2-r) for r > 4, 

andfor b > 1, 

(ch2r-2x2-r forr < b + 1, 

Ie(x1) I Ch2r-2log(1/h)x2-r forr = b + 1, 
chr+b-X1 -b for r > b + 1, 

where the constants C depend on b, f, and u. 

Proof. We recall from the proof of Theorem 3 that 

Ie(xl) I < CIIellK(II x(g - g)'111 + llg - 

where g = g, is the associated Green's function, and g E Sh its interpolant as in 
Lemma 2. 

As in the proof of Theorem 3, we have 

110 IP 1100 + 0 < Chr-1IIU(r)II, + CIleII 

< Chr-l1~~lo. 

It now remains to show the appropriate bounds for the interpolation error g - g. 
In order to do this we need to determine the regularity of g = gl. 

In the proof of Theorem 3 we showed that 1gll <, C for some constant C 
independent of i. In fact, in view of (4.7), it then follows that 

(5 .1) ll g Hoe < (C log(2/xl) for b = 1, 
{IgI 0 ICb for b > 1. 



180 KENNETH ERIKSSON AND YI-YONG NIE 

Differentiating (4.7), we find for b = 1 that 

g(m)(x) - y(m)(x, xi) + cmx-mfyp(y)g(y) dy 

rn-I j- 

+ E E C jk Xr?] (X)[X(X)]g (( X,) [ X 

j=1 k=O 

where the last sum drops out for m = 1. We therefore have for b = 1, 

Ig(m)(x) j - y(m)(x, xi) + Cx-mf yIg(y) I dy 

m-2 

+cE 1g(k)(X) X-m+k+2, 
k=O 

and consequently, using this inequality iteratively, i.e., to estimate also the quantities 
g(k)(x)I appearing on the right, and then (5.1) and the definition of y, we obtain 

Ig(m)(x) j < y(m)(xxi) + Cx-mf ylg(y) dy 

m-2 

+ C E |y(k)(X XX) IX-m+k+2 
k=O 

CX-m+2 log(2/xi) for O < x < x1, 

\ Cx-m for xi < x < 1, 

again with the convention that the sum drops out for m = 1. Similarly, we have for 
b> 1, 

g(m)(X) - y(m)(Xx, x) 

+CbmX b-1-m (J yp(y)g(y) dy +1 y(y1b 1)p(y)g(y)dy) 

m-2 

+ E Cmkg (k)(X)X-(m-2)+k, 
k=O 

giving first 

jg(m)(x) I - Iy(m)(X, X) I + CXb-l-mf y g(y) I dy 

m-2 

+ Cf Y(yb _ 1)lg(y) I dy + C Y |g(k)(x)Ix( m2)?, 
x k=O 

and then, by the same arguments as above, 
m-2 

g(m)(x) I 
_Y(m)(X Xi) + C - (y(k)(xx) m-2)k 

k=O 

+ cxb-l-m ( y g(y) dyj+ y(yl- 1) l g(y) l dy) 

i x- 1)x^1m forO < x < x1, 
< cXb-1-m forxi <x < 1 if b <3, 

Cx bl-mlog(2/x) forx1 < x < 1 if b = 3, 
cX2-m for xi < x < 1 if b > 3 
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where in the last step we have used the fact that 

g(x) |Cx b xl b for x < xl; 

this follows easily from (4.7) by the regularizing effect of K, once we know that g is 
bounded. 

Now let xm be a nodal point such that h/2 < Xm < 3h/2, and note that we may 
as well assume that xi > Xm, in view of Theorem 3. Using Lemma 2, we then have 

E (llX(g - )'lll,,, + fig -k gI,, 
ya?m 

< Ch L (Ixg" 111, + 1I g' I1, ) 
jam 

(log(l/xif) m ydy < Clog(l/xl)h 3 for b = 1, 
< Ch/ X 

x-fm y2dy , Cxl-bhb for b > 1. 

Similarly, we have for b = 1, 

E (I1x(g - k)'lll,,,+ jg -k1I, 
j>m 

< Chr1 E (jjXg(r) +1g (r-l)K1) 
j>m 

Chr-1 (log- 2i 3-rdy+ jIy - rdy) 

(h 2X l for r = 3, 

C h3(log(l/h) log(1/xl) + xl2) for r = 4, 

(h3 log(1/x1) + hr-lx2-r) for r > 4, 

whereas for b > 1 we have 

E (llX(g - )'l.,+ jlg - gls, 
j>m 

< ChVr-1 x1-b yb-rdy + j ymin(b-r,3-r)(log(1/y)) dy) 

thr-1x2-r for r < b + 1, 

< C h r1log(1/h)x2-r for r = b + 1, 

thbXil-b for r> b + 1, 

where b = 1 if b = 3, b = 0 otherwise. Together, our estimates now prove Theorem 
4. 0 

We shall now consider meshes which are refined near x = 0 in such a way that 

ihx < hi <hxia for i 1.,N, 

where t is a positive constant, and a e [0,1) is a parameter. Note that the number 
of mesh points in such a partition is of the same order 0(1/h), if a < 1, as for a 
quasi-uniform mesh which corresponds to the case a = 0. 
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We can now prove the following 

THEOREM 5. Let f and u be as in Theorem 4, and assume that we are given a family 
of refined meshes as above and the corresponding spaces Sh such that (r - 2)/(2r - 2) 
< a < 1 if b = 1, (r - 2)/(2r - 2) < a < 1 if b> 1, and let uh e Sh be the solution 
of (1.3). Then, for h sufficiently small we have 

max Ie(x1) Ch2r-211u(r) II", 

where C only depends on b, X/A1, II fu IK I , r, and a. 

Proof. From (4.6) we have 

le(xi)l Y 11e'llO ,!x(g - +)li ,(b - 1) 11g - k) lII,) 

+ CY 1je jl1Ijx(g - g) 11I,1 

(5.2) 
(5 .2) ~~< CE11 l xr,(llX(g - k ) 111, .z + 11 g - 11 1,1 

+C max |e(xj)|EIIg-gII1,j, 

where in the last step we have used the fact that 

11 el I1 < I e (x) |+ hjIl eIll j, 

Let us first estimate the local error Jhe'lL0,1,,. With p = u - PBu and 6 = PBu -Uh 

as before, and with co = (0, x1), we have 

ll el llOO 'I, -< II PI 110 OO ,W + 11 0 11 00 6, v 

Using Lemma 3 with ii as in Lemma 2, g = (ii - u)', and h = -(b - 1)(ii -u)', 
we obtain 

II P'||00 |(U - U)l |10 ,, + 11 (PB G' - U))I 100, 

CI(u U-U) 1 Chi 11 lI (r) 11 0w 

where C = C(b, r). By another application of Lemma 3, now with g = 0 and 
h(*) = p(*)e(*), where p is defined as in the proof of Theorem 4, we have 

11'IL, lo < CI| e ll o,,( , C c( max I e (xj) + hill e'IIoa), 

where C = C(b, f, r). We conclude that if h = max i hi is small enough, then 

(5.3) he'lll0, <I- e'lO, chrlu(r)I + C max e(xj) I <j < N~~I 
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Let us now estimate the interpolation error g - g in the norms appearing in the 
first sum in (5.2). On I, we have, using Lemma 2 with m = 1 and then (4.5), 

(5.4) 1j x (g - g)'J11j, + ? |g - g 1,11 <s Ch, (x11 xg" Ii1 + 1I g'IKllj) < Chl. 

On the remaining subintervals I, we similarly use Lemma 2 with m = r - 1 to 
obtain 

(5.5) || x(g - + 11 g - g < s Ch r-(IIxg(r) K|1 ?+ |g(r-1) 1) 

Using (5.3), (5.4), and (5.5), we now have from (5.2), 

le(xj) I <C ?(r) 1oc + h hr'-'h(r x- 
1) 

|X L) ?g(r 1) 

? C max |e(x,) h, + E hyr I( 1xg(r) I,? + 11g(r-U 1 1)) 

< C 11 (r) ~(hr/( a) + h2r-2 Exa(2r-2)( Ixg(r)Ij +1 ? g(r-1l) 11)) 

+ - max I e(xi) | 
?2 1 < < 

if h is small enough, since in view of our above estimates for g(r)(x), we find that 

h- Xg(r) + 11 g(r- 1) 
j>1 

tends to zero with h. We thus have 

max Ie(x) I 
I < i < N 

< Cl- 
a )x (hr/-a + h 22 

r 
xa(2r-2) ( |xg(r) I1,1J + ll g(rl) ) 

j>1 

To complete the proof, we now note that for a > (r - 2)/(2r - 2) we have that 
hr/(1-a) < h2r-2, and for a > (r - 2)/(2r - 2) if b = 1, a > (r - 2)/(2r - 2) if 

b > 1, we have from our estimates for g that 

X a(2r-2) ?xg(r)| | g 
Ilg 

11) 
j1> 

(C log(IX,)| Xya(2r-2)+3-rdy+ flya(2r-2)+l-rdy) 

| CXI(1-XjL a(2r-2)+b-rdy + / ya(2r-2)+min(br,3-r)(log) dy) < C 

for b = 1 and b > 1, respectively, where b = 1 if b = 3, b = 0 otherwise. This 

completes the proof of Theorem 5. O 

6. Numerical Tests. Here we present some numerical results from test calculations 
using our above discretization method (1.3) for the stationary problem (1.1). The 
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results support our theoretical conclusions in Theorems 4 and 5 and indicate that the 
results obtained there are best possible. 

We have considered two cases as follows: 
Case 1. We take b = 2.5 and f= 1 - e - x - 2.5(ex - 1)/x - u, which corre- 

sponds to an exact solution of (1.1) given by u = - e - x + ex. We compute 
approximate solutions Uh on uniform meshes with h = 1/N, N = 4,8,12, 16 and 
with r = 4. 

In this case, r > b + 1, so that according to Theorem 4 we should have 

e (xi) < Ch55x715. 

In order to check the rate of convergence in terms of h, we fix xi = 2 and plot in a 
log-log diagram (Figure 1) the error Je(xi)j as a function of h 1/N for N= 

4, 8, 12, 16. We find that the computed rate of convergence agrees quite well with 5.5, 
which is predicted by Theorem 4. 

We then fix h = 6 and plot the error le(x,)l as a function of xi in another log-log 
diagram (Figure 2). We then find a relation between Ie(xi) and xi which again is in 
good agreement with the theory, and together our results indicate that the error 
bound given in Theorem 4 is sharp. 
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Case 2. Here we take b = 1.5 and [f= 1 - e - x - 1.5(ex - 1)/x - u, which 
corresponds to the same exact solution u as before, but now we consider nonuniform 
meshes with r = 3, hi = hx1/4, h - 1/N, N = 4, 8, 12, 16 as suggested in Theorem 
5, and then expect to have 

maxIe(xi) < Ch4. 

To check this, we now plot maxile(xi)l as a function of h = 1/N and find in Figure 
3 a computed rate of convergence which again agrees with our theoretical result. 
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