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Abstract Generalized Bisection and a Cost Bound 

By R. Baker Kearfott 

Abstract. The purpose of this paper is to study desirable properties of binary search 
algorithms for isolating all solutions to nonlinear systems of equations F(X) = 0 within a 
given compact domain D c Rn. We devise a general framework such that any algorithm 
fitting into the general framework will always isolate all solutions Z C D such that F( Z) = 0; 
this framework contains a new idea for handling the occurrence of roots on boundaries. We 
then present and prove a bound on the total amount of computation which is valid for any 
algorithm in the class. 

Finally, we define a specific prototypical algorithm valid for F satisfying certain natural 
smoothness properties; we show that it satisfies the hypotheses for the general framework. 
This algorithm is based on "bisection" of generalized rectangles, the Kantorovich theorem, 
and second-order Taylor type models for F. It is meant to provide further guidelines for the 
development of effective heuristics, etc., for actual implementations. 

1. Motivation, Purpose, and Scope. Consider the problem: 

Find, with certainty, approximations to all solutions of 
(1.1) F(X) = 0 within a bounded, closed set D e RW, where F: 

D BRAN W F = (fl, f2,...,fn). 

This problem can sometimes be solved by one of the following: 
(i) random search; 

(ii) placing a grid { X1) I on D and evaluating F(X2), 1 < i < k, for a small 
enough mesh. 

(iii) a homotopy continuation method (cf. e.g., [1], [5], [16], [20], etc.); 
(iv) Newton's method with repeated random starts; 
(v) more specialized methods (such as the method of bisection with sign changes, 

methods for roots of polynomials, etc.) which take advantage of specific properties 

(cf. [4], [16], etc.). 
Methods (i) and (ii) involve large amounts of work, and are especially impractical 

for n large. Methods (i), (ii), and (iv) often are employed without assurance that 
their execution will find approximations to all roots. (This is the nature of random 
starts, and it may not be possible to determine how small a mesh is small enough to 
guarantee that all roots are captured.) Though the methods in class (iii) are relatively 
successful, problems can still arise both in the underlying theory and in practical 
computations on finite machines. 
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In short, there is ample room for further analysis and algorithmic development to 
solve the general problem (1.1). 

It is not in general easy to determine a priori how many, if any, roots F has in D 
prior to computation, even if derivative information is available. To be able to 
computationally do so with less work than a grid search, then to determine a point 
for each root within the domain of attraction of Newton's method, is thus of value. 
This paper addresses the latter task. 

Ideas here stem from a number of previously published methods, all termed 
"generalized bisection." In these methods, a region in R' is subdivided into two or 
more subregions; one or more numerical-analytic techniques then determine whether 
the subregions contain roots. In [10], triangles in R2 are bisected by bisecting the 
longest edge, and in [3] simplices in R' are similarly bisected; determining whether 
roots exist was done heuristically using a linearization. Sikorski presented a related 
approach for R3 in [18]. Stenger proposed the topological degree to determine the 
existence of roots, using the generalized triangle bisection process on simplices in Rn 
(cf. [19]). These ideas were further developed in [12], [13], etc., and are related to 
simplicial homotopy methods surveyed in [1], [5], [20] and elsewhere. 

In parallel with the above, Moore and others defined generalized bisection 
algorithms for generalized rectangles by bisecting one of the axes (cf. [6], [7], [8], [15], 
etc.). There, determining whether a generalized rectangle contained a root relied 
heavily on methods of interval mathematics, such as interval inclusion of the zero 
vector and the Krawczyk method. 

The topological degree and generalized bisection of simplices have been touted as 
methods appropriate when F is not smooth or when F cannot be evaluated 
accurately. In contrast, the interval mathematics approach was claimed to be very 
robust, and appropriate for finding starting points for Newton's method when more 
than one root exists. In fact, depending on the particular problem, such methods can 
be both more efficient and more reliable than others, which, in theory, will also solve 
it. 

For example, consider the problem of finding all real roots to the following 
polynomial system of equations: 

i(XI xx2, x2) = 5x - 6xj5x2 + x1x2 + 2x1x3, 

f2(X, X2, X3) = -2X62 + 2X2X3 + 2X2X3, 

f3(xI,x2,x3) = x4 + x2 .265625. 

Theory dictates that this system can be expected to have 9 - 7 - 2 = 126 roots in the 
complex domain (cf. [4]), and that these roots may be obtained with a homotopy 
method. In [14], we used a standard homotopy method and the recognized continua- 
tion method software from [17] with mixed success. We encountered problems 
because: (i) we needed to trace all 126 complex solution paths, even though there are 
just 6 real roots of interest; and (ii) we encountered ill-conditioning and path-jump- 
ing due to near bifurcation. Thus (in the absence of special analysis, preprocessing, 
and scaling) we required hundreds of thousands of evaluations of F to solve the 
problem, the algorithm required significant tuning, and human interpretation of the 
results was necessary. In contrast, a method employing generalized bisection of 
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rectangles and an interval-arithmetic test for roots was able to automatically 
compute the 6 desired solutions to machine accuracy in approximately 1300 function 
evaluations ([9] and unpublished experiments). 

This paper contributes the following: First, an abstract framework with points in 
common to actual successful generalized bisection algorithms is presented; desirable 
properties of such methods are thus highlighted. Within this scheme, a new mecha- 
nism is introduced to handle problems which occur when roots happen to be near 
the boundary of one of the subregions. (These problems lead to excessive computa- 
tion or redundant listing of roots; their resolution is particularly important in order 
to generalize the techniques to larger, sparse systems of equations.) Also, a new 
algorithm for Rn is presented and is shown to satisfy the hypotheses of the abstract 
framework. 

In Section 2 the abstract framework is defined. We show there that any algorithm 
satisfying the hypotheses in the abstract framework will produce subregions of an 
initial region D such that: (i) the subregions are disjoint and each subregion contains 
a unique root of F in D; (ii) each root of F in D is in one of the subregions; and (iii) 
no root is listed in more than one subregion. A bound on the total amount of work 
for this computation is presented. In Section 3 the specific generalized bisection 
method is introduced and is shown to satisfy all of the hypotheses of the abstract 
framework. 

We hope this presentation will facilitate design of practical algorithms and codes. 

2. Abstract Generalized Bisection. Suppose we are given a closed region D E R' 
and a function F: D -- R". (The region D may be a simplex, a generalized rectangle 
or other polygonal figure, etc., with an appropriate structure.) Then 

Definition 2.1. Abstract generalized bisection consists of 
(i) a geometrical bisection process A; 

(ii) a root inclusion test Y; and 
(iii) a binary search algorithm based on a and Y, 

where these three terms are defined below. 
In practice, the geometrical bisection process and the root inclusion test depend 

adaptively on the function F; this abstract study should reflect this fact. Thus, in 
order to define q and Y (and also in order to obtain an operations count), we must 
first delineate an appropriate class of F. 

Assumption 2.2. The roots of F are isolated. Thus, for any compact domain D, and 
any norm 11 - II, there exists an E > 0 such that the distance in 11 - Ils between roots 
of F is at least E. (Here, the subscript "s" on the norm is used to indicate that it 
can be an adaptively scaled norm, as in Definition 3.3 below.) 

Definition 2.3. The geometrical bisection process a is a function from the set of 
domains 9 to the set of pairs of such domains such that, for D E 2: 

q(D)= {DID2=, 

where 
(i) 2 is completely determined by the set of domains 9 and F. 

(ii) Di U D2 = D. 
(iii) D, D2 c MDI U aD2, where aD is the boundary of a region D. 



190 R. BAKER KEARFOTT 

(iv) D1 and D2 have the same structure as D in the sense that R can be applied to 
both D1 and D2. 

(v) If - is applied repeatedly to its results D1 and D2, then the diameters of the 
resulting regions tend to zero. Furthermore, the rate is independent of D in the sense 
that there is a number K such that if D is the final result of applying R K times, 
starting with D, then d(D) < d(D)/2 (i.e., if the total number of applications of < 

to get D is M, then, asymptotically, d(D) < d(D)/2(M/K)). Here, d(D) is the 
diameter of D with respect to a selected norm 11 Ils; this norm is dependent in 
general on D, but well-behaved in the sense that there is a c independent of D with 

IXIIs > cIIXII0, for every X E Rn. 
(vi) There is a number 0 < R < 1/2 such that if D is any region produced by 

applying - any number of times to D, then D contains an open ball B with center C 
and radius Rd(D), where distances are measured with respect to 11 Ils. 

Condition (v) of Definition 2.3 bounds above the rate at which the diameters of 
the regions to which - is applied go to zero. This allows us to quantify how many 
bisections are required for certain local models to become valid within a region. (For 
example, an interval-arithmetic model for the range of F as X ranges over D may 
consist of linear terms added to intervals representing ranges of the coordinates of X 
in D times bounds on the second partial derivatives of F. The diameter of the range 
set so computed would then tend to zero as d(D) tends to zero.) It may be possible 
to choose 11 Ils so that the corresponding D is a ball with respect to 11 I1s; this 
simplifies analysis related to the distance of roots of F from aD in specific cases. 

Condition (vi) insures that the regions D do not become excessively thin when 
repeated bisection is applied. This allows us to replace D by a region Db when there 
is a root near aD, such that D c Db, the root is relatively far from aDb, but d(Db) is 
not excessively larger than d(D). 

Definition 2.4. A root-inclusion test Y7_F is any mapping from the set of domains 9 
to {' true', 'false', 'unknown') such that 

(i) 7F(D) ='true' implies there is a unique X E int(D) with d(X, D) > 
(R2/4)d(D) such that F(X) = 0. Here, int(D) = D \ aD is the interior of D, 
d(X, S) is the distance of the point X from the set S in 11 - Ils, R is as in Definition 
2.3, and 0 denotes the zero vector. 

(ii) SfYF(D) ='false' implies there are no X e D with F(X) = 0. 
(iii) There is a number -' > 0 such that, if D is any region with 

(a) d(D) < -'; and 
(b) If X is such that F(X) = 0, then d(X, 3D) > (R/3)d(D), where R is as in 

Definition 2.3(vi), 
then Y7_F(D) ='true' or $71F(D) ='false'. 

Definition 2.4(iii) is so stated because zeros of local models of F will be used to 
approximate zeros of F itself. In such models, the approximation error will be 
bounded; the model will then be able to distinguish roots inside and outside of a 
region D when roots of F lie relatively far from aD. 

The following definition delineates the interplay between the class of functions 
defined in Assumption 2.2 and the conditions which define - and Y7-F. 

Definition 2.5. Choose - = min{ ?', E/R ), where ?' is as in Definition 2.4(iii), E is 
as in Assumption 2.2, and R is as in Definition 2.3(vi). Thus, distinct roots of F are 
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of distance at least Rr in 11 -II Furthermore, we may replace c' by E in Definition 
2.4(iii) for simplicity of notation. 

We now study an abstract version of the binary search algorithm. Suppose I is as 
in Definition 2.3 and -F is as in Definition 2.4. Also suppose R and - are as in 
Definition 2.5 and are known a priori, and that C can be computed for each D, 
where C is the center as in Definition 2.3(vi). Then we have 

ALGORITHM 2.6. (Abstract generalized bisection) 
1. (Initialization phase) 

(a) Set: k < 1. 
(b) Set: D1 - D. 

2. (Subdivision phase) 

(a) Form {D k,D} = D 16(Dk). 
(b) Dk+l <- D k 

(c) k k + 1. 
3. (Test phase and storage of roots) 

(a) Compute d(Dk). 
(b) If d(Dk) < (R/2)E and Dk has nonnull intersection with a region which 

has been expanded in Step 4, then go to Step 5. Otherwise, continue to 
Step 3(c). 

(c) Compute hF(D k). 

(d) If -FY(Dk) ='unknown' and d (Dk)> (R2/4)c, then return to Step 2. 
(e) If .rF7(Dk) -'false', then go to Step 5. 
(f) If .YF(Dk) ='true' then: 

(i) If Dk has null intersection with every region which has been expanded in 
Step 4, then store Dk in list Y. 

(ii) Go to Step 5. 
4. (Adjustment step for roots on a boundary: in this case JYF(Dk) - 'unknown' 

and d(Dk) < (R2/4)r.) 
(a) Replace D k by the geometrically similar region Dbk obtained by replacing 

every X E Dk by X, where 

X= C +(2/R)(X- C). 

(Here, C is the center as in Definition 2.3(vi).) 
(b) Delete from Y all D' E Y for which D' n Dk is nonempty and d(D') < 

(R/2)c. 
(c) Store D/k in list Y. 

5. (Backtrack to less subdivided regions) 
(a) If k = 1, then exit with the list Y. 
(b) If Dk was DiV',then: 

(i) Set: Dk - D . 
(ii) Go to Step 3. 

(c) k k - 1. 
(d) Return to Step 5(a). Li 

In the remainder of this section, we will prove desired properties of Algorithm 2.6. 
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LEMMA 2.7. Suppose Dk and Db are as in Step 4 of Algorithm 2.6. Then 

(i) d(Dk) = (2/R)d(Dk) < (R/2)E; 
(ii) Dbk contains a ball B, of radius 2d(Dk) in its interior; 

(iii) Dk c Bb. Furthermore, 

d(iBb,,aDk) > d(Dk), 

Here, the norm used to define d(D k) is the same as the norm used to define d(Dk). 

Proof of Lemma 2.7. For (i), let X and Y be extreme points of Dk; i.e., 
d(X, Y) = d(Dk); let X and Y be the points in Dk obtained from X and Y by the 
construction of D k. Then, by constructing similar triangles with vertex sets { X, Y, C) 
and {X,Y,C}, it is clear that d(X,Y) = d(Db) > (2/R)d(Dk). (Note that, no 
matter what norm is used, similar triangles have side lengths which are proportional, 
provided corresponding sides of the triangles make the same angles with the 
coordinate axes.) However, if Z and W are points in D k with d(Z, W) > 
(2/R)d(Dk), then an analogous construction of similar triangles leads to the 
contradiction d(Dk) > d(Dk). Therefore, (i) is true. 

For (ii), simply take Bb to be the images of the points in the ball B in Definition 
2.3(vi). 

We now prove (iii). First observe that Dk C Bb since the radius of Bb is 2d(Dk), 
because of the construction in Step 4 of Algorithm 2.6, and because C E Dk. Now 
suppose A E aDk and B E aBb are such that d(A, B) = d(aDk, aBb), and let C be 
as above. Then d(B, C) = 2d(Dk), but d(A, C) <- d(Dk). Thus, the triangle in- 
equality gives d(B, A) > 2d(Dk) - d(Dk) = d(Dk); combining this with (i) gives 
(iii). 0I 

LEMMA 2.8. Suppose Dk is a region for which Algorithm 2.6 has entered Step 4. 
Then: 

(i) there is a root Z of F such that d(Z, aDk) < (R/3)d(Dk); 
(ii) Z e D k; 

(iii) d(Z, a Db) " (RI3)d(Dbk) 

Proof of Lemma 2.8. Since d(Dk) < e and -F (Dk) ='unknown', Definition 
2.4(iii) implies (i). The assertion (ii) follows from (i), Lemma 2.7(ii) and (iii), and the 
triangle inequality. In particular, let C be as above, let A e aDk be such that 
d(A, Z) = d(aDk, Z), and let B e SBb be such that d(Z, B) = d(Z, aBb). Then (i) 
implies 

(2.1) d(A, Z) < (R/3)d(Dk), 

while 

(2.2) d(C, A) < d(Dk). 

The triangle inequality then implies 

(2.3) d(C, Z) < d(C, A) + d(A, Z) 

< [(1 + (R/3))] d(Dk) < 2d(Dk). 

Formula (2.3) combined with Lemma 2.7(ii) gives (ii). 
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For (iii), first observe that Lemma 2.7(ii) implies 

(2.4) d(C, B) = 2d(Dk). 

The triangle inequality then implies 

d(Z,aDk) > d(Z, B) > d(C, B) - d(C, Z) 

(2.5) > 2d(Dk) -[1 + (R/3)] d(Dk) 

> (5 /6) d(D k) > (RI3)d(D k). 

(The first inequality follows from the fact that any line segment drawn from Z to 
aDk must intersect aBb.) Thus, Lemma 2.8 is proved. O1 

We now state and prove our two main results. 

THEOREM 2.9. Assume Algorithm 2.6 terminates. Then: 
(i) If D' E Y, then D' contains a unique root Z of F. 

(ii) If Z E D has F(Z) = 0, then Z E D'for some D' EaxY. 

(iii) If D' E Y, then !7-F(D') ='true'. 

(iv) If Z E D is a root of F, then Z is in only one D' E Y. 

Proof of Theorem 2.9. We first show (i). To this end, assume D' E Y. Then D' was 
placed in 2 in either Step 3(f) or Step (4). If D' came from Step 3(f), then 
Definition 2.4(i) implies that D' contains a unique root, so assume D' came from 
Step 4; let D be the region which gave rise to D' by expansion. Then Lemma 2.8(ii) 
implies there is a root Z E D'. However, Lemma 2.7(i) implies that if Z' E D' is also 
a root, then d(Z, Z') < (R/2)c; Definition 2.5 then implies Z = Z'. 

We now verify (ii). Assume that Z is a root which is not in any D' EE Y. Then Z 
must be in some region Dk which was rejected in Step 3(b) or Step 4(b). (This is 
because all other Dk entering Step 3 will be bisected further, do not contain roots, 
have indeed been placed in Y, or have been placed in Y after expansion.) Thus 

(2.6) d(Dk) < (R/2) E. 

Furthermore, if D' E =Y is the region from Step 4 such that Dk n) D' is nonempty 
then Lemma 2.7(i) implies 

(2.7) d(D') < (R/2)c. 

However, there is a Z' E D' for which F(Z') = 0, by Lemma 2.8(i). Formulas (2.6) 
and (2.7) now imply 

(2.8) d(Z, Z') < (R/2) E + (R/2)cE = Re, 
which contradicts Definition 2.5. Thus, (ii) is true. 

To prove (iii), we must verify the hypotheses of Definition 2.4(iii) for an arbitrary 
D' E Y. If D' was placed in Y in Step 3(f), then the conclusion is trivially true, so 
assume D' was placed in Y in Step 4. Then Lemma 2.7(i) assures us that d(D') < E. 
Furthermore, if Z is the root of F in D', then Lemma 2.8(iii) assures us that 
d(Z, D') > (R/3)d(D'); assume Z' is any other root, and let A E 3D' be such that 

(2.9) d(Z', A) = d(Z', D'). 

Then 

(2.10) d(Z', aD') ? d (Z', Z) - d (Z, A) >? Rc - d(D') 
Rc - R(,E/2) = (R/2)E> (R/3)c. 

Thus, (iii) is proved. 



194 R. BAKER KEARFOTr 

We will prove (iv) by contradiction: Suppose Z E D E Y and Z E D' E A, so 
that D n D' is nonnull. But both D and D' cannot be from Step 4(b), since an 
ancestor Da of D or D' would then have had d(Da) < (R/2)e and would thus have 
been eliminated from Y in Step 3(b). Thus, without loss of generality, assume D 
came from Step 3(f). Then d(D) > (R/2)c, since otherwise D would have been 
rejected in either Step 3(b) or Step 4(b). However, since the definition of 5- implies 
Z is not in a D, the nature of a implies that D' is some D' from Step 4. But then 
Lemma 2.8 and (iii) imply d(Z, a D) < (R/3)[(R2/4)c] = (R3/12)c. Thus, d(Z, a D) 
< (R2/4)d(D), which contradicts S7F(D) ='true'. Thus, (iv) is proven. [ 

Theorem 2.9(iii) is useful when SYF is defined so that .YF(D') = 'true' implies that 
an associated iterative method will converge to the root Z E D' for any initial guess 
Xe D'. 

THEOREM 2.10. Algorithm 2.6 terminates after at most 2(4MK - 1) applications of 
a, where 

M = [d(D)I[(R2/4) 

and where K is as in Definition 2.3(v). 

Proof of Theorem 2.10. We first note that bisection stops when the diameter of the 
region D produced in Algorithm 2.6 is less than (R2/4)e, so that the reduction in 
diameter necessary to obtain such D from D is by approximately a factor of M. 
However, by Definition 2.3(v), this reduction of diameter would require at most 

L = [ K(log2(M) + 1)] 

successive subdivisions, where M = d(D)/[(R2/4)e]. 
Algorithm 2.6 can be thought of as producing a binary tree whose nodes are the 

regions obtained through successive application of A: The root of this tree is the 
node corresponding to the original region D, and the number of edges (equal to the 
number of nodes less 1) is equal to the total number of applications of A. The depth 
of the tree is equal to the maximum number of successive subdivisions, which is at 
most L. The maximum total number of subdivisions would occur if the tree were 
balanced, and would be equal to 

2L+1 - 2 = 2(2L - 1) < 2[2K 10g2(M)+2 - 12 

< 2(4IMg -1) < 2(4MK - 1) 

(cf., e.g., [21, p. 277]). This completes the proof. LI 

We note that the bound in Theorem 2.10 is a worst-case estimate for the class of 
functions defined by Assumption 2.2. Since this bound assumes a balanced tree, and 
since a good algorithm will produce a tree which is far from balanced, this bound is 
unrealistically large in many cases. 

3. A Specific Generalized Bisection Algorithm. We now present a prototypical 
example of a generalized bisection algorithm. 

Let F: D -->R (D a closed domain in R' as above) satisfy the following 
Assumption 3.1. (i) F is twice differentiable, and its Jacobian matrix J(X) and 

second derivative operator H( X) are continuous at every X in D. 
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(ii) There is an M such that IIJ(X)lI I M for every X in D. (Here, the operator 
norm I I I depends on the scaled norms 1 IIs of Definition 3.3 below, which in turn 
depend on the specific region D produced by the algorithm; one M should hold for 
all such norms encountered during the course of the algorithm.) 

(iii) There are quantities M1 and an c0 such that flJ- (X)fl < M1 for every X 
such that IIZ - Xfl < -0 for some Z with F(Z) = 0. (As in (ii), the operator norm 
here will depend upon 11 II defined below.) 

(iv) There is a yo such that IIH1(X)II < yo for 1 < i < n and every X E D, where 
Hi is the Hessian matrix of fi. Let 

y= max (VI, V21 * *n) 11, 
I v < Yo 

where the above norm is the norm on the range of F. 
Modifications of Assumptions 3.1(ii), (iii), and (iv) can be verified with interval 

arithmetic as computation proceeds, provided interval arithmetic is available and F 
has an interval arithmetic extension: In such cases, sets containing J(D), etc., are 
explicitly computed. Then, for example, if if is such a set corresponding to J(D), 
then Il/f Il can be explicitly computed and used as the bound M. 

Definition 3.2. Let 
n 

D= F1[ai,bi] 
i=l 

be a generalized rectangle in Rn. Define p0(D) by p0(D) = {D1, D2 }, where 

D, = [a1, b1] x [a2, b2] x ... X [m, bi] x ... X[an, bn] 

D2= [a1, b1] X [a2, b2] X x [a, m] X x [an, bn 

m=(ai+bj)/2, and Ib1-aja= max Ib1-a L 

The process 0 is used in [6], [7], [8], [15] and elsewhere. Its advantages include 
predictability and a separation of the coordinate directions. Modifications (choosing 
i other than as above) are possible to effect automatic scaling or for handling sparse 
systems. 

Suppose D is produced from D via repeated application of 0 as in Definition 
3.2. Then we will use a local norm specific to D as follows: 

Definition 3.3. Let D = Hl7n I[ai, bi], let 8, = lb- a,1, assume 8, > 0 for 1 < i < n, 
set = maxI<I<n(S, and let V=(V1, V2,. vn)T E Rn. Then define the scaled 
norm 

11 V lis = { (Silsi) I VI I 

Define ds(D), ds(X, Y), etc., with respect to 11 * Ils as in Section 2. Note that, in 
11 l D is a ball of radius 3,/2, and ds(D) = dc(D) = 8(S where d,(D) is the 
diameter of D using the unscaled maximum norm. 

From Definition 3.2 and Definition 3.3, we have 

LEMMA 3.4. (i) 0 is a geometrical bisection process as in Definition 2.3. 
(ii) The number K in Definition 2.3(v) can be taken to be equal to n. 
(iii) The number R in Definition 2.3(vi) can be taken to equal 1/2, and 

C = ((a, + bj)/2, (a2+ b2)/2,..., (an + bn)/2). 
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Proof of Lemma 3.4. Items (i) through (iv) of Definition 2.3 are immediately 
evident. For item (v), note that a single application of g halves the width of the 
generalized rectangle in one of the coordinate directions. If the original D is a 
hypercube, then the thickness in each coordinate direction is halved after n applica- 
tions, and the resulting region D is a hypercube with diameter equal to ds(D) = 

d,(D)/2. In any case, the maximum width Sj of D is halved on the first application 
of 0; when 0 is then recursively applied, the jth width of the resulting 
generalized rectangle must then be halved at least once every n applications. (This 
can be proven by induction on n.) The fact that c in Definition 2.3(v) exists is clear 
from the fact that the ratio max(8i)/min(83) remains bounded as 0 is applied 
recursively. (This can also be proven by induction.) For Definition 2.3(vi) and 
assertion (iii) of the lemma, simply note that each D is a ball in the norm presently 
being used. El 

Arguments similar to those in the preceding proof can be used to show that the 
bound M in Assumption 3.1(ii) exists for all smooth functions on compact domains 
D. 

The root inclusion test in this example will use the Kantorovich theorem (cf., e.g., 
[2, p. 92]), which we state as 

THEOREM 3.5 (KANTOROVICH). Let C E D be arbitrary and let II - II be any norm. 
Assume 11J-1(C)I1 < /3, let y be such that 

IIJ(Y)-J(X)II< yIIY-XII forXe DandYe D, 
assume IIJ-1(C)F(C)II < a, and define a = fiy-. Furthermore, assume F is continu- 
ously differentiable in the ball 

B0=(XeDIX- II 1+ 1 -2~a} 
Bo =(x E= DX - C1 < 1 + =D. 

If a < 1/2, then Newton's method, using C as starting point, converges to a root Z 
such that 

llZ - Cl 11 -- X 2 

Furthermore, Z is unique within Bo. 

We now present the inclusion test for this example. 

Definition 3.6. Let F, M, co, M1, and y be as in Assumption 3.1, let D = D and 

11 * 1s be as in Definition 3.3, and let C be as in Lemma 3.4(iii). Define/? = IIJ-1(C)IIs 
and -q = IIJ-1(C)F(C)IIs, where IIJ-1(C) Is is the operator norm derived from I Iis 

and from the norm on the range of F. Define 

U(D) = L(F)(X) + 7.8 T. T E- [ -1 I X E- D) 8 TT[115eJ 

where L(F)(X) = (L1(F)(X), L2(F)(X),..., Ln(F)(X)), and 

Li (F)(X) = fI(X) + J, (C)(X -C), Ji(C) = row,[J(C)] . 

Then set S0 F according to: 

(i) So, F(D) ="true" provided a = ,Byq < 1/2, 

1-jl-2a ds(D) 

9-Y 2 
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and provided that d(Z, aD) > (R2/4)d(D) where Z is the root to which Newton's 
method, starting with C, will converge (from Theorem 3.5) when the first two 
provisions are satisfied. 

(ii) Y0F(D) = "false" provided U(D) does not contain 0. 
(iii) !0F(D) = "unknown" provided the provisions in neither (i) nor (ii) hold. 

Note that checking provision (ii) of Definition 3.6 is equivalent to checking that 
there is no solution (X, T) E D x [-1, 1]' of 

(3.1) 0 = L(F)(X) + yt} (D) T. 
8 

If D is polygonal, then this is equivalent to checking for feasible solutions to a linear 
programming problem in R2 with 5n inequality constraints: D is defined by 2n 
constraints, the range of the vector T is defined by 2n constraints, and (3.1) defines 
n constraints. (The objective function is undefined and irrelevant.) Specifically, 
checking (3.1) is equivalent to checking the following set of linear inequalities: 

(i) X E D; 

(ii) L(F)(X) yd8(D)*1:; 
(3.1)' [-1J 

(iii) L(F)(X) < ' 'L] 

For example, if D is a box in R , then the condition X = (x1, x2,..., Xn) E D 
reduces to 

xi > al, i= ,...,n; 

(3.1)t 
(i)' Xi 

~~<, bi, i I,-, ........,n; 

whereD= H[ai.bi]. 
i=1 

The condition (3.1) may also be easily checked with interval arithmetic. In this 
case, a box U with U(D) C U is explicitly computed by constructing a box BD with 
D C BD and evaluating 

yds (D) 
J 

U = L(F)(BD) + S [( zz 1* 

However, a set F with F(D) C F is computable by using interval arithmetic to 
evaluate F; in that case it is customary in practical algorithms to use a modification 
of Definition 3.6(ii) so that 0, F(D) ='false' provided 0 is not contained in F (cf. 

[16], etc.). 

THEOREM 3.7. Y0,F is a root inclusion test. 

Proof of Theorem 3.7. We will check (i), (ii), and (iii) of Definition 2.4 in order. 
First, assume 0, F(D) - "true". Then the Kantorovich theorem implies that there 

is a unique root of F in D, so Definition 2.4(i) holds. 
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Second, assume 'f0/ F(D) = "false". If there is a Z in D such that F(Z) = 0, then 

(Z- _C)T~- C 
(3.2) 0 = L(F)(Z) + 2H(Z-C) 

for some operator H such that the ith entry of (Z - C)TH(Z - C) is equal to 
(Z - C)TH,(X)(Z - C), where Hi(X) is the Hessian matrix of fI, evaluated at 
some point Xon the line segment joining C and Z. Assumption 3.1(iv) then implies 

(Z C)Tii(Z - T) Yo 2d(D) T 
2 8 

for some vector T = (t1, t2,..., t )T, -1 t t, < 1 for 1 < i < n. But (3.2) combined 
with (3.3) contradicts &70,F(D) = "false", so (ii) of Definition 2.4 is verified. 

Note that the above argument shows that the definition of &f F is consistent; i.e., 
0 F cannot simultaneously equal " true" and " false". 
To verify Definition 2.4(iii), define 

? min(do, Mly 2 )Q' 3M1 + y(8 + T) 6-y[M1/18 + 1/(4M)] )2c} 

Here, 

-M/2 + (M/2)2 + ( ym0o/2) 

(-yT/4) 
where 

m = min F(X) 
X eDo \U I= 1 I, 

where B, is a ball of radius 1/(yM1) (in 11 IIs) about Z,, with {Zi}fPI C Do, the 
initial region, being the set of roots of F. (Note that UJP1 Bi can be empty.) In the 
above, XT= max T 

T in [-1, 1]n 

and M and M1 are the constants in Assumption 3.1(ii) and Assumption 3.1(iii), 
respectively. (Throughout this proof, 11 11 is the norm used on the range of F.) 

Note that the compactness of Do implies - > 0. 
To complete the verification of Definition 2.4(iii), assume 

d= ds(D) < , 

and also assume that if F(Z) = 0 then 

ds(Z,aD)> (R/3)ds = ds/6. 

There are two subcases: (a) there are no Z E D with F(Z) = 0; and (b) there is such 
a Z E D. 

For case (a), we need to show 0 F(D) ="false". Assume case (a) and 70,F(D) is 
not "false"; then the Kantorovich theorem implies that Y0 F(D) = "unknown", so 
0 E U(D). Thus, there are an X E D and a T E [-1, 1] such that 

(3.4) 0 = F(C) + J(C)(X-C) + yds T 

whence 

_yd2 

(3.5) |J(C)(X - C) 11 > MO 8X 
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where mo and T are as above. But 

(3.6) 11 2(C)( -C) 11 2 

Combining (3.5) and (3.6) then gives 

(3.7) m0 + - d r Y8d2 <0 . 0 2 8 S 

This is true only for 

-M/2 + (M/2)2 + (-yTmo/2) 

(YT/4) 

But this contradicts the definition of , so f0,F(D) ='false'. Now assume there are 
roots Z of F in Do (i.e., assume case (b) and S0,F(D) is not 'false'). Denote the 
closest such root (in Is) to D by Z. If CZ -ICIs > (1/yM1), then formulas (3.5), 
(3.6), and (3.7) still hold, and the definition of - is still contradicted; thus we may 
assume 

11 Z -C lls < (l/-YMJ - 

In this case, we have 

ds R 2 - 1 
(3.8) d5= 3d <C - Z s < M 

Also, 

F(X) = J(2)(X-Z) + (x - Z) - Z) 

for some linear second-order operator H as in (3.2); therefore, 

_1 x_-Z1 
39F(X) !> IIJ(Z)(X - Z) 2 

I 
|| -Z| -Y || -112 

We note, however, that since X E D, 

(3.10) 35 < 11 X Z 115 < 3 dS. 

Combining (3.9) and (3.10) gives 

(3.11) jF(X)! d5 - d 3M ds - gd} 

On the other hand, 

(X-_.C)Tf (X-_ C) 
(3.12) F(X) =F(C) + J(C)( X-C) + H 

for H analogous to H in (3.2) and H above. Combining (3.2) and (3.4) gives 

(X _C)TfJ(X _C) 2d2 
2 8 
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whence 

(3.13) |F(X) s< 8 -y(1 + T). 

Combining (3.11) and (3.13) gives 

(3.14) min{ 3 d - d- - 9 d ) 9 8 

from which 

d , i 8 8 
(3 .15) dSm 3M1y [(13/9) + T] 

9 
3M,-y[8 + }] 

8 
3Mgy[8 + T] 

This contradicts the definition of e. Therefore, if ds(D) < c, ds(Z, D) > (R/3)ds(D) 
for every Z E Do with F(Z)= 0, and there are no Z E D with F(Z) = 0, then 

gO, F(D) = 'false'. 
The final case to consider is then 

3 Z E D with F(Z) =0 
(3.16) ds(Z, AD) > R 

ds(D) = ds(D) 

so that 

(3.17) 11 Z - C =dS < 2d, -6d= 3 d 

where d = ds(D). (To see (3.17), note that a ray emanating from C and passing 
through Z passes through AD at a distance of ds/2; combine this with (3.16) and the 
triangle inequality.) In this final case, we will check the conditions of the Kantoro- 
vich theorem. 

To estimate Xq, we expand F about C as in (3.2): 

(3.18) 0 = F(C) + J(C)(Z-C) + (Z 2C)TH(ZC) 

Furthermore, since ds < 2,-o there follows IlZ- ClIs < -O. Combining these latter 
facts with Assumption 3.1(iii) and (3.18) gives 

(3.19) 1 =| JJ-1(C)F(C) 11s < 1| Z-C 11s + M-y 2 

Thus, 

(3.20) 13'qy s< M1Y[-ds + 18ds 

The right member of (3.20) is bounded above by (1/2) when 

(3.21) S + 4lS] - 1 0, 
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which is true when 

(3.22) d < 2 ] 

But (3.22) is true by the definition of c, so the first condition in Definition (3.6)(i) is 
met. We check the second condition, 

(3.23) 
1- 

1 
-2a ds(D) 
9-Y ~~2 

By rearranging (3.23), substituting a = /y-q, and squaring to eliminate the radical, 
we see that (3.23) is true provided 

(3.24) 2I < { 2 ] [d ]} 

Combining (3.19) and (3.24), we see that (3.24) is true provided 

1d M+ d2 1_P 3d5+ 18 2 < 2 2 

which reduces to 

(3.25) d 18Y + f4Y] 1 

However, /3 = IllI (C)II > (1/M), so (3.25) is true provided 

(3.26) 1 [ 1 4M , 6 

Rearranging (3.25) gives 

d < 1 
5 6-y [( M,118) + (114M )] 

which is true by the assumption on 8. Thus, 37F(D) ='true' in the case defined by 
(3.16); this completes the proof of Theorem 3.7. El 

Theorem 3.7 and the following lemma will allow us to apply Algorithm 2.6 and 
Theorem 2.10 in the case defined here. 

LEMMA 3.8. Assumption 3.1 implies - is as in Definition 2.5. 

Proof of Lemma 3.8. The fact that J is continuous in Do and invertible at Z EDo 

with F(Z) = 0 implies that the roots of F are isolated. More precisely, if Z e D is 
such that F(Z) = 0, then (as in the formula preceding (3.9)) 

- (x-Z)TJ4(xZ) 
(3.27) F(X)= J(Z)(X- Z) + 2 

for some second-order linear operator H. Thus, as in (3.9), 

|F(X) 11> 
I 

|| X |- Y2 11 X _-112 

is true in this context. But the right member is positive for 

(3.28) 0 < || X-Z||s < 2 
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Thus, the distance between roots of F is at least 

2 ? 
_ > RE = 

where c is as in Theorem 3.7. The latter formula, combined with Theorem 3.7, 
proves the assertion. E 
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