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Some Plane Curvature Approximations* 

By R. C. Mjolsness and Blair Swartz 

Abstract. Second-order accurate approximations to the curvature function along a sufficiently 
smooth plane curve are presented, the curve being given in finite form (and thus, approxi- 
mately) by N + 2 points taken along its full length. The curvature estimates are continuous 
and invariant under translation and rotation, and they are based on local information-so are 
easy to implement computationally. In particular, second-order accurate estimates of surface 
tension forces halfway between immediate neighbors in the curve's mesh can thereby be made 
for hydrodynamic simulations. 

The construction makes use of any of the common techniques one might contemplate for 
using the information present in three adjacent points (of the N + 2 points) in order to 
estimate the curve's curvature near those three points. It may do this because each of these 
techniques yields a number which is, to within second order in the distances between the three 
points, the value of the true curvature function at the same place, namely, at the arithmetic 
mean of the location of the three points as measured along the curve. The asymptotic form, 
displaying all terms through the second order, of error estimates for these techniques is 
provided, along with comparison of gross properties and numerical examples. Finally, 
continuous, locally second-order accurate, global approximation to the curvature function is 
obtained by interpolation of successive local estimates between the locations of successive 
means. 

A related result is given for the simpler but analogous situation concerning the nth-order 
difference quotient of a function of one variable. The broken line interpolant of successive 
n th difference quotients, between the successive mean values of their stencil points, provides a 
continuous, locally second-order accurate, global approximation to the nth derivative. It also 
coincides, between two successive stencil means, with the n th derivative of the polynomial 
interpolant of the n + 2 data points associated with the two successive stencils. 

1. Introduction and summary. Parametric interpolation provides a basis for one 
approach to curvature approximation; a comprehensive survey of the literature 
concerning such interpolation is contained in Ferguson's thesis [2], for example. But 
the form and implementation of such approximations is often nonlocal and thus 
rather complex computationally; moreover, analysis of the accuracy of the resulting 
curvature estimates is rarely detailed. 

Less familiar is the use of intrinsic curvature estimation as explored by people 
involved in computer-aided design. We are indebted to J. C. Ferguson for such 
references as Nutbourne, McLellan, and Kensit [5], Pal [6], Schechter [7], and 
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McLeod and Todd [4], among others. A relatively early work considering C2 
piecewise Cornu spirals is Burns [1]. 

Our approach here is the appropriate local interpolation of sufficiently accurate 
local estimates of the curvature. We are motivated by approximation of the second 
derivative of a scalar function y(t). First, a locally determined estimate is the 
function's second difference quotient. Next, this number is known to be a second- 
order accurate approximation to the value that y" assumes at the mean value of the 
three points in the stencil of the difference quotient (see, e.g., Kreiss, Manteuffel, 
Swartz, Wendroff, and White [3]). Finally, second-order accurate global approxima- 
tion to y" can be associated with the broken line interpolant of the second difference 
quotient between successive stencil means. Proofs invoke both the accuracy and 
stability of local linear interpolation. 

So, given three neighboring points X_, X0 and X+ (in that order) on a suffi- 
ciently smooth curve, we begin with four estimates of the size of the curvature 
nearby. The first is the number IKcJ, the reciprocal of the radius of the (unique) circle 
passing through the points; cf. (2.2) below. The second number is IKdI, the length of 
a second difference quotient of the radius vectors (i.e., of the vector of the difference 
quotient of the coordinates); this difference quotient is taken with respect to distance 
along the broken line joining the three points; cf. (2.3)-(2.4). A third number, 
equipped with a sign as well, is K., the ratio of the sine of the angle between the two 
successive secant vectors to their average length; cf. (2.10). A fourth number-really, 
collection of numbers-consists of difference approximations to the classic expres- 
sion for the curvature in terms of the derivatives of the curve's coordinates-ap- 
proximations in which the increments in the independent variable are replaced with 
the Euclidean distances At _ between successive pairs of points; cf. (2.15). 

We summarize our 
RESULTS. (1) IKcI, IKdI, and K. are invariant under rigid motions of the plane, as 

are any of the difference approximations to the classic expression for the curvature, 
as long as the same difference operators are applied to each coordinate (for the last, 
cf. (2.15) below). 

(2) IKdI and IKI are equal to within second order; cf. (2.2). 

(3) 1KdI is also to within second order of the magnitude of the second difference 
quotient, with respect to arclength, on any sufficiently smooth (say, C4) curve which 
passes through the three points. This is so because, although the (vector) difference 
between the two difference quotients has length first order in size in general, it is 
sufficiently orthogonal to either of the difference quotients themselves; cf. (2.7). 

(4) Consequently, IKdI and IKcI are, to within second order, the magnitude of the 
curve's curvature at the arithmetic mean of the locations of the three points X_, X0, 
and X+ as measured along the curve; cf. (2.8). 

(5) K. is, to within second order, the (signed) curvature at the same location. It is 
suitable for providing a sign for IKdI and for IKJ as necessary; cf. (2.12). 

(6) The second-order differentiations in the classic expression for the curvature in 
terms of its coordinates are most easily and consistently approximated by A 2/At 2. 
But the numerator's first derivatives may be approximated by a one-parameter 
average (say, X) of the forward and backward difference quotients, and the 
denominator's by another (say, Mi). The value of the numerator is then, in fact, KX, 
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independent of X. And, the resulting number is also (to within second order) the 
(signed) curvature at the same average of X-, X0, and X, (if ji is presumed 
appropriately bounded). The geometry of smooth curves asymptotically avoids the 
situation which can make the denominator zero; cf. (2.13)-(2.15). 

(7) The gross properties of IKA, IKdI, and IKJX are compared; cf. (3.3). The 
asymptotic form of localized error estimates is provided through second-order terms; 
cf. (3.5). Their efficacy is explored in two numerical examples; the second example 
summarizes comparison of some twenty-seven hundred specific instances using a 
notion we call " the accuracy of the predicted error"; cf. Section 3. 

(8) Using these results, one now may associate with a sequence of N + 2 points 
along a plane curve another sequence of N points at which second-order accurate 
curvatures are known; these values are interpolated-in two ways-to obtain 
continuous, second-order accurate global approximations to the curve's curvature 
function. We reject a third locally defined approximating function related to KX 
because we do not know how to join successive pieces continuously. The definition 
of these functions and proof of their local second-order accuracy must (and does) get 
around the fact that, unlike the approximation of a scalar function y(t), one does 
not have in hand a smooth parametrization of one of the curve's coordinates; cf. 
Section 4. Second-order accurate interpolation of the magnitude of a smooth 
function is not easy over an interval containing a zero of first order; this is where the 
utilization of the sign of Kx becomes important. 

(9) The continuous, second-order accurate global approximations to the curvature 
provide, in particular, second-order accurate curvatures half-way between pairs of 
mesh points on the curve. As used in hydrodynamic simulations, this allows 
second-order accurate estimation, at those locations, of the force due to surface 
tension- and thus of pressure jumps; cf. the paper's penultimate paragraph. 

2. Three-Point Curvature Approximations. Suppose we are given three noncollin- 
ear points in the plane, defined by the vectors X-, X0, and X,. We shall obtain and 
discuss certain approximations of the curvature of smooth (say, C4) curves X(w) 
passing through these points in the order presented. 

We recall first the radius r of the circle interpolating the three points. For this, 
consider the two secant vectors 
(2.1a) A+X:= X+- X0, AX:= X0 - X-, 
with their associated unit vectors 

(2.1b) U+:= AX/A~t, whereA+t:= IA?XI, 
and IVI is the Euclidean length of a vector V. The center Y of the interpolating circle 
lies on each of the perpendicular bisectors of the secant segments emanating from 
X0. Hence the component of Z:= Y - X0 along each secant segment is 

Z U+ = ? A _t/2, 

by our choice of direction for the U+. It is the length r of Z we seek. From U+ we 
form the orthonormal pair 

J+:= (U+? U)/U+? U_1, 
concluding, from the components of Z along Up, that 

(2.2a) 4r2 = (z\t + A t)2/U+- U_ 12 +(A+t - At)2/1U++ U_ |2. 
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This provides our first estimate of the curvature, namely the number 

(2.2b) IKc 1:= 11r (c for circle). 

However, for three neighboring vectors X_, X0, and X+, sampled successively 
along a smooth curve X(w), the two unit vectors U+ are nearly parallel and in the 
same direction, so the final term in (2.2a) then contributes only O(max A + t 2) to the 
curvature approximation (2.2b). This prompts, in these circumstances, the alterna- 
tive curvature estimate 

(2.3) !Kd 1:= IU+- U_ !/[(A+t + _t)/2], 

an approximation which may also be derived using the following, more analytic, 
considerations. 

With U(s):= k(s) (:= dX/ds) the unit tangent, as a function of arclength s on a 
smooth curve X(s), the curvature K(S) is given by 

!K!:= |j(U =j|X 

with K taking the sign of the 900 angle from U to U. But, using (2.1), we see (2.3) is 
the magnitude of the second difference quotient of X, i.e., of 

(2.4) A2X/At2:= (A+X/A+t - A_X/A_t)/[(A+t + _t)/2] 

taken with respect to the Euclidean distance t along the secant lines between the 
data points. So, in (2.3), d is for difference. 

The more relevant (vector) difference quotient is the second arclength difference 
quotient, 

A2X/As2, 

given by replacing A +t in (2.4) with the magnitudes A +s of the (unknown) 
arclength increments along the curve. Near (2.9) below we show that (for smooth 
curves, with no nearby double points, passing through X_, X0, and X+ in that 
order) 

(2.5) I/A s = [I - K2A +t2 /24 + O(A+t /A+t 

where Ko is the curvature at X0. It follows that, for such curves, 

(2.6) A2X/As2 = A2X/At2 - K2(A+t - A-t)kO/12 + 0(maxA+ 2). 

That is to say, these two vectors are separated by a first-order quantity in general. 
Now we could use (2.6) to compute A2X/As2 to within second order-say, by 
invoking IKdI from (2.3) and any first-order estimate of X0. But it is not necessary to 
do so for our purposes. For, since A2X/As2, and hence A2X/At2, in (2.6) are each 
first-order approximations to X at X0, and since X = U is orthogonal to U = k, we 
are allowed the conclusion that XO _ A2X/At2 = O(max A + t). Hence, taking the 
scalar product of each side of (2.6) with itself, we find that the lengths of the two 
second difference quotients are the same within second order: 

(2.7) 1 A2X/As21 =I Kd I + O(max A t 2) 

It is known that the second difference quotient of a smooth function-like either 
component of X(s)-is a second-order accurate approximation to the function's 
second derivative when the latter is evaluated at the average of the three arguments 
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involved in the difference quotient (see, e.g., Kreiss, Manteuffel, Swartz, Wendroff 
and White [3, p. 538]). Hence, if arclength s runs from X_ through X0 and then 
X+, and if s = 0 at X0, it follows from (2.3), (2.4), (2.5), and (2.7) that 

(2.8) IKdI-IK(t)I+ O(maxA +t 2), with:= (A+t - A t)/3 
(if X is, say, a C4 curve); the same relation holds for IKj, by (2.2) and (2.3). 

Next, as promised, we prove (2.5), an estimate independent of translation and 
rotation of the plane. So we may assume we are given a sufficiently smooth plane 
curve X(s):= (x(s), y(s)) parametrized by its arclength s, passing through the 
origin at s = 0, its unit tangent there being along the positive x-axis. Differentiating 
thrice and twice, respectively, the identities 

X2 + y2 = 1 X2 + Y2 ? K2 

we establish (with the convention that go:= g(0) for any function g(s)) that 

(2.9) T0 = 0, xo = 1, xO = 0, xo = -K2, xo = -3KOko; 

Yo = o, Yo = 0, Ko = 0, Yo k'o. 

Computing the Maclaurin expansion of t2(s) := (X2 + y2)(S) through 5th-degree 
terms, and choosing io = + 1 (so that t increases with s), we conclude that 

t(s) = [I - K2S2 /24 - KokOs'/24 + O(S4)] S, 

so the O(s3) factor is present unless K2 is stationary at s = 0. But the existence of 
merely four derivatives of X now implies (2.5). 

Finally, we must define the sign of our approximate curvatures, as it too is 
important. We intend eventually to interpolate (Section 4), and there is not enough 
information in the magnitudes of two successive values of a smooth function for 
them to be interpolated with second-order accuracy-at least, over an interval in 
which the function itself has a zero of first order. Towards this end, given two 
vectors V = (v1, v2) and W = (wl, w2), we first define the number 

(2.10a) V x W:= v1w2 - V2W1 

(the only nontrivial component of the vector product of the two vectors ap- 
propriately embedded in a right-handed coordinate system). Then, using the nota- 
tion (2.1), we set 

(2.10b) K := (A X/zAt x A+X/A+t)/At (= (U_ x U+)At), 

where At:= (A-t + A+t)/2. From (2.1) and the properties of the vector product, 
we see that 

(2.lla) Kx= A<X/At X A2X/At2 (= AXX/At x(U+- UjAt), 
in which A X/At is any average of A+X/A+t and AX/A-t, i.e., of U+ and U_: 

(2.llb) AxX/At:= (U++ U)/2 + X(U+- U). 

So, KX is the only obvious approximation around for k x X (= U x U = K), whose 
sign we seek. And, indeed, we now complete our definitions of Kc and Kd with 

(2.12a) Kc := sgn(Ki)jKj and Kd:= sgn(Kx)lKdl 

(cf. (2.2) and (2.3), respectively). But it follows from (2.10), (2.9) and (2.5) that 

(2.12b) Kx K(t-) + O(max A _t2) (t as in (2.8)). 
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Hence we conclude from (2.8) that, with (2.12a), 

(2.12c) Kc= K(t) + O(maxA t2) and K d= K(t) + O(maxA+t2). 

And we now have in hand three second-order accurate estimates of K(t) itself, not 
just two of its magnitude. 

The general parametric form for the curvature, in terms of the curve's coordinates, 
is 

(2.13) K = (X'y" -yIXI)/[(XI)2 +(Y')2]3'2 (' = d/dw, w the parameter). 

We shall now see that, because of (2.11), KX is related to a host of difference 
approximations to this expression-at least to those in which the parameter dif- 
ferences are taken to be A +t. It is quite reasonable to do this, for two reasons. First, 
the data X_, X0, and X+ contains no information whatsoever about the parameter 
w. Second, if one uses typical difference approximations in (2.13) and replaces A +w 
in them with cAl +t (c > 0), then the result is independent of c. For there will be no 
effect on the ratio-at least as long as the resulting difference approximations to the 
first derivatives there are homogeneous of order - 1 in c, and those to the second 
derivatives, of order - 2. 

More specifically, for the numerator of (2.13): (a) If one approximates d 2u/dw2 
by its simplest available consistent linear difference approximation, namely, 
&2 u/A t2; (b) if one also approximates du/dw by any average of u's forward and 
backward difference quotients, i.e., by 

(2.14) Dxu := (A+u/A+t + Au/A-t)/2 + X(A+u/A+t - A-ulA-t), 

then the numerator is the number Kx (independent of X-use (2.11)) and is, in 
particular, invariant under translation and rotation. Moreover, if one approximates 
the two differentiations in denominator of (2.13) by DI (M not necessarily equal to 
A, but the same p for each derivative there), then (1) the denominator is similarly 
invariant; and (2) if one presumes also that ji is uniformly bounded, the denomina- 
tor is 1 + O(max A +t2). (For the second: The two terms in the expression 

(U++ U-)/2 + [t(U+- U-) are orthogonal. Now use (2.5) to conclude that the 
first term is, to within O(max A +t2), the unit tangent at (A +t - A _t)/4, and use 
the boundedness of both ji and A2X/At2 to show the second term contributes 
O(max A +t2).) 

The resulting difference approximation to (2.13), then, is given in terms of (2.11b) 
as 

(2.15) K~L := tAXX/t X A2X/At/ /| tL X/At I (' KX/JA,,X/Att 
, 

its value is independent of X, and it is a second-order approximation to K(t-) if [t is 
bounded. We note that the denominator in (2.15) is zero if and only if [t = 0 and 

U+= -U_, i.e., the two successive secant segments are in opposite directions. (For, 
the line (2.11b) through two points on the unit circle contains the origin if and only 
if the two points are opposite each other. The limiting value of (2.15) can be infinite 
in this case although the numerator, too, goes to zero; cf. the discussion below 
(3.3b).) 
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For example, an unsophisticated approximation (i.e., not centered at f (2.8)) to the 
numerator of (2.13) utilizes first-order centered differences and is given by the 
expression 

(2.16a) DCeX A2y/A t 2 _ DC',y A2X/A t 2 with Dcenu:= (u,- u)/(2At); 

but the value of this expression is precisely K : Take 

(2.16b) 2X = 2Xcen:= (At - A+t)/(A+t + At) 

in (2.14) and in (2.11b). An even less sophisticated approximation utilizes the 
forward difference quotient D+u:= A+u/A+t, but this also has the form (2.14) 
(take X = + 2). Equally elementary approximations to use in the denominator of 
(2.13) are the number 1 (presuming the parameter to be arclength or, alternatively, 
that [t = ? 2), or the expression 

(2.16c) (DcenX)2 +(DcenY) (= 
2 

(X+- X)/(2Ait) 2) = 1 + O(maxA +t2). 

We believe that we have considered in this section all of the common techniques 
one might contemplate for using the information present in three successive points 
on a curve in order to estimate its curvature near those points. And it has turned out 
that the location of the point where a given estimate is correct is, to within second 
order, independent of the technique; more specifically, it is the arithmetic mean of 
the location of the three points as measured along the curve. 

3. Examples, Practical Remarks, Error Estimates. 
Example 1. K = 1/R = constant: a circle with its center at the origin. We assume 

that X_, X0, and X+ are at (R. -4_), (R, 0), and (R.0 +) in the associated polar 
coordinates, respectively. There is no loss of generality-except for the signs of 
KX-in also presuming that 0+> 0 while 0 < 0++ 0_< 2,g. The circle yields quite 
special results, and not just that IKJI = 1/R is exact, (2.2). For this circular example, 
the quantities (2.1b) are 

(3.1) A1 +t = 2R sin(0 +/2) and U+= ( sin(0 +/2), cos(O +/2)). 

With this, we find from (2.3) that 

(3.2a) 1Kd/lKc1- =1/cos[(0+- 0-)/4] = 1 +(0+- 0_)2 /32 + 0[(0+- 0_)4]. 

Surprisingly, this is independent of 0++ V. It also increases monotonically with 
0 +?- - 0; we compute (on our TI SR-50) 

Error in IKdI .01% .1% 1% 10% 100% 

10+- 0-1 3.24 
0 

10.20 32.30 98.50 2400 

which exhibits the second-order accuracy. IKdI/IKCI, (3.2a), can indeed be un- 
bounded: Let 0+ -> 2,g. But, the additional restrictions 0 + < g (or even more: 
U+- U, 0,. i.e., 0+ _< 7T) bound IKdI/IKCI, (3 2a), by . 

We now consider KX. (2.10). From (3.1) we determine that 

(3.2b) Kx/IIKc = cos[(?++ 0-)/4]/cos[(0+- 0-)/4] 

= 1 - j+0_/8 + O(max04); 
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so that, e.g., KX/IlKdl = cos[(6?+ 6-)/4] is independent of 6,- 6. As KX/IKL 
depends on both 6_?+ 6 and on 6 + - 6_, we tabulate no specific errors for K . We 
do conclude from (3.2b) and (3.2a) that (asymptotically) lKdl is the more accurate 
estimate of 1/R for this circular example, except when 06 and 6_ are quite 
disparate-more particularly, when 6+> (3 + 2x/_)6T. 

As for the difference approximations KA, (2.15), to the classic parametric expres- 
sion for the curvature, it suffices (since the numerator is K >, independent of X) to 
note that the denominator in (2.15) is given in terms of 

(3.2c) d,:= I(U++ U-)/2 + pi(U+- U_)12 = 1 +(4M,2 _ 1)sin2[(6 + 6-)/4] 

-1 +(4M2 _ 1)(?++ 6_)2/16 + O(max6') 

(for this, use (3.1)). Thus d, > 1 (and hence IKAl < JKJI) only when Itt > 1/2 (i.e., 
only when U+ and U_ are extrapolated). In particular, using a forward or backward 
difference quotient (but not both) in the denominator gives the value d2 l2 = 1 
(and hence, the value K X for the associated curvature). On the other hand, the value 

M cen of M associated with using the centered difference quotient Dcen in the 
denominator satisfies I Lcenl < 2, SO IK cIenl > I K X; cf. (2.16). 

Example 1 provides, for arbitrary data, an interpretation for both IK d I and KX in 
terms of the geometry of the associated interpolating circle: For this, replace the 
origin here with that circle's center, and R with r, (2.2a). We next use Example 1 in 
this way to help compare gross properties of our approximate curvatures. 

Some practical remarks may be in order about the numbers lKl := 1/r in (2.2), 

IKdl in (2.3), Kx in (2.10), and KX, in (2.15). All four are independent of translation 
and rotation of the plane. The magnitudes of all but IKl are affected by which one of 
three points one selects for the "middle" point X0, but no magnitude is affected by 
interchanging X+ with X. From (3.2b), and from (2.2) and (2.3), we see that 
(modulo collinearity) 

(3.3a) 0 < Ix< IKcI< Kd < d, 

with equality in the last if and only if A+t = A-t. As we have seen, IK XA < IKXI only 
for I[I > 2; otherwise, IZxj can exceed even IKdl; cf. (3.2c). 

The following individual bounds are sharp (and are of the order of the square root 
of corresponding bounds on the second difference quotient of bounded scalar 
functions) 

(3.3b) 0 <1I Kc (orjX 1) < 2/maxA+t while 0 <IKdI< 4/maxA+t; 

the first-for Kr -because 2r > max A +t on geometric grounds, the second using 
the triangle inequality on (2.3). lKJl = 0 and KX= 0 exactly when the points are 
collinear; for IKdI = 0 one also needs that X0 lie between the points X+. The above 
bound on JKd1 may be divided by v2 by imposing a natural gross restriction on the 
data; namely, that U+. U> 0. As will be seen, the asymptotics will have little 
meaning unless the dimensionless parameter K0 max A +t is relatively small. 

On the other hand, IKX,,I can become infinite: Take M = 0, A+t = A_t, let 

6+?+ 6 approach 2,r in (3.2c), and use (3.2b) and (2.2). This indicates that IK jI can 
grow unboundedly in related circumstances. For example, when using centered 
diffe-rinrinQ 9 16)6 in the denominator. it grows unboundedly in most cases of the 
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analogous situation, i.e., when IX,- X4 = o(IX+- X01). More specifically, con- 
sider the following geometrical situation: X0:= (At, 0), X = (0, 0), while 
X+:= At(xcx3). Then, lim )oIK~c l = Ic/41 independent of At. The limit is zero 
if X+= At(x,o(x3)), and is infinite if X+= At(o(y'13), y), y -> 0. However, 
according to (3.2c) or to the geometric argument below (2.15), the pair of values 

t = 0 and + + t L= 2 g is the only pair for which d, can vanish. 
It would be easy to consider more and more complex examples. For, given its 

(signed) curvature K(S) in terms of its arclength, a plane curve is determined by the 
natural (or intrinsic) equations (see, e.g., Struik [8, p. 26]) 

(3.4a) p = K; k = COS4, j=sin+; 

that is to say, 

?(S) - (o = f K(a) do; and, with p := 1/K, 

(3.4b) x - = f cos d d= f p cos ) dC 

-yo= sind do- f psin d4. 
So 0o 

(The three integration constants 4o, xo, and yo rotate and translate the curve; so 
translates the arclength parameter. Thus, all four of these vanished in the special 
coordinate system used to establish (2.5).) 

So, it is natural to develop a sequence of local approximants to a plane curve, 
beginning with lines (K 0), circles (K constant HL 0), followed by curves with 
K(S) Kos, etc. (This last mentioned is J. Bernoulli's clothoid (Cornu's spiral) (see, 
e.g., Struik [8, p. 201]); interpolating spirals could succeed interpolating circles when 
using four neighboring points, instead of three, to approximate sufficiently smooth 
curves.) The sequence could provide the basis for more examples. 

Nevertheless, we record instead certain asymptotic expansions of our curvature 
estimates. Thus, using (3.4) and/or extending (2.9) to obtain y0 = ko- KO and 
defining 

(3.5a) 81 :=A s - As 82 := S2 S S + _ S2 

(3.5b) s:= so + 81/3, 82b:= A+S2?A _s + S2 

(here one could equally well have used A + t, by (2.5)), one finds that 

(3.5C) I X/ S I IKOI[1 + 3K + 128 2 12 ]+3)a/\+3 (3.5c) A2X/AS2 = I K( | +1 + K36 + - 
KO)\2a +1 ), [ 3K0 18 12K0 j+aA~ 

(3.5d) =JK() (I[I + 36K 0) 2b] ? O(max A +s3), 

+1 K128 
2 

kO32a A A2X/At2| (=1 Kd|) |Ko|[1 + 3K 32 I+ 2K ] 

(3.5e) +O(maxA S3) 

(3.5f) =K(S) I 1 + K3 + 36K] + O(maxA +s), 
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(3.5g) IKCI= IKd1[1 - Ko 1/32] + O(maxA s ), and 

(3.5h) K= K [1 + K08 1 k0823a KA +sAS + O(maxA S3) 

(3.5i) = K(s )[1 + 3612 -8] + O(max +s) 

(if X is, say, a C5 curve). Taking the special case K(S) -- K, each expansion here is 
easily seen to be compatible with that associated with Example 1. The only 
uniformly valid expressions for Kc := sgn(Kx) IKCI and Kd := sgn(K x) IKd are the 
obvious combinations using the discontinuous "sgn" function; no polynomial ex- 
pression can suffice if K(S) changes sign in the interval Isl I max A\ +s. Of course, 
from (2.15) and (3.2c), we also have the expansion 

(3.6) KXH = Kxjl + Ko3(1 - 436K)(As + A )2/32] + O(max A +s). 

As an additional check on the expansions (3.5), we have used them to predict 
relative errors for all the combinations present in 

Example 2. su = 0 = = = y0; K(S) cubic with 

(3.7a) K0 = 3/2, ? 13/7; KO =- 3 + 0 + A 3 

kO = 0, 77/2, ? 7T; KO = 0O + 11; 

(3.7b) A +s = pA _s, Ko jA _S = 2q, p = 1,3/2,5/2, q = 5,8,11 

(Cray XMP; a-integrals (3.4b) calculated using the SLATEC program library's 
adaptive 7-point Newton-Cotes quadrature program QNC79 with relative error 
request set to 10 -12). We report the results in terms of how accurately the principal 
parts of (3.5c)-(3.5i) predict errors in these cases. That is to say, the nonconstant, 
explicitly given polynomial part P of (3.5x) (polynomial in A +s) may be regarded as 
a prediction of the error in the left-hand side (as an estimate of the constant term in 
the right); the number we shall discuss is the error in this prediction as a percent of 
the error actually incurred. Specifically: (3.5x) has the form A = B(1 + P) + 
O(max A +S3); we compute 100IBP/(A - B)I and call it the "accuracy of the 
predicted error." 

For all cases considered with IKOIA_-S = 2-11, the accuracy of the predicted error 
was better than 4.8%. It was better than 0.6% for all cases with A+s = A_s; orders 
of magnitude better for the smaller IKOIA-S 'S. Otherwise, the accuracy of the 
predicted error was better than 6.7% (p = 1.5) and 57% (p = 2.5) for IKOIAs-s = 2-8; 
and better than 98% for p = 1.5 and IKOIA S = 2-5. These maximal values occurred 
for cases in which a sign change or a doubling of one of the derivatives results in the 
division of the accuracy of the predicted error (and multiplication of the actual 
error) by a factor of five or so. That is to say, we had a hard time predicting when it 
involved cancellation. This was most apparent for IKOIA S = 2- and p = 2.5, when 
in twelve of the 300 cases we predicted errors (for either (3.5d) or (3.5f)) which were 
more than a factor of two larger than actually observed. The worst of the twelve 
were the two cases KO = +13/7, KO= ? , kO = ?_g/2, K0 = 0; the magnitude 
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of the actual error in (3.5f) was about 3 X 10 5% while the magnitude of the 
predicted error was about 4 x 10-4%. On the other hand, with IkOI = S instead, the 
actual error was .0066% and the prediction, .0061%. We point out that the case 

IKOf/A S = 2-, p = 5/2, and constant K K 1 corresponds to 0 1. 8, O0 4.5 in 
Example 1 above. 

We take these results as supporting expansions (3.5), emphasizing that we are not 
reporting here the accuracies of Kd, K, and Kx as curvatures, but our ability to 
predict that accuracy. (In fact, the left-hand sides of (3.5c), (3.5e), and (3.5h) 
estimated Ko to within 1.6%, with figures of better than .06% being associated with 
the remaining, second-order accurate formulae). 

In practice, it is unusual to use asymptotic error estimates to predict actual errors; 
they are more often used to provide a conservative guess of an appropriate mesh 
size. In this connection, we report the following results using the 300 parameter 
values (3.7a) of Example 2. We fix p, (3.7b). We tabulate below the largest 
nonnegative integer q for which, with 1K0IA - s = 2- q, the magnitude of the noncon- 
stant polynomial part P of (3.5x) overestimated the magnitude of the actual error by 
more than a factor of two for at least one of the 300 cases. (In this exercise, IP 
exceeded the size of the constant term for some case only for (3.5c) and (3.5h), 
p = 2.5, IKOIJAS = 1.) For the second subcolumn we used, instead of P itself, the 
number obtained by replacing each term in P-as expressed in (3.5x)-with its 
absolute value. 

Expansion (3.5c) (3. d) (3.5e) (3.5f) (3.5g) (3.5h) (3.5i) 

p =l 1. I 1 1 1 
p = 1.5 3 1 4 4 2 2 3 3 - - I - 0- 
p=2.5 2 0 5 5 2 2 6 3 0 0 2 - 3 - 

For example, the content of the (3,7) entry 3 - is the following. For p = 2.5 in 
(3.7b): The nonconstant polynomial part P of (3.5i) was no larger than twice the 
actual error for IKOIA s smaller than 2-3 (for all parameter values (3.7a)). But this 
failed to be so for 2-3 (for at least one set of the parameters). The blank second 
column means that if one summed instead the magnitude of P's terms, then the 
resulting number never overestimated the actual error by more than a factor of two 
(at least for IKo IA-s a nonpositive power of two). 

According to (3.5), for small errors one asks that the dimensionless parameters 
KL A t be small while the dimensionless parameters k0/K2 and k0/K3 are of 
reasonable size (= 1 in the calculations above). In their range of asymptotic validity, 
Kd, (3.5f), could be substituted into (3.5g), leading to: K. estimates K(S) better than 
Kd does when KO > O or A+s = As; but if kO < 0, then there is a range of 31's 
(3.5a), for which Kd yields the more accurate approximation. In the same asymptotic 
fashion, but using (3.5i), K, estimates K(S) better than KX does when kO < 0; but if 
K0 > 0, then there is a range of values K0A _s for which K X yields the more accurate 
approximation. The asymptotics (3.5) should prove useful in other ways until 
overwhelmed by some of the unspecified cubic terms. Although our calculations 
above indicate that this phenomenon can begin before one might have anticipated it 
based on Example 1, it is our view that the variety of these unspecified terms 
precludes presentation of any additional, generally useful, sample calculations. 
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4. A Broken Line Extension. Suppose, now, we are given a sequence 
(X:= X(si))Nif+0 of points along a sufficiently smooth (C4) but otherwise unknown 
plane curve X(s), s being arclength on X, s l1 < S,, all relevant i. Using successive 
triples of neighbors in this sequence for the triple X_, X0, X+ of Section 2, we 
compute a sequence of curvature estimates (K-<)L 1. Using (2.12) or (2.15), there is a 
corresponding sequence i, for which each associated K, is a second-order accurate 
approximation of X's curvature K at ti. In this section we compose two (continuous) 
broken line interpolants in order to construct a broken line K(s) which approximates 
K(S) with second-order accuracy. We describe below the use of K to estimate K at 
any given fraction a of the distance between Si - 1 and si. Each such use will amount 
to applying a complicated difference approximation involving four adjacent Xj's 
surrounding the desired point. Next, we show that another continuous approxima- 
tion, based on the magnitude of a local cubic interpolant's second derivative, has 
second-order accuracy, too. Finally, we reject a third possibility, the vector product 
of a local cubic interpolant's first and second derivatives, because we do not know 
how to easily extend it globally as a continuous function. 

The first broken line used in this construction is easy. Set 

lAti-1/2:= I Xi -XI-,I> ?; to:= ?, tl = EAtj-1/2; 
J=1 

(:ti=(1 + t, + ti+1)/3, A tA - 1/2 t-ti_1- 

Moreover, let i be KC (or Kd or Kx) based on the triple X>1, Xl and X>14 (cf. 
Section 2). Then define KW(t) to be the broken line interpolant of (t,, Ki=L1, so that K- 

is linear on each [ - - , ?-] with K(t-,) = K-, each i. (The t-axis, here, is simply the 
broken line interpolant of the Xi, straightened out; each t, corresponds to Xl, and 
each t, to the point where the number K- is a second-order accurate curvature 
estimate.) 

To convert K- to curvature as a function of s along the unknown curve X we need 
a map T: s -> t; one would like T to be continuous, strictly monotone, and to map 
each sI onto ti. A natural map having these properties is the broken line interpolat- 
ing (se, tl)N=+YI. With this choice, define 

K(S) = K(TS)) 

Then K, too, is continuous and piecewise linear; it is defined on [s&, SN], where 

Si:= T- (ti) (so we set As,-1/2 = Si-J; 

and K breaks slope not only at each sJ in that interval but also at each &-* (We 
observe below that K may be extrapolated to be defined on all of [sO, SN A]-) Note 
that, because T is strictly monotone, the points (s-i) interlace the (si) in exactly the 
same way that the (i) interlace the (ti)-a characteristic not necessarily shared by 
the collection of averages (SiI + Si + s,?1)/3. 

The approximation K is easier to use than to describe. Thus, suppose one wants to 
estimate the curvature at a fraction a (0 < a < 1) of the distance along the curve 
from Xi-, to Xl, i.e., from s,_ to si. One first computes t,:= ta1_ + aAti-1/2 (ta 

being T of the appropriate s). Next, one picks an interval [t?- , t?] which contains 
ta. (If a = 1/2, then j = i; but if a < 2, j may be i or i - 1; and j may be i or 
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i 1 otherwise.) Next, one finds the relative position /3 of to in [ t-1k, : /3= 
(ta - t-1)/lAt-11/2. Then the curvature estimate is 

(4.1) Ka:= (1 - I3)K J1 + PK J. 

To analyze the second-order accuracy of K we begin with the following remark: 

(4.2) T(s) -tl~ = s - s, + O(A~t17i3 2) for s in [s,-1, s,]. 
For 

T(s) = ti-1 +(s - S-1)4t-1/2/si-1/2 = ti-I +(S - S,-)[1 + 0 

the last by (2.5). We conclude that Ki, a second-order estimate of K(t,) by (2.12) or 
(2.15), also satisfies 

K- K(S') I = O(max As7?12). 

Let K(s) be the linear interpolant of (S',_ K,_) and (S,, K-,). Then, on [&,s- ]j 

K differs from the linear interpolant of (-i1, K(&,,)) and (K,, K(&,)) by 
O(max10l A~s+ 1/2+j), since the difference is linear and satisfies this inequality at 
the two endpoints. The latter interpolant is within O( SA-1/2) of K on [K,1, K,] in 
the usual fashion; hence, 

IK - KI(S2)= = O(A4,21/2), S in[s` 1,S`; 

the last since 

(4 3) tAsi-1/2/Ati-1/2 = 1 + O(AtU172) and 

(4.3) 1-1/2)~= 1 
A S-i - 1/2/ ti - 1/2 = I + O ( A 'i - 1/2) 

by (2.5) and (4.2). 
If IK - KI satisfies this same inequality, then we shall have proved the error 

estimate we seek, namely that 

(4.4) |K - K|(S) = O(AF_1/2) S in [&,1, S& 

But, if T is the broken line interpolant of (S-, if)X'1, then K, like K, is a composition: 
K(s) = k-(T(s)). Thus, on [&i1, s-] (which is mapped by both T and Tonto [F,1, f]), 

K(S) - K(S) = K; 1/2[T(s) - (s)], 

where -1/2 is the (constant) slope of K- on (t1,, t1) (and is hence bounded, being a 
first-order approximation to, say, k(s,)). And, it is not difficult, using (4.3), to verify 
that, in fact, 

T(s) - T(s) = 0(At-1U 2) for s in [S-1, s 

Finally, K may be extrapolated from [s-1, SNI to [ SN?1]: For points s in [s0, &-) 
the corresponding /3 in (4.1) satisfies 

0 < -/3 < t-/(t2 -F) = (tl + t2)/t3 < 2, 

soB is uniformly bounded. Consequently O(At32/2) accuracy here is not destroyed in 
the process-but recall that the endpoint error in extrapolating the linear inter- 
polant of a quadratic, over an adjacent interval twice as long, is 52 _ 12 = 24 times 
the maximum error incurred on the original interval. 
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As an aside for readers interested in piecewise polynomial approximation of the 
second derivative y" of a scalar function: The broken line interpolant, correspond- 
ing to what we did above, of (t-i, (My/At'2),)' is locally second-order accurate. 
Moreover, it is exact, for cubic functions y(t), at each ti. Consequently, it coincides, 
on [ij1, ij], with the second derivative of the cubic interpolant of the (to, y,)4. 
That is to say, the (linear) second derivatives of the cubic interpolants of two 
successive quadruples (ti, yi)jii2 and (ti, yi)ji2 cross at 1j (whether y is cubic or 
not), since their common value at that point is (A2y/At2)1. The congruent dual role 
of the broken line interpolant of translations of the nth difference quotient, at the 
corresponding averages of the n + 1 points in its stencil (where it exactly yields the 
nth derivative of (n + 1)th degree polynomial functions according to Kreiss et al. [3, 
p. 538]), is now equally clear. 

This suggests another continuous (but not piecewise linear) approximation to the 
curvature: namely, the magnitude of the second derivative of the local vector cubic 
interpolant (in secant length), evaluated at ta above, (4.1). Specifically, in the 
context of (4.1), we mean 

(4.5) ka := - (1 _ 1)(A2X/At2)j11 + (A2X/At2))J| 

It, too, is independent of translation and rotation. And, according to the previous 
paragraph, it is continuous at its breakpoints (&9). We show now that it is also 
second-order accurate, because 

(4.6) kal/lKI = IKaI/K1-(1/2)1(1 - 13)K2A j2[1 + o(i)]; 

here K is any value of K(t) on [ ij4, and KI,, (4.1), is that based on Kd, (2.12). For 
this we use the identity 

(bc - ad)2 (a2 + b2)(c2 + d2) -(ac + bd)2 

to verify the identity 

2/3(1 - f)(bc - ad)2 

_(a2 b2 c2+d2 + ac + bd){(1 -3) a2?b2?+3 d2]A 

-[((1 - /)a + /C)2 +((1 -3)b + 13d)2]}. 

Then, using Xi = (x,, yi), i =j - 2, j - 1, j, j + 1, set 

a:= (A2X/At2)-1, b:= (A2y/At2)1_1, c:= (A2x/At2)j, d:= (A2y/At2)1, 

so that 

a + b = (Kd)j-1, /c2 + d2 = (K), 

(Kd)J-1(Kd)j + ac + bd = 2K2[1 + o(1)], 

bc - adl= (xy-k)((ij-1 + 1)/2) |At-1/2[1 + o(1)] 

=IKI At -1/2[1 + o(1)], 

the last using (3.4). And (4.6) follows. 
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A third local approximation to the curvature function would be given by the 
vector product of the first derivative of the local (vector) cubic interpolant (in secant 
distance) with its second derivative. Second-order accuracy seems certain here; but 
the way to switch continuously from one such local approximation to the next is not 
clear. As we have seen, given five stencil points, the second derivative of the cubic 
interpolant associated with the left four agrees with that of the right four when both 
are evaluated at the average of the middle three points. So, that location is the 
natural point to consider for switching from one vector product to the other. We 
now show that if X(t) is the (vector) cubic interpolant of four vectors X1,..., X4 at 
the secant distances t1, . .. , t4 along their broken line interpolant, then X' x X", at 
the mean T of t1, t2, and t3, depends upon X4 - X3 in general (thereby showing that 
the middle mean will not do, in general, as a point to switch vector products). For 
this it suffices to demonstrate that (aL/at)(X4 X X") at X depends nontrivially 
upon X4 - X3; here L(t; t1, t2, t3, t4) is the Lagrange interpolation basis function, 
associated with the data at t4, for cubic interpolation at t,, . . ., t4: 

L (t; t1 I t2 It3 I t4)=p(t; t1, t2, 01)P(t4; t~l t2, tA) 

p(t; t~l t2, t3) = (t -tl)(t -t2)(t -tA) T := (tl + t2 + 03/3. 

But 

aL/at T - [(tlt2 + tlt3 + t2t3) - (t2 + t2 + t2)]/[3p(t4; t1l t2 t3)] 

=:f (I X4 
- 

X3 1, X, x2, X3) * f2 (XI, X2, X3) 

(this to be contrasted with the now unsurprising fact that a 2L/t2 0 0); while 

X4 x x"T = X3 X A2X/At2 + (X4 - X3) X A2X/At2 

:f3 (X4 
- 

X3, X1, x2, X3) 
f 
f4( X4 

- 
X3 1, X1, X2, X3) 

(the second difference quotient here being that based on t1, t2, and t3). 

Since the difference between the two successive vector products is a cubic 
polynomial in the distance t along the broken line interpolant/extrapolant of the 
associated five points in the plane, it has at least one zero. Each such zero is a point 
at which one could switch continuously from one local curvature estimate to the 
next. But, we have not investigated the conditions under which (a) this zero (or 
zeros) lies between the five points, and (b) as one moves along the data from one 
quintuple to the next overlapping quintuple, the next zero comes after the previous 
one on the broken line joining the six points. 

We discuss briefly the hydrodynamic context. The force due to surface tension 
acts continuously along a smooth boundary between two fluids. But this boundary is 
typically specified computationally only by its mesh points, and an apt approximate 
boundary is their broken line interpolant. For this it is natural to apply the force to 
the midpoint of each segment, so we require a curvature estimate at each midpoint 
and hence invoke the estimate (4.1) with a = 4. This particular value of a means the 
estimate will amount to the use of a complex difference formula involving those four 
neighbors of this midpoint which are its four natural nodal neighbors in the curve. 
As we have seen, the estimate is independent of rigid motion of the plane and is 
locally second-order accurate (in terms of the three mesh sizes associated with the 
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four neighbors used). We hasten to point out, though, that the story is far from 
complete for this application of our curvature estimates. For: (1) although our work 
can contribute to hydrodynamic schemes having second-order truncation error, it 
does so using a stencil which is not as compact as that of more elementary schemes, 
and this could lead to different stability problems. Moreover, (2) although second- 
order truncation suffices for second-order convergence (assuming stability and a 
linear problem), it is not necessary in some contexts; see, e.g., Kreiss et al. [3] for the 
context of ordinary differential equations (with some references to partial differen- 
tial equations), or the finite element literature concerning "lumped mass" schemes. 

Acknowledgment. We acknowledge fruitful conversation with J. Dukowicz and A. 
White. 

T-Division 
University of California 
Los Alamos National Laboratory 
Los Alamos, New Mexico 87545 

1. J. D. BURNS, Joining Arbitrary Curves by Segments of Cornu Spirals, Tech Memo # L-157, EG & G 
Inc., 1966, 21pp. 

2. J. C. FERGUSON, Shape Preserving Parametric Cubic Curve Interpolation, Ph.D. Thesis, University of 
New Mexico, Albuquerque, 1984, 190pp. 

3. H.- 0. KREISS, T. A. MANTEUFFEL, B. SWARTZ, B. WENDROFF & A. B. WHITE, "Supra-convergent 
schemes on irregular grids," Math. Comp., v. 47, 1986, pp. 537-554. 

4. R. J. Y. MCLEOD & P. H. TODD, "Intrinsic grometry and curvature estimation from noisy data," 
draft preprint, 1985. 

5. A. W. NUTBOURNE, P. M. McLELLAN & R. M. L. KENSIT, "Curvature profiles for plane curves," 
Comput.-Aided Des., v. 7, 1972, pp. 176-184. 

6. T. K. PAL, "Intrinsic spline curve with local control," Comput.-Aided Des., v. 10, 1977, pp. 19-29. 
7. A. SCHECHTER, "Linear blending of curvature profiles," Comput.-Aided Des., v. 10, 1978, pp. 

101-109. 
8. D. J. STRUIK, Lectures on Classical Differential Geometry, Addison-Wesley, Cambridge, Mass., 1950 

(or 2nd ed., 1961). 


