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The Faber Polynomials for Circular Sectors 

By John P. Coleman and Russell A. Smith 

Abstract. The Faber polynomials for a region of the complex plane, which are of interest as a 
basis for polynomial approximation of analytic functions, are determined by a conformal 
mapping of the complement of that region to the complement of the unit disc. We derive this 
conformal mapping for a circular sector { Z; z I < 1, jarg zI < S/a}, where a > 1, and obtain 
a recurrence relation for the coefficients of its Laurent expansion about the point at infinity. 
We discuss the computation of the coefficients of the Faber polynomials of degree 1 to 15, 
which are tabulated here for sectors of half-angle 50, 10?, 15?, 300, 450, and 900, and we give 
explicit expressions, in terms of a, for the polynomials of degree < 3. The norms of Faber 
polynomials are tabulated and are compared with those of the Chebyshev polynomials for the 
same regions. 

1. Introduction. In recent years there has been a growing awareness of the 
potential usefulness of the Faber polynomials as a basis for polynomial and rational 
approximations in the complex plane. It has been shown [4], [3] that, under mild 
conditions, a truncated Faber series is a near-minimax polynomial approximation 
for an analytic function, on the region to which it applies. However, practical 
exploitation of this result has been hampered by a lack of knowledge of Faber 
polynomials, except for a few specific regions. In particular, for circular sectors, 
which provide a convenient subdivision of the plane, the Faber polynomials were 
hitherto unknown. 

For any closed bounded continuum D in the complex plane there is a function 4, 
such that 

(1) lim - 1, 
-I__ 00 Z 

which maps the complement of D in the extended z-plane conformally onto { w: 

IwI > p }, the complement of a closed disc of radius p (see, e.g., Markushevich [10, v. 
3, p. 104]). The number p is called the transfinite diameter of D. The function ( has 
a Laurent expansion 

+(z) = z + ao + 
a, 

+ 

about the point at infinity. The Faber polynomial of degree n is obtained by deleting 
all negative powers of z from the corresponding Laurent expansion of [4(z)]). For 
the unit disc the Faber polynomial of degree n is z1 and the corresponding Faber 
series for an analytic function is its Taylor series about the origin. Multiples of the 
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Chebyshev polynomials are the Faber polynomials for an ellipse with foci at (1, 0), 
and, in particular, for the real interval [-1, 1]. 

Properties of the Faber polynomials and Faber series are described in the books of 
Markushevich [10, v. 3, pp. 104-112], Smirnov and Lebedev [12, Chapter 2] and 
Gaier [5, pp. 46-57], and in a survey article by Curtiss [2]. Markushevich [10] shows 
how Faber polynomials may be obtained for certain lemniscates, and Elliott [4] 
computed the coefficients of some Faber polynomials for the semidisc Izi < 1, 
Re z > 0 and for the square IRe zI < 1, tIm zI < 1. Ellacott [3] pointed out that the 
trapezium rule could be used to compute the coefficients of Faber polynomials when 
the mapping function 0 or its inverse is known. Thus the difficulty, for any 
particular region, lies in finding the appropriate conformal mapping. 

The main theoretical results of this paper are summarized in the following three 
theorems. 

THEOREM 1. The complement of the unit disc { w: jwI < 1} is mapped conformally 
onto the complement of the circular sector {z: Iz I < 1, jarg z I < 7/a}, with a > 1, by 

- [u +(u2 
_ 1)1/2]2 

4 (W) [+V + 2 1 
1)l/2]P(a) 

where 

u(w) = i(w - 1) v(w) = (2 -a 2)(w - 1)2 + 4wa2 

2awl/'2 a 2(W ? 1)2 

with a = a-1(2a - 1)1/2 andp(a) = (1 - a2)1/2. 

THEOREM 2. The transfinite diameter of the sector { z: Izi z 1 jarg zI < ST/a}, with 
a >? 1, is 

a2 

(2a 
- 

1)2-1/a 

THEOREM 3. The coefficients of the Laurent expansion 

+(W) = p(W + no + Pjw-, +**') 

of the function defined in Theorem 1 may be generated recursively. Given a and p as in 
the statement of Theorem 1, let x = 2p2 - 1, a0 = 1 and, for k >? 1, 

ak = Pk(X) + Pk.l(X), 

where P,,(x) is the Legendre polynomial of degree n. Then Po = a, and, for k >i 1, 
k-1 

(k + ')fk = ak+1 - Z /3pak-.,. 
V==0 

Theorems 1 and 2 are proved in Section 2, and Theorem 3 in Section 3. The 
numerical computation of coefficients of Faber polynomials for circular sectors is 
described in detail in Section 4, and in Section 5 the relationship of the norms of 
Faber and Chebyshev polynomials for circular sectors is discussed. Tables of 
coefficients of Faber polynomials, of degree up to 15, for selected sectors can be 
found in the, Smnniements section of this issue. 
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where p(a) = (1 - a2)1/2. This gives 40(z) = U(z)V(z)P(a), where 

(4) U(z) - -a2[(z 
- 1)1/2 +(Z - 1 + 2a2)1/2]2, 

(5) V(z) = (z + l)a2[(z -1 + 2a2)l/2 ?(z - l)1/2p(a)]-2 

It is easily seen that, in the slit plane C - J, the functions U(z), V(z) are analytic 
and single-valued with V(z) = 0. Then V(z)P(a) is analytic in C - J, though it 
might not be single-valued because C - J is not simply-connected. However, 
V(z)p(a) can only have branch points where V(z) = 0, and this does not happen at 

so because (5) shows that V(z) -> a2[1 + p(a)]-2 as z -> ox. Hence V(z)P(a) is 

single-valued in some neighborhood of ox and therefore single-valued in the whole 
of C - J by the monodromy theorem (see [10, v. 3, p. 269]). Thus 40(z) is analytic 
and single-valued in C - J. It is easily seen that the part of K which lies in C - J is 
mapped by 40(z) onto the whole of the negative real axis. That is, 40(z) maps 
C - J conformally onto C - Sh. 

As shown above, C - A is mapped conformally onto C - Sh by 

p(W) = 4o(4(w' + W)) = U(,(W-, + W))V(I(W + W)) 

For computational convenience this can be written as 

(6) (W) ~~~~- [U 
?(U2 - 

1)1/2] 2 

(6) 4'(w) = [v +(V 1)-/2] 
p(a) 

where 

(7) u(w) - i(w - 1) , v(w) = (2 -a 2)(w- 1)2 + 4wa2 

2awl/2 a2(W + 1)2 

The appropriate branch for the square root (U2 _ 1)1/2 is that for which 

u- (u2 _ 1)l/2 _ 1 asu - +oo. 

Since (4) gives z-'U(z) -4 2a-2 as z -> 00, it follows that 

4(W) 4'0(z) - 2 a]pa 
(8) lim = lim 2[a = p. 

Now define 4(z) = p4-'(z) where w = 4-'(z) denotes the inverse mapping of 

z = 4(w). Then 4(z) maps C - Sh conformally onto the complement of the disc 
{ w: IwI < p }. The number p is therefore the transfinite diameter of the sector Sh 

because (8) ensures that 4(z) satisfies (1). If the angle of the sector Sh is denoted by 
2T/a, then 1 < a = r/2h and (3) gives a = a- 1(2a - 1)1/2. Then p(a) = 1 - 

and (8) gives 

a2 
( ) P ~~~~~~~(2a- )2-1/a 

Some checks which confirm the accuracy of (6) and (9) will now be discussed. 
When a -->1, (6) gives +(w) -->w and (9) gives p -->1. These are the expected limits 
because Sh ---> as a -- 1. When a -> + x0, (6) gives 4(w) -* (w + 1)2/4w and (9) 
gives p -- 1/4. These are the expected limits because Sh tends to the interval [0, 1] of 
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the real axis when a -> + ox. When a = 2, (9) gives p = 4/3C3 and (6) gives 

= ) [+ (U 2 1)1/2] 2[V -(v2 1)1/2]1/2 

[W 1 +(W2 + W + 1)1/2]2[1 - w + 2(w2 + w + 1)1/2] 

(10) - w(w + 1)3r 

2(w3 -1) + 3(W2 _ w) + 2(w2 + w + 1)3/2 

w(w + 1)31Y 

In this case, Sh is the unit semidisc for which Elliott [4] obtained the transfinite 
diameter p = 4/31Y by using a conformal mapping for which the appropriate 
inverse is 

{e(w) = i(b3/2 + C3/2)/(b3/2 _ 
C3-2, 

where b = w + e'7/3, c = w + e-'1/3. This can be written as 

(w) = i(b3/2 + c3/2)2 - i[b3 + C3 + 2(bc)3/2] 

Since b3-c3 = iw(w + 1)3V, bc=1 + W + W2 and b3 + c3 =2(w3-1)+ 

3(w2 - w), this and (10) give je(w)= 4(w). That is, Elliott [4] agrees with the 

above calculations. 

3. The Laurent Expansion of 4 (w) About the Point at Infinity. The function 4 (w), 

given by Eq. (6), has the Laurent expansion 

(11) A(w) = p(w + go + Pjw-1 + ** 

about the point at infinity. The presence of the coefficients of this expansion in a 
recurrence relation for the Faber polynomials (Eq. (17) below) provides the motiva- 

tion for the derivation of a recurrence relation from which { Pk, } may be calculated. 

Differentiation of (6) and (7) gives 

dw VU ) 2 -1 vz2-I J 

with 

U=i(l + W) 8p 2(W _1) 

4aw vw' a2(w + 1)3 

and, since 

- 
2 2pu u2- V 2U2 

this finally reduces to 

(12) d4d - p(W) - 4p w2 
/2 

(12) ~~~dw w [ (w +1)21 

It is now convenient to let = w-1 and T(D) = {(w), so that (12) becomes 

(13) I(D) = -(1 - 2xd + 2)-1/2(I + ) dT 
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where x = 2p2 - 1. Then -1 < x < 1 because p = 1 - a- and a > 1. For 1'I < 1, 
00 

(1 - 2xD + Y2)1/ = (X) 
n =O 

where P, (x) is the Legendre polynomial of degree n, and (13) gives 

(14) *(W) [ [ ak k d' j 
where a0 = 1 and, for k > 1, 

(15) ak = Pk(X) + Pk-l(X)) 

From (11), 

P= + L pp~p v=O 

for 1D1 < 1. By substituting this in (14) and equating the coefficients of Dk on both 
sides, we find that Po0 = a, and, for k > 1, 

k-i 

(16) (k + 1)3k = ak+l 
- Y. ak-p- 

V=0 

The Legendre polynomials, and hence the coefficients ak, may be generated by using 
the recurrence relation 

(n + 1)Pn +(x) -(2n + 1)xPn(x) + nPn-1(x) = 0. 

4. Computational Details. The Faber polynomials on satisfy the recurrence relation 
n-1 

(17) 1,7+1(z) = ZOn(Z) Y, bk'fn-k(Z) -(1 + n)bn, n > 0 
k=O 

(see, e.g., Ellacott [3]), with bk = tkPk+P, where p is the transfinite diameter of the 
region of interest and Pk is a coefficient of the Laurent expansion (11). In particular, 
for a sector of half-angle /la, Eq. (15) and the recurrence relation (16) give 

a1=1 + x, a2 =(1 + x)(3x-1), a3 = -(1 + x)(5x2-2x-1), 

(18) bo = p(1 + x), b1 = p2(1 + x)(3x - 1), 

b2 = -p3(1 - X2)(7X + 1)/12 

with x = 1 - 2a2 and a = a -1(2 a - 1)1/2. It follows that the Faber polynomials of 

degree < 3 are 

(19a) 00(z) = 1, 

(19b) 0,1(z) = z - 2p(1 - a2), 

(19c) p2(Z) = z2 - 4p(1 - a2)Z + 2p2(1 - a4), 

and 

(19d) '03 (Z) = Z3 - 6p(1 - a2)z2 + 3p2(1 - a2)(3 - a2)z 

(19d) ~~~- 2P3(I - a2)(2a 4 + 1). 

Faber polynomials of higher degree could also be generated in this way but we chose 
to base our computations on an alternative numerical method which is more 
versatile and permits independent checks on its accuracy. 
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The coefficients of a Faber polynomial of degree n, 

On (Z) = k ) 
k=O 

may be expressed in a number of ways in terms of the relevant mapping (see, e.g., 
Ellacott [3]). In particular, 

pf n w n(d~~bdw) 

(20) dI wI=R [ p(w)] w 

for any R > 1. This differs by a factor of pn from the expression quoted by Ellacott 
[3] because in his notation 4 maps the complement of the disc { w: IwI < p }, rather 
than that of the unit disc, onto the region of interest in the z-plane. 

Equation (12) gives the derivative of 4 in a convenient form and, when this is 
used, Eq. (20) becomes 

(21) C(-) = (2P ) | 2, Fk(Re'0) exp(inO) dA, 

where 

(22) F k( w) = - 
i 

/_____ 

Since the integrand in (21) is a periodic function which is integrated over a period, 
C("7) may be computed efficiently by the trapezium rule, which gives 

(23) ~~~~(Rp )n N-1 (23) C N ( Fk(R exp(ijm)) exp(inOm) 
k~~~~ N 

with 0rn = 2 7m/N, when N is the number of equal subintervals used. 
For a given value of n the coefficients Ckn) for k = 0, 1, . . ., n, may be calculated 

from (23) using a suitable value of N, but this is inefficient if more than one Faber 
polynomial is to be found. The values of w used in (22) depend on the choice of R 
and N but not on n. When R and N are chosen, the calculation of the coefficients 

k for Faber polynomials of degree n min to nmax, may be arranged as follows. 
1. Preliminary calculation. 

For m = O.1, ... , -1: 
Calculate Wm = R exp(iOm). 

Calculate and store 4(wm) and the numerator of the expression in 
(22), with w = wm. 

2. Computation of coefficients. 
For k = 0,1, ..., n: 
2.1. For m = O.1, .. IN-1: 

Calculate Fk(wm) from stored data. 
2.2. For n = n min, * * * I n max: 

Calculate Ckn) from (23). 
This arrangement, in which Ckn) is calculated for a given k and all relevant n, would 
allow the use of a Fast Fourier Transform algorithm for the step 2.2, as suggested by 
Lyness and Sande [9] for the evaluation of Taylor coefficients, and by Ellacott [3] in 
connection with another formula for the coefficients of Faber polynomials. 
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Properties of the Faber polynomials provide a number of ways of assessing the 
accuracy of computed coefficients. 

(i) By definition, the Faber polynomials are monic, so Cn(-)= 1 for each n. 
Computation of these coefficients provides a particularly valuable check, as it turns 
out that for any n the coefficient most sensitive to discretization error is Cn(n); Eq. 
(22) shows that this is to be expected since a higher power of z = 4(w) occurs in 
F,,(w) than in Fk(w) for k < n. 

(ii) It is readily seen that C(n) - - nb0, and the recurrence relation (17) gives 

C (n)2 = C(n -31) -boCn(n -1 _ 1 n= - 3 O 2I' 

and 

C(n) = C(n-1)-boCn(n - 
1)-bCn(4n32) - b 

Thus, knowing bo, b1 and b2 from (18) we have an alternative method of evaluating 
the coefficients of Zn- 1 z n- 2 and Z n - 3 in On( z). In particular, from the equations 
(19), the polynomials 41(z), +2(z) and +3(z) are known for any sector. 

(iii) For a sector of half-angle /la, with a rational, a2 is a rational number and, 
therefore, so also are the coefficients Po,,.. of the Laurent expansion (11). It 
follows from the recurrence relation (17) that C(n)pk- n is a rational number. 
Tabulation of this quantity provides a valuable visual check, particularly for a = 2 
or 4. 

(iv) The coefficients Cfn) are real but, since the sum in (23) involves complex 
quantities, the imaginary part of the computed result will not be exactly zero. 
However, this does not provide a useful check as the size of the imaginary part 
obtained gives no indication of the magnitude of the discretization error in the real 
part. 

Although in principle any R > 1 may be used in (23), the choice of R was found 
to have a very significant effect on the accuracy of the results obtained for a given 
N, the number of terms in the sum. A study of the results of our computations in 
double- and quadruple-precision leads to the following conclusions. 

(a) The discretization error is dramatically decreased by increasing N or R. With 
R = 3 and N = 128, the coefficients of the Faber polynomials of degree < 15, for 
the sectors investigated, were correct to all 25 digits printed by the quadruple-preci- 
sion program. However, for a sector of half-angle 50, with N = 128, the calculated 
value of the unit coefficient C(s5) is in error by 1.4 X 10-7 when R = 2, and 
calculations with R = 1.5 return the ridiculous value 1.4 x 109 instead of 1. For the 
same sector, with R = 3, the computed value of C(s5) is in error by 3.9 X 10- when 
N = 64, and is correct to more than 25 digits when N = 128, as already mentioned, 
but becomes 1.4 x 103 when N = 32; thus a four-fold increase in N reduces the 
error in this case by more than 28 orders of magnitude. 

(b) For any given sector, and given values of N and R, the discretization error 
increases with the degree of the polynomial, and for a polynomial of degree n it is 
greatest for the unit coefficient Cn(n). For example, when R = 3 and N = 32, 
although C(s5) for the sector of half-angle 5? is returned as 1.4 x 103, the error in 
the calculated value of C005) is merely 9 x 10-24, making that coefficient correct to 
15 significant digits; the corresponding errors in the unit coefficients C"0), Cs(5) and 
C(1) are 4.9 X 10-2, 7.9 X 10-7, and 4.8 x 10 -13, respectively. 
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(c) The discretization error increases, for given values of N and R, as the angle of 
the sector is decreased. When N = 64 and R = 3, for example, the discretization 
errors in the computed values of C(5) for sectors of half-angle 50, 10?, 30? and 90? 
are, respectively, 3.9 x 10-7, 9.4 x 10-8, 2.9 x> 10-10, and 2.3 x 1018. 

(d) As R is increased, the image, under the mapping 4, of the circle I = R 
becomes more nearly circular. As this happens, rounding error becomes increasingly 
apparent in double-precision calculations, and it was evidence of this rounding error 
which prompted the quadruple-precision calculations. For any given sector the 
rounding error increases with increasing R, and for any given R it is greater for the 
unit semidisc than for any smaller sector, which is consistent with the fact that the 
images of IwI = R become nearly circular more rapidly for the unit semidisc than 
for smaller sectors. For example, for the unit semidisc, the rounding error in the 
value of C(15,) calculated in double-precision with N = 128, is 2.5 x 10-10 when 
R = 4 and 1.0 X 10-14 when R = 2; the corresponding errors in Co15) for a sector 
of half-angle 30? are 2.2 x 10-14 and 1.0 x 10-17, respectively. 

5. The Faber Polynomials for Circular Sectors. A supplement to this paper 
contains the coefficients of the Faber polynomials, of degree 1 to 15, for symmetric 
sectors of the unit disc of half-angle 50, 10?, 15?, 30?, 450 and 90?. The polynomials 
for sectors of radius other than 1, and for angular ranges of the form 0 < arg z < 0, 
may be obtained, if required, by simple changes of variable. The tabulated coeffi- 
cients are believed to be correct to the number of figures quoted, having been 
obtained by rounding to 14 decimal places results which all our tests show to be 
accurate to 25 decimal digits. Comparison with previous work is possible only in the 
case of the semidisc for which Elliott [4] computed the coefficients of the Faber 
polynomials of degree < 9. The numbers in Table 6 of the supplement agree with 
Elliott's except that there is a misprint in his C(9) and there is an occasional 
discrepancy of one unit in the last decimal place which he quotes. 

Coleman [1] used the Faber polynomials tabulated here, in conjunction with the 
Lanczos 7-method, to obtain near-minimax polynomial approximations for analytic 
functions on circular sectors. In that work a Faber polynomial appears as a 
perturbation term in a differential equation, and consequently the maximum value 
of the modulus of the polynomial is of interest. In particular, it is useful to have a 
comparison with the Chebyshev polynomial (T-polynomial) of degree n, which is the 
monic polynomial 

T7,(z) = z' + a,- nz-I + an-2Zn-2 + +ao 

of smallest maximum modulus on the sector of interest. 
An upper bound on the norm of a Faber polynomial, 

110II I =o Max I4n(z) |, 

where D = {z: IzI < 1, JargzI < /la}, with a > 2, may be obtained from the work 
of Pommerenke [11]. His Satz 3, expressed in our notation, shows that for a convex 
region of transfinite diameter p, 

(24) p7 < || On || < 2p 
Furthermore, if 43 is the largest exterior angle of the region, then as n -> ox 
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for our sector D, /3 = max(2(1 - a 1), 3/2}. As a -* o, so that the sector becomes 
the interval [0, 1], the upper bound in (24) is attained, as then p = 1/4, the Faber 
polynomial of degree n is a multiple of a shifted Chebyshev polynomial 

am, (x) = 212 n1,*(x) 

and maxXe[0 1T17*(x)I = 1. The values of p-"'1IInI given in Table 1 show that for 
each of the sectors considered, this quantity is nearly constant but no obvious 
pattern is evident in its approach to the limit given by (25). 

Table 2, which is based on the work of Grothkopf and Opfer [7], shows p-n jljT 
for the same sectors, with n < 6; results for T-polynomials of higher degree are not 
available. In the range of this table, II4nIl < 1.51ITnil. Furthermore, since it is known 
(Walsh [13, p. 3201) that 1jTjlj > p-n, we can conclude from (24) that for all n, 

I I by 11 A 211 Tn II. 

To use the Faber polynomials in the Lanczos T-method, it is necessary to have 
explicit expressions in powers of z, as provided by the tables in the supplement. 

TABLE 1 

Values of 110n lipf-, the scaled norms of Faber polynomials of degree 1 to 

15, and the limit as n -> oo. The column headings show the half-angles of 
the sectors to which they refer. 

so 50 100 150 300 450 900 

1 1.890 1.784 1.681 1.389 1.347 1.392 
2 1.994 1.977 1.949 1.813 1.617 1.532 
3 1.902 1.826 1.766 1.648 1.575 1.469 
4 1.979 1.925 1.855 1.622 1.442 1.479 
5 1.920 1.876 1.844 1.702 1.497 1.507 
6 1.960 1.884 1.811 1.669 1.535 1.486 
7 1.937 1.903 1.852 1.644 1.500 1.490 
8 1.945 1.874 1.827 1.681 1.486 1.503 
9 1.949 1.899 1.828 1.673 1.505 1.492 

10 1.938 1.886 1.844 1.652 1.515 1.494 
11 1.952 1.886 1.824 1.672 1.493 1.502 
12 1.938 1.896 1.836 1.674 1.497 1.494 
13 1.949 1.882 1.837 1.658 1.508 1.496 
14 1.942 1.893 1.826 1.667 1.506 1.501 
15 1.944 1.888 1.839 1.674 1.492 1.496 
oc 1.944 1.889 1.833 1.667 1.500 1.500 

TABLE 2 

Values of jj li jIp -no the scaled norms of T-polynomials of degree I to 6. 
The column headings show the half-angles of the sectors to which they 
refer. 

11 50 100 150 300 450 900 

1 1.734 1.576 1.464 1.301 1.331 1.299 
2 1.564 1.480 1.645 1.693 1.468 1.398 
3 1.578 1.675 1.566 1.359 1.465 1.317 
4 1.677 1.486 1.357 1.322 1.268 1.220 
5 1.583 1.366 1.354 1.239 1.208 1.164 
6 1 469 1 356 1 96Q 119 1 177 1 179 
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However, if numerical values of the Faber polynomials are required, as for example 
in summing Faber series, that form is not ideal. The tabulated coefficients and the 
upper bound in (24) show that the norm of a Faber polynomial may be much 
smaller than the magnitudes of some of its coefficients; significant cancellation 
would then occur if those coefficients were used to evaluate the polynomial. The 
alternative is to use the recurrence relation (17), with coefficients P3k computed as 
described in Section 3, to generate {f4o(z)} numerically for each required value of z. 
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