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Asymptotic Expansions of Integrals 
of Certain Rapidly Oscillating Functions 

By U. Banerjee, L. J. Lardy, and A. Lutoborski 

Abstract. An expansion in terms of powers of m-n is given for integrals of the form 

fil f( x )nix( mx) dx, where m is a positive integer, iw ( mx) is an integrable rapidly oscillating 
function with period min, and f(x) is a smooth function. 

1. Introduction. Asymptotic expansions in terms of powers of m-1 of the Fourier 
coefficients 

I 
f(x) cos(27rmx)dx and f (x) sin(2Trmx) dx, 

of a smooth function f(x) are well known. For example, they are discussed in [5] 
and [6]. The purpose of this note is to derive similar asymptotic expansions for 
integrals with more general periodic rapidly oscillating factors in the integrand. Such 
integrals occur as energy integrals in the study of elastic properties of composite 
materials [2]. 

Let w be a real function belonging to L1[0, 1], and let it be extended by periodicity 
to all of R with the extended function denoted by iiv. It will be assumed that the 
moments of w, 

Mk = - k(W) =f'y w(y) dy, k > O, 

are known. We shall consider integrals of the form 

(1.1) Im(f ) = f(x)Tv(mx) Ax, 

where m is a positive integer and f(x) is smooth. 
The following result on the limiting value of Im( f ) is classical [2, p. 9]. 

PROPOSITION 1.1. If w E L1[0, 1] andf E L'[O, 1], then 

(1.2) lim I m(f ) M= (w) ff(x) dx. 

It is natural to search for an asymptotic expansion of IJm(f ) in terms of powers of 
m -. Such an expansion is developed in Section 3. Section 2 is devoted to pre- 
liminary results. 
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2. Expansions of Euler-Maclaurin Type. When the integral of a product is 
expanded using integration by parts, certain auxiliary functions and their mean 
values arise naturally as in [4, p. 210]. In this section these are introduced and are 
represented in terms of Bernoulli functions and Bernoulli numbers. The Bernoulli 
numbers are denoted by Bn, the Bernoulli polynomials by Bj(x), and the Bernoulli 
functions, the periodic extensions from [0, 1) to all of R of the polynomials Bj(x), 
are denoted by B,(X), [1, p. 804]. 

Definition 2.1. Set po(y) = w(y) and a0 = AO(w). For y E [0, 1], define recur- 
sively for j > 0, 

(2.1) PJ+i(Y) = f [aj - p1(u)] du, 

(2.2) a,+1 = f Pj+1(Y) dy. 

Clearly, 

(2.3) pi(0) = 0 = p(1), j > 1, 

and 

(2.4) P()y) = (-i)''[a1~i- p11(y)], 1 ? ij. 

PROPOSITION 2.2. If g E Ck+l[0, 1], then 

(2.5) f g(y)w(y) dy = L ohf| (J)(Y) dy + f pk+ (Y)g(k )(y) dy. 

Proof. For 0 < j < k, in view of (2.1), (2.2), and (2.3), integration by parts yields 

l [a, - p(y)] g(J)(y) dy = f| p1+1(y)g(?`)(y) dy. 

Thus, 
k 

ZE0 fO [Ia,-Pi (y)] g()(y) dy = - L | I + 1 (y) g(J ')(y) dy 

After cancelling terms common to both sides, this last equation simplifies to (2.5). 0 
This expression for the integral of a product of two functions can also be 

developed using similar ideas from [4, p. 210]. 
Formula (2.5) for w(y) = cos y (or sin y) is well known and was used in [5] and 

[6]. 

PROPOSITION 2.3. The coefficients ak are related to the moments Of k by the formula 
k B 

(2.6) a~k = L k-j k > O. 

Proof. Consider formula (2.5) with g(y) = Bk(y). From [3, p. 48], this gives 

f Bk (y)w(y) dy = akk!. 

Formula (2.6) now follows by substituting for Bk(y) the expression [4, p. 6] 
k k 

Bk (Y) 
= 

Bk= v- 
v j! (k 0j)! k 

Numerical values of the coefficients in (2.6) for 0 < k < 5 are shown in Table 1.1. 
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TABLE 1.1 

ak in terms of the ./ 

a0 =MO 
a = - 4w0 + M 

2= 12 0 -2# + 2 2 

3 = 12 1 4X2 + 6A3 

4 = 720X0 + 24X2- 12A3 + 24J/4 

5 = 720X1 + 72Y3 48x4 + 120X5 

It is also easy to obtain a recursive relation between the coefficients a, and the 
moments M which might be useful in some situations. These formulas are given in 
the next proposition. 

PROPOSITION 2.4. The coefficients ak are related to the moments M by the 
following formulas: 

For k odd, 

(2.7) ak = 2k~ 
k 

+(k -3)/2 221?l (2.7) ak 
= -2 -k 

Xk! _2)( 
J ),M + L k j) a2j+, 

For k even, 

(2.8) ak = 2-k L (1_2) jO (k 2j 1)!a2j [k! L(2'J)' 
- (k2) - 221 1)+ 

] 

Proof. Let g(y) = (y - 4)k. On the one hand, by expanding the binomial power, 
the integral on the left in (2.5) can be expressed as 

(2.9) | w(y)( y - ) dy = ( J(2 

On the other hand, for this choice of g(y), the expansion on the right in (2.5) 
reduces to 

(2.10) L a| g(J)(y) dy = (k -j + 1)! jik-k1( +(-1)kj). 

Equating the expressions on the right in (2.9) and (2.10), solving the resulting 
equation for ak, and considering the separate cases of k odd and k even, will yield 
formulas (2.7) and (2.8) respectively. O 

PROPOSITION 2.5. The functions Pk(Y) have the following integral representations 

(2.11) a () fI _ 
- u)[ao - w(u)] du. 

Proof. The arguments in [4, pp. 15-17] remain valid under the more general 
hypothesis that the function f has a derivative of order v in L'[0, 1], because the 
operations of integration by parts are justified also in this case. Thus, from [4, p. 17] 
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with v = k and f replaced by Pk, and using (2.3) and (2.4), 

k! pk) (u) Bk (y - u) du Pk(Y) +JPk(u) du. 

In view of (2.4) and (2.2), formula (2.11) follows immediately. C1 

PROPOSITION 2.6. Thefunctionspk(y) are given in terms of the coefficients aj by the 
formula 

(2.12) Pk(Y) = k - J Y ( ( 1) (Y u)klw(u) du. Pk(Y) k-~~~~~~~~~aj j! ~V+(k -i)! J 

Proof. The proof is by induction on k. 
Note first that 

1') 1 k J / (u _ V)kw(v) dvdu = (y - u)kW (U)du. 

Formula (2.12) is easily verified for k = 1. 
If (2.12) holds for some k > 1, then 

PA+?(y) = [ak- Pk(U)] du 
0 

ky- Ek (J + (k-1)! 1 (u v)klw(v)dvdu 

=k+1 
(-i)'' (1)? u)kw(u) du. 

= k l- .() , Y - U 

Thus (2.12) is valid for k + 1. 

3. The Asymptotic Expansion Formula. In this section an asymptotic expansion 
formula is established for integrals of the form (1.1). Let m be a positive integer and 
set xi = i/rn for 0 < i < m. 

THEOREM 3.1. If w E L'[0, 1] andf E Ck+l[0, 1], then 

(3.1) w dx = Y m-ahjf f (')(x) dx + Rk+lm 
0 1=0 0 

where fork > 1, 

(3.2) 1Rk+1,ml < 8(27m -(k)||W|jj(k + 1) f(k+?1 

with '(k + 1) the Riemann zeta function, and for k = 0, 

(3 *3) I R1,m < 2m-1ll wjjjjjlf 1 %. 

Proof. First write 

f f(x) i3(mx) dx= f' f(x) -W(mx) dx. 
i=O X1 

Making the change of variable y = m(x - x1), setting g1(y) = f(x1 + m'-y), and 

using the definition of wi(mx), we obtain 

(3.4) f f(x)w>(mx) dx = Im'f1 g1(y)w(y)dy. 
1=0 0 
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Since g,(y) 
- 

Ck? [O, 1] and g(J)(y) = m-if(J)(x, + m-y), from (2.5), 

f g1(y)w(y) dy = 9 a 1 g(y)(y) dy + | pk+ (y)g(kl)(y) dy. 
=0 

Changing the variable of integration back to x yields 

' g,(y)w(y) dy = k aiml' ff f (J)(x) dx 
(3.5) ? J=0 I 

+m f|1 Pk+l(m(x - xJ))f (kl)(x) dx. 

Let the function Pk+? be extended from [0, 1] to all of R by periodicity, with the 
extended function denoted by Pk+ 1- Substituting (3.5) into (3.4) then yields 

f| f(x>w(mx) dx = E am f(J)(x) dx 
o 1~~~~=O 0 

+m-(k+1) 1 ]k?(mx )f (k+l)(x) dx. 

The bound (3.3) is immediate. 
To establish the bound (3.2), note that 

| Rk+ 1,m I -< m-(k 1)|| Pk+l lI If {(k+ l)(y) I dy 

By (2.11), 

I Pk+1(Y) I = ak - Pk(v)] dv = k!||f Bk (V - U)[a0- w(u)] dudv 

k! |lao-w(u) 
f B,(v u)dv du. 

Using the Fourier series representation for Bk [1, p. 805], it follows that 

Bk(v - u) dv < 4k!(27 )) k+ 
1=11 

Thus, 

IPk 1(Y) I g(2g)-(k+l)v(k + I)JwIIJ 

which completes the proof. [ 

COROLLARY 3.2. If f E C?[0, 1] and if there exists a constant C such that 
< C for all k > 0, then form > 1, 

j=0 

For functions f (x) whose derivatives at 0 and 1 are readily computed, it would be 
tempting to use the finite series 

aof f (x) dx + k m-Jaj [f (i- )(1) - f (J-l)(o)], 
j=1 
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as an approximation of Im(f ). However, in the absence of an acceptable bound on 
the remainder R lm' this can be dangerous. Indeed, in general situations, it is not 
uncommon to have Rk+ ? m diverge as k -- 0o. An excellent discussion of the pitfalls 
in using asymptotic expansions directly in numerical integration is given by Lyness 
in [5]. 

The form of the asymptotic expansion for the case of an oscillating factor which 
comes from a function originally defined on [0, Y] and a smooth factor defined on 
[c, d ] is given in the following corollary. 

COROLLARY 3.3. Let iv E L1[0, Y], f E Ck?'1[c, d ], and let a. and pj be generated 
via (2.1) and (2.2) with w(y/Y) =' (y). Then 

J d ~~~~~~k 
f(dx)( mx) dx = d (m)a d f f(i)(x) dx 

+ (Y) | lf + (X) f (k ) (X) dx, 

where wi is the periodic extension of iw from [0, Y] to R and 

Pk+?(X) =Pk+l? (X - c) -i 

for c + iY/m < x < c + (i + 1)Y/m. 

Finally, we note that the expansion formula (3.1) is related very closely to the 
corresponding formula that results when w is replaced by its image under the 
orthogonal projection of L2[0, 1] onto the subspace of polynomials on [0,1] of 
degree at most k. To see this, let Hk denote the orthogonal projection. Then HkW 

can be written as 

(Hkw)(Y) = Ykj(Y Y 

Since 

(( kW)(Y), 
Y 

2)) ( y), Y 2) ) 
o <i< 

the coefficients yk,j are related to the moments f4, (w) by the system (see (2.9)) 

,yk = o Y (d 2)y (-2) 
J 

j X (w), 0 <- i < k . 

Also, forO <j < k, 

.4j(HkW) =fY(FJ(kW)(Y) dY= y'w(y) dy = JJ(w)- 

In view of the linear relation between aj and /ffj, if follows that the quantities a, 
derived from flkw agree with those derived from w, i.e., aj(Hkw) = a,(w). Thus 
from (2.5), 

k'1 
f (flkw)(Y)g(y) dy = E a, g(J)(y) dy + Pk+?1(Y)g (y) dy, 

j= 0 
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where Pk-? is derived from -1 wk just as Pk ?1 is derived from w. This shows that the 
functions -w and Hkw produce identical expansions (3.1) except for the remainder 
terms, which are different, though of the same order in m-1. 
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