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A Method for Computing the Iwasawa X-Invariant 

By R. Ernvall and T. Metsankyla 

Abstract. We present a method for computing the minus-part of the Iwasawa A-invariant of 
an Abelian field K. Applying this method, we have computed A- for several odd primes p 
when K runs through a large number of quadratic extensions of the pth cyclotomic field. A 
report on these computations and an analysis of the results is included. 

1. Introduction. Let K be an Abelian field, i.e., a finite Abelian extension of Q. 
For a prime p > 2, consider the cyclotomic Zp-extension Koo of K. Let K, (n > 0) 
denote the intermediate field of KJ01K which is cyclic of degree pfn over K. The 
p-part of the class number of Kn equals pXn+v, for all sufficiently large n, where 
X = X(p) and v = v(p) are integral constants, X > 0. Call X the Iwasawa A- 
invariant of K and write X = A + + A -, where A + is the corresponding invariant of 
the maximal real subfield of K. In this paper we present a method for computing 
A -, developed by the second author, and report on computer calculations by the first 
author, performed by this method. 

If the conductor fK of the field K is divisible by p2, then K has a subfield L such 
that p2 + fL and the cyclotomic Zp-extension of L equals K,.. Hence we assume, 
without loss of generality, that p2 + fK. Denote by Ch(K) the character group of K. 
It is known that A- decomposes as 

A-= E Ax 
xeX 

with 

X= X(K) -X E{ Ch(K): x(-1) = -1, X # w-'), 

where w denotes the Teichmuller character mod p and Ax is the A-invariant of the 
Iwasawa power series representing the p-adic L-function Lp(s, xw). 

Thus, the computation of A- is reduced to the determination of the components 
Ax. This will be done in two steps: We first relate Ax to the p-orders of certain 
generalized Bernoulli numbers and then show how to determine these p-orders by 
means of a series of character sum congruences. As an application we consider the 
fields Q( , Up), where m is an integer prime to p and tp denotes a primitive pth 
root of 1. In this case the congruences in question are simply rational congruences 
mod p. 
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The computational part of our work consists of the determination of A- for quite 
a large collection of fields Q(Vm, Up), chosen so that either p or {ml is small. More 
precisely, we computed for these fields the components Ax with X = OmOt where 0ym 

is the quadratic character of the field Q(FmH); this is sufficient since the A-- 
invariants of the cyclotomic subfields Q(?p) are known. Our results also give the 
A-invariant of Q(v') for the negative m in the range under consideration. 

There are previous numerical results about A- in [1], [2], [3], [4], [6]. These concern 
mainly quadratic fields and the fields Q( -1 , Up) and Q( -3, Up), and in all cases 
the decomposition of A- is simple in the sense that either there is but one positive 
component Ax, or all the positive components are equal to 1. In the present results 
this is no longer the case. 

A detailed description of our computations appears in Sections 7-9. 

2. On p-Adic L-Functions. For the theory of this section, the reader is referred to 
Washington's book [11], in particular to Sections 5.2 and 7.2. 

We fix an embedding of the field of algebraic numbers in an algebraic closure Up 
of Qp, the field of p-adic numbers. Denote by ordp the p-adic valuation on Up, 
normalized so that ordp( p) = 1. 

Let X be a character in X(K) (all characters are assumed primitive). Since the 
conductor fx of X divides fKr it is not divisible by p2; we say that X is of the "first 
kind". Put 

fx=d or dp with (d,p)=1. 

As in the introduction, let Kn denote the nth layer of the Zp-extension Koc/K 
(n > 0). The character group of Kn is of the form Ch(K) x (n ), where 7Tn is a 
character with order pn and conductor pnl l (or 1, if n = 0); 7Tn is called a character 
of the " second kind". 

Now consider the p-adic L-function Lp(s, A) for the (nonprincipal) character 
4 = Xw7Tn. This function is defined in Up in a neighborhood of 1 containing Zp, the 

p-adic integers, and it has the fundamental property that 

(1) Lp(I - k,4,) = -(I - 4,(p)pk-l)Bk(4J)/k (k > 1), 

where 4k = 4, a k and B k( k) stands for the k th generalized Bernoulli number 
attached to the character 4k. 

Denote by Qp(X) the extension of Qp generated by the values of X. Iwasawa's 
theory of p-adic L-functions asserts that there exists a power series 

00 

(2) f(x,Xo)= Za xi 
I =0 

whose coefficients a1 = aj(X) are integers of Qp(X), such that 

(3) LO(S, ) ( (1 + dp)= - 1, X) 
7Tn(I1?dp ) 

According to the Ferrero-Washington theorem, the power series f(x, Xc) has 

[L= 0, in other words, there is an index j for which ordp(aj) = 0. The least such j 
is called the A-invariant (or Weierstrass degree) of f(x, xw). This is the number Ax 
introduced in Section 1. 
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3. The p-Orders of Generalized Bernoulli Numbers. Let us decompose X as 

X = 0co- with fo= d(> 1), I <t <p - I. 

In this section we obtain a relation between x and the p-order of Bt(607T7). 

For a fixed n > 1, put 

ak = (lIdp)1 (k > 1). 
'7n(i + dp ) 

It follows from (3) and (1) that, for all t = 1, .. ., p - 1, 

( at, oot) = Lp(1 -t, &OtSn) 

-(1 -(I f(n)( p)pt-')Bt(07Tn)1t = -Bt(07r )lt 

By using this result we prove the following proposition in which 0 denotes Euler's 
totient function and e is the ramification index of Qp(0)/Qp. 

PROPOSITION 1. Let n > 1 and 1 < t < p - 1. We have 

ordP(Bt(97Tn)) = AX/(A(pn) < 1/e if Ax < 0(pn)l 

ordP ( B t f Tn )) >, Ile if X x > ( p n )le.- 

Proof. We evaluate the p-order of f (at, Oft) = o0 a al. 
By the definition of Urn, the number Tn (I + dp) = t is a primitive pnth root of 1. 

Since 

1 - t(1 + dp) 
at 

( + dp)t- 

we have ordp(at) = ordp(1 - A) = 110(pn). 
As to the p-orders of the coefficients a1, observe that these are integers of 

Qp(x) = Qp(O). Therefore, if ordp(aj) > 0 then ordp(aj) >? 1/e. 
Recalling the definition of Ax we now see that 

ordp(ajaj) >, Ile forO X I Wa-, 
= jordp(at) = Ax/e(p# ) for j =xe 

> jordp(at) > AX/X(pn) for j > Xx. 

Consequently, if Ax < 0(pn )/e, then 

ordp(f(a, fOct)) = x/P(pt) 

while otherwise this p-order is at least 1/e. Hence the result. Z 
Proposition 1 gives us the value of Ax, once we know ordP(Bt(07Tn)) for a 

sufficiently large n. For later purposes it is convenient to reformulate this proposi- 
tion, actually in a bit weaker form, as follows. 

Note that the congruence a -3 (mod pr) in p means that ordp(a-/3) > r. 

PROPOSITION 2. Let n > 1 and I < t < p - 1. Assume that h E Z, 1 < h < 

p ")/e. Then 

Ax > h if and only if Bt(7rT,) 0 (modph/'(P')). 
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Proof. Suppose that the above congruence holds. If x < 0(p')/e, then a 
comparison of this congruence with the first part of Proposition 1 shows that 
Ax > h. If Ax >k (p')/e, then the assertion follows directly from the assumption 
made about h. 

To verify the converse, apply both parts of Proposition 1 separately. L 
Remark. Proposition 2 is of the same kind as the main result in the second 

author's paper [8]. This relates AX to certain Kummer type congruences of Bk(O), 
provided X < p - 1. Proposition 2 would enable one to replace the proof presented 
in [8] by a somewhat simpler proof. 

4. Bernoulli Numbers and Character Sums. We now express the residue of B't(0OTn) 

modulo p in terms of suitable character sums. 
For any character 4 with conductor f we have, in the usual symbolic notation, 

If 
Bk(4) = i Ei4(a)(fB + a-f)k (k > o) 

f =1 

(e.g., [7, p. 134]), where the Bm denote ordinary Bernoulli numbers. On changing the 
summation variable a into f - a we obtain 

k ) (-l)k+(_,) L_ ) fBk 

a=1 

Let , = Okn with n > 1. Then 4(-1) = (-I)t since the character X = 0owf is 
odd and Ur, being of p-power order, is even. Hence we find that 

I dpn+l1 

Bt(7Tn) = d n+1 L (67Tn)(a)(a -dpn+ B) 
a==1 

dpn+l1 dpn+l1 

- n E1 (Orsn)(a)at - tB' i, (Ogn)(a)a'-' (mod p). 
a=1 a=1 

The second sum of the last expression vanishes mod p, as can be verified again by 
the transformation a -> dpn - a. Therefore, 

dpn+l 

(4) B t (0n )- d n+ 1 E ( gn )( a )a t (mod p). 1= 

From this result we derive the following congruence which is of the same type as the 
classical Voronol congruence for ordinary Bernoulli numbers. We point out that the 
congruence (in a sharper form) has also been proved by Slavutskii [9, congr. (6)]. 

PROPOSITION 3. Let b be a positive rational integer with (b, dp) = 1. Then 
dpn~ +1a 

(bt - (07Tn)(b)-) Bt(07n)- a [ dp[ + I] (mod p), 

where, as in the above, n > 1 and 1 < t < p -1. 

Proof. Put 4 = O7. Let a and b be positive rational integers prime to dp. 
Keeping b fixed, we write 

ba = dp' [ ] + ram 0 < ra < dp'?+'. 

dp~ jn+1 a 
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On raising this equation to the tth power and multiplying by { (a) = (b)-9(r ), 
we get 

4(a)b'at' 4(b)4+(ra)ra + k(a)tr,'`dp p [ +1p ] (modp2"72) 

If a runs through 1,... , dpn+1, excepting those numbers for which (a, dp) > 1, then 
so does r,. Summing over a we find that (observe that { (a) = 0 if (a, dp) > 1) 

dzpn+l1 dp" + 
1a 

(bt i-(b)j1) E p(a)at tdpn~' E i(a)ra> d (mod p ). 
a=1 a=1 [pt"~ 

Since ra ba (mod p ), this result together with (4) yields the claimed con- 
gruence. E 

5. The Main Result. Every rational integer a prime to p has the following unique 
representation mod pn+fl 

(5) a --ow(a)(1 ?+ p)(a) (modpn+1) 0 < v(a) < pn, 
Forb E Z,(b,dp)= 1,put 

(6) Snk = Snk(b) = E (a)a1 [ ba 1 = o ... ,pn 
v(a)=k [p?] ( ,.,pl-) 

where the sum is extended over those numbers a for which 1 a < dpn+1, (a, dp) 
1 and v(a) = k. Moreover, set 

Tu = T"(n)= E (kk (a ,. n1). (7) u u ( nk U = 0,.p~ -1) 
k =u 

THEOREM. Let X = E X(K), where f9 = d is prime to p and 1 < t < p -1. 
Let b be a positive integer such that 

(b, dp) = 1, 0(b)bt 0 1 (mod p), 
where p is the maximal ideal of the ring of integers of Qp(8). Denote by e the 
ramification index of Qp(9)/Qp. Let n > 1 and let h E Z, 1 < h_< 0 4pn)/e. With 
the above notations, 

Ax >, h if and only if To n)T,~)- -~~-O(o 

Proof. Since the nonzero values of go are p"th roots of 1, we have vj(b) I 
(mod p). Hence 

bt - (07rn)(b)' ) 0 (mod P), 

and it follows from Propositions 2 and 3 that 
[ a 1h) 

A ~h if andonlyif E 9(a)7Tn(a)a'tl[- +] 0 (modphK), 

where K = l/44p'?). 

For a fixed n > 1, write 

Jn(l + p) = 1 + 'q- 

Then we have ordp(ii) = K and, by (5), 

n (a) = (1 + a)v() forp + a. 
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Consequently, 
dp'7 +1 [ b p] pll 

E O(a)n(a ) a d ]= E (1 ? (a) a = E 

cpl S k=O u=TO 

and we are done, once the congruence 
Pt7 - I 

(8) E ToU -O (mod phK) 
u=O 

is shown to be equivalent to 

(9) To - T1 Th_ -- 0 (mod ). 

Suppose that the congruences (9) hold true. Then these congruences are satisfied 
mod pl/e as well, and so mod AhK since l/e > h/l(pI) = h K. Moreover, q 

u 0 
(mod phK) whenever u > h. This proves (8). The converse implication is established 
with similar arguments by induction on h. 0 

The above theorem enables us to determine X, once the numbers Tf(n) module t 

are known for a sufficiently large n. We state this more explicitly as follows. 

COROLLARY. Put Zn = [cJ(pn)/e]. With the notations of the theorem, 
(i) if To(n)- T(n)- T(n) ( and T A 0 (mod P), where 0 < h < - 

1, then X= h; 
(ii) ifTo~) 721-O(mod ), then X x >zn 

6. A Special Case. Suppose that 0 = 0m is the nontrivial character of the quadratic 
field Q(VmT), where m is prime to p. Then the character X = cot-l dealt with in the 
previous sections belongs to the character group of the field Q(xbH, gP). Note that 
fi = d equals the absolute value of the discriminant of Q(rmH). 

In this case, Qp(@m) = Qp so that e = 1 and p = pZP. Hence we can determine 

Ax, provided it does not exceed p - 2, through the numbers Tu = Tu(1) as follows 

(see the corollary): 
If To-T1T -T 1 0 Th # ? (mod p), where 0 < h < p-2, then x = 

h. 
If this criterion fails, then the computation of AX requires passing to a higher 

level, i.e., computing Tu~f) mod p for a higher value of n. 
Remark. As is seen from (5), working on a level n involves computations with 

integers mod pfl? +. We point out that, for n = 1, the congruence (5) can be written 
as 

a aP(I + v(a)p) (modp2) 

Thus, v(a) -q(, (mod p), where q(, denotes the Fermat quotient for a, defined by 

q= (a1 P 1)/p (modp),0 < qa < p. 

7. Numerical Results. Consider, for a moment, the case of the cyclotomic field 
Then X = {c, c . . , COP4} and it is known that 

X>0 withx=ct1- ifandonlyif Bt=0(modp) 

(t = 2,4, ... I p - 3). The values of x have been computed for p < 125000 [10]; it 
has turned out that in this range every positive value of Ax equals 1. So the 

--invariant of Q(tP), say X , equals the index of irregularity of p, i.e., the number 
of irregular pairs (p, t). Tables of irregular pairs can be found in many books, e.g., 
[11]. 
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Now let us enlarge the field to K = Q(v, Up) with p + m. Then the character set 
X is enlarged by the characters 6mW' -1 discussed in Section 6. To be precise, we have 

X-= S+ ? X 
x 

where the sum is extended over the characters 

(10) X = w'-& with (t _ 1 3 p - 2 if m < 0, 

6 = Om being the quadratic character of Q(v'H). If m < 0, the component X 0 is just 
the X-invariant of this quadratic field. 

The actual computations associated with the present work comprised the de- 
termination of X for the characters (10) when p and m range through the 
following values (m squarefree): 

p = 3 and -3235 < m 3454,* 
p = 5 and -5000 < m 3147, 
p = 7 and -3002 < m < 1000, 
p = 11 and -1000 < m < 500, 

11 <p < 200 and m = -7, -3, -2, -1, 2, 5. 

The asterisk above indicates that for a few values of m the computation was stopped 
at the result X x > 6 (see below). 

The numerical material thus obtained contains about 22000 values of Ax, some 
6400 of them being positive. Samples from this material are exhibited in Tables 1 
and 2 of the appendix. Table 1 presents the results for p = 5, m > 0, and Table 2 
for p < 200, m = -1, ? 2, -3, 5, -7. Note that every odd prime p below 200 really 
appears in Table 2, i.e., to every p there is at least one m and t such that XX > 0 for 

X = OmW 

For p > 3, only few cases were found in which X > p - 2. These cases, which 
had to be settled on the level n = 2, are listed here: 

P m t AX P m t X 

5 439 4 4 5 -3178 1 4 
5 1427 4 4 5 -3471 1 4 
5 -311 1 4 5 -3547 3 4 
5 -761 1 4 5 -3923 3 4 
5 -966 1 4 5 -4026 1 5 
5 -2861 3 4 5 -4774 1 4 
5 -3081 1 4 7 -1371 1 7 

For p = 7 it in fact turned out that x varies between 0 and 4 (assuming all values 
0, ... , 4) except in the single case given above. For p = 11 we have the maximum 
X =3 for m = -723, t = 1. 

If p = 3, then AX > 1 (= p - 2) in about a third of the cases. These could be 
settled on the level n = 2 (i.e., Ax < 5), except in six cases. In the latter cases the 
continuation of the procedure was given up since the values of x can be found in 

[6]; they are as follows: 

X = 6 for m = -239, -1022, -1427, -1777; 

x= 7 for m = -458, 

X = 8 for m = -2789. 
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An examination of the results shows that the values of AX seem to be distributed 
in the expected way. For example, if we keep p and t fixed, t + 1, and let m vary, 
then the number of cases with Ax > k (for X = 6mxt- and k > 0) should be about 
a p kth part of the number of all X; this corresponds to the natural hypothesis that 
the coefficients of the power series f (x, xw) are randomly distributed mod p. In the 
following table, Nk denotes the number of x > k in our range: 

P t N. N. N2 N3 I N,/N. 1/p N2 / Ip2N3/N0 1/p3 
3 2 1577 553 172 50 0.35 0.33 0.11 0.11 0.032 0.037 
5 2 1596 326 55 9 0.20 0.20 0.034 0.040 0.006 0.008 
5 4 1596 329 68 15 0.21 0.20 0.043 0.040 0.009 0.008 
5 3 2535 490 88 14 0.19 0.20 0.035 0.040 0.006 0.008 
7 3 1599 221 29 0.14 0.14 0.018 0.020 
7 5 1599 256 39 0.16 0.14 0.024 0.020 

If t = 1, the situation is different. Indeed, by Eqs. (1)-(3) the constant term of 

f (x, xw) equals 
(I1) ao = (x(p) - B'(X); 
hence, in the present case AX is positive whenever X(P) = 6mm(p) = +1. We must 
therefore modify the above hypothesis so as to concern those f(x,Omw) only for 
which Om(p) = -1. We tested this hypothesis for p = 5, m > 0, obtaining the 
following (Nk denotes the number of X > k when 0Sm(5) = -1): 

Not= 1268, N11= 241, N2[ = 36; NJ'INO' = 0.19, N2'/NO' = 0.028. 

We may also ask how often X- is, say, positive as p is fixed and ImI increases. If 
p < 11, then X- = 0, and so X-> 0 exactly when at least one of the s = (p - 1)/2 
numbers To corresponding to the characters OmCtO vanishes modp. To avoid the 
exceptional case t = 1, consider positive m only. Then it is again natural to assume 
that the values of To be randomly distributed modp, and this implies that the 
proportion of the number of fields with A- > 0 to the number of all fields should be 
about pp = 1 - (1 - p-l)s. Below is a comparison between the observed and ex- 
pected values of this proportion: 

P observed proportion Pp 

5 587/1596 = 0.37 0.36 
7 204/530 = 0.38 0.37 

11 100/279 = 0.36 0.38 

A table including all the results of our computations has been deposited in the 
UMT file; see Review 29 in this issue. 

8. Comparison with Previous Results. We next describe the contents of the 
previously published tables about X-. These tables were used by us to check our 
results. 

Gold [3], [4] has computed, for p = 3, 5, 7, 11, the X-invariant of the quadratic 
field with discriminant -d < 0. His results in [4, Table 2] cover the range 0 < d < 264. 
They agree completely with ours, and so do also the additional results presented in 
[3, Tables 2 and 5] after the following apparent errors are corrected: In Table 2, the 
value 1253 for d should be 1263 (corresponding to the given class number 20); in 
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Table 5, lines 5 and 6, instead of X = 3 and X = 4 one should read A = 2. The latter 
correction is confirmed not only by [6] quoted below, but also by Corollary 5 in [3]. 
The expressions for en in Table 5 should be correspondingly corrected. 

Kobayashi [6] investigates, for p = 3, the power series f(x, xw) with X = 6rn and 
X = -m. He has determined the coefficients a0, . . ., a8 mod 9 of this power series 
for -104 < m < 0 and 0 < 3m < 104. From his table one can read the value of x, 
since in all cases Ax < 8. Note that for X = 0m the table is far more extensive than 
ours, while for X = 0mW our computations go a bit farther. The overlapping parts of 
both tables are in agreement, except that the table in [6] omits the first negative m 
with Ax > 0, namely m = -2. The nonvanishing of Ax in this case follows, by (11), 
from the fact that X(3)= & 2(3) = +1. Our computation indeed shows, in agree- 
ment with [4], that Ax = 1. 

The first author has determined, for p < 104, the components Ax with X = 0nco'- 
for m = -1 and m = -3 (see [2] and [1], respectively). For t = 3, 5, ..., p - 2, one 
has in this range Ax = 1 if (p, t -1) is an E-irregular or D-irregular pair, respec- 
tively, and Ax = 0 otherwise. A comparison of the tables in [1] and [2] with the 
present Table 2 shows no discrepancies. 

The paper [5] by Hao and Parry tabulates the "m-irregular" primes p < 5025 for 
the values of m that appear in our Table 2. For a fixed m, the prime p is m-irregular 
if and only if there is at least one t > I such that Ax > 0 with X = 0mtw. It is 
easily checked that, for p < 200, the lists given in [5] coincide with the corre- 
sponding lists extracted from Table 2. Our computations show the somewhat 
interesting fact that every positive value of Ax in this region in fact equals 1, except 
for a single value Ax = 2 occurring for p = 23 and X = & 2C1O 

Let us finally mention that if m = -q, with q a prime, and 8m(p) = -1, then it 
follows from (11) that A , > 0 exactly when the class number of the field Q(-/q) is 
divisible by p. Thus a partial check of our results is also provided by the class 
number tables of imaginary quadratic fields. 

9. The computations. The computations were run on the DEC-20 computer at the 
University of Turku. The programs, written in Fortran, used only integer arithmetic. 

As is seen from Sections 5 and 6, the main task was the computing of the sums Stk 

(mostly for n = 1). This was started by searching a primitive root mod p and 
constructing the index table. After decomposing m into prime factors, the character 
values 0m(a) were calculated via the Legendre symbol, using the congruence 

(a) _(-l)/2 (modq) (q an odd prime factor of m) 

and then checking that Om(a) indeed equals +1 or 0. For a fixed t, we chose a 
minimal b > 0 such that (b, dp) = 1 and 0,,(b)bt # I (mod p). To find the value of 
v(a) for n = 1 (see (6) and (5)), we computed a -1 mod p2 by employing the 2-adic 
expansion of p - 1 and the residues of a2, a4, a8, ... mod p2. 

After computing the numbers Slk mod p we searched for the first nonvanishing 
number in the sequence TO('), . . ., T1)2 mod p. The cases in which such a number did 
not exist were afterwards picked out by hand and dealt with on the level n = 2. The 
procedure on this level was similar, except that this time the determination of v(a) 
required computations mod p3. 
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APPENDIX 

TABLE 1 

The positive values of X for p =5, X = 6w'- (t = 2 or 4) and 0 < m < 3147. 

m t A m t A m t A m t A 

X X 

J. 1 XY. .3. 

31~~~~~~~~~~' i. 7 I 

6~~~~~~~D 7 

4 1.~~~~~~~5f~ 

I. CI 76I Z 4a3" 

r: ca 1 1 : 

3 ,'t' 7 I Sc-li-15a 

'ia,.a 4 ~~ ~~1 366 49::I. 

-107 S. 7 59 ` + 

I.~1 574 _ I 0 

'iF-~~~~~~~~~~~4 )1 4 X5 

1 1 1I~~~~~~~~~~~~~ 9357~- .S 
' 

-1 1 /9 1 6. C)6 I 
i'91 i. ~~~~i A 7 .1 6 1 

3 -4 J it 1 6-1 7 4 I~~~ 1 1 
IU"- 4 / 6'a-3 13 6 2 I 

I a I 'a/a"~~~~~~-i 3I aa 6 169 ' 

.1 5~~~~ 
61 4 ~~~I i'9 e-a 1 a 2 b'9' 

1 "a631 5 1 .- 9-- 

J. - "S ~ ~ ~ ~ ~ a~~ 1 6"" a2 9 

.At a. 4 a 61~ 4u 

a i) I I94; 
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TABLE 1 (continued) 

m t A m t A m t A m t AX 

L9~ ~ ~ ~~~~~~~.11 2I L L it 7 t 

1 1 1.~~~~~~~~~~~~1.,.A t 4 . i. XJ 

9 6 ~ 
~~~ 23 

1 
16 

.1. 0 .~~II ~ I-1l 1 -1. 

:.ICJUA- 24 1 I -1 4 I 1.3 

-1 0 .1 8 2 ~1. 1Is1 ~ i2) Mt 

'I 2" 4~~~ ZII 

>.1.0 1 .1. '61 .itol.. 9, 

[ft' L I~~~~~~L 2 lw - S 31J' 

(Ji 0 I 17'I L I 
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TABLE I (continued) 

m t A m t A m t A m t A 

1 I I 2 1:~~~~~~~~~~~~~~~~~~~~~. 
I ~~~~~~~~~~~~~~~~' y3 4 1 *~i~f 4 1 

%J ~ ~ ~ ~ ~ ~ ~ ~ ~~ 

z El.. l C4 

~~~~1 . .~~~z 93 

.3 .~~~~~~~4~7 4 

HI ~~~~~~~~~~~~~~ 1~ ~ ~~-6 

j.~~~~44( 1 ~ ~ ~ ~ ~~ I .~~~~~.i4[~~~ 6I.1X 

*i. ~~~~~~~~~ ....44f4;41~~~~~~~~~~~~~pq - 

2 1 I 7 [ 

e.)~~~~~~~~~~~~~~~~~1 ).4 

1 4(j~~~~~~~~~~~~~4 F~~9- 1 :3:.21.L 

X-438 t I 
1 30391 1. 

11 I. 'O~~~~~~~~~~~~ T?C.1 7113 '4 1. 

..I 7~ 4 
6', 

4fj49 4 

1 .4~~~~~4*~~4 3 077 
.4 .~~~ ~~4j 8 2~47 t S 1rL 4, 

.4 4~~~~~~~44.~~~~~ 1 2 4II 0 
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1~~~~~~~~~~~3 A1 I (71' 

1 1~~~~~~~~3 T 



A METHOD FOR COMPUTING THE IWASAWA X-INVARIANT 293 

TABLE 2 

Thevaluesoft, 1 < t p -1, forwhich ?X > 0 with X =,w- 1, in the 

region 2 < p < 200, m -7, -3, -2, -1, 2, 5. The dagger (t) indicates 
that X 2; in all other cases X 1. 

p<. -7 -3 -2 -1 2 5 p -7 -3 -2 -1 2 5 

3 1 101 1 

5 1 63 

7 1 1 03 1 
93 

1 1 1 1 4 107 1 1 6 4 22 
1 3 1 1 1 2 86 1 00 

157 1 1 14 1 09 1 1 1 

19 1 1 11 6 8 105 
5 113 1 55 1 1 

23 1 17 1 6 t 6 5 1 3 
1 09 

29 1 1 1 27 1 1 40 62 
1 9 56 

3 1 1 23 3 0 131 1 32 
37 1 1 1 3 4 5 1 64 

4 1 1 1 18 5 

43 1 1 1 1 3 1 37 1 1 1 84 
4 5 57 43 

4 7 25 1 3 1 5 101 

53 1 2 9 1 1 39 2 1 1 1 1 29 44 
1 9 45 99 1 9 1 04 

43 ~~~~~~149 1 79 1 146 22 
59 33 1 34 39 147 

1 9 3 6 1 03 
50 ~151 1 1 1 4 6 6 

61 1 1 42 1 57 1 01 1 1 
7 

67 1 1 1 2 7 6 1 63 1 1 1 14 4 
47 1 67 66 

71 1 2 968 1 73 1 3 1 21 1 74 
97 7 3 7 1 1 1 7 0 1 53 

1 1 3 1 

79 1 1 1 9 1 6 1 79 1 1 7 4 
30 11 9 

83 53 1 ~~~~~~ ~~181 35 1t 
6353 15 177 6 5 1 5 ~ ~ ~ 19 11 

89 1 1 3 2 3 
1 1 0 

333 

97 1 1 1 1 93 1 1 1 1 
59 75 

1 97 1 1 79 1 91 1 
1 83 

1 99 1 1 86 
1 61 
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