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Abstract. Let d be the discriminant of an imaginary quadratic field with class number one. If 
td < _104 it is easy to show, using an idea from Stark, that h(12d) < 2 XI, h(24d) < 2 XI 
and Ih(24d)ln(5 + 2r/ ) - 2h(12d)ln(2 + r3 )I < 50exp(-7T/24 [J d). This linear form is 
estimated for large Idl from below with the aid of the quantitative version of Schneider's 
ac'-theorem by Mignotte and Waldschmidt. In the "medium large" region 2 104 < Idl < 1034 

it is shown by computing the beginning of the continued fraction of ln(5 + 2r/ )/ln(2 + 1) 
that the above relations cannot hold. 

The well-known conjecture of Gauss [6] which says that there exist only nine 
imaginary quadratic fields with a unique factorization was verified by Heegner [9] in 
1952. But mathematicians of that time thought the proof to be incomplete, and only 
when Stark [14] in 1967 gave his solution of the problem, was it shown that Heegner 
was quite correct [13]. While these proofs were based on the theory of modular 
functions, Baker [1], in 1967, showed that the conjecture of Gauss could also be 
solved, essentially by using his estimations of linear forms in logarithms of algebraic 
numbers. Then Bundschuh and Hock [2] gave a proof using Baker's idea, and shortly 
thereafter, Fel'dman and Chudakov [5] proved the theorem by using a method 
outlined by Gel'fond [7] already in 1939. 

We provide here a further proof based on Mignotte and Waldschmidt's [11] 
quantitative version of Schneider's solution of Hilbert's seventh problem. The 
difference of the proofs using transcendental number theory is the following: 
Bundschuh and Hock used a linear form with integer coefficients in three logarithms 
of algebraic numbers. They showed that if there exists an imaginary quadratic field 
with class number one, the absolute value of the discriminant d is bounded from 
above by exp(1.6 * 105). Fel'dman and Chudakov used a linear form in two loga- 
rithms of algebraic numbers with algebraic coefficients and got the upper bound 

Idl < 1040. To finish the proof, both used the strong bound of Stark [12], who 
showed that for the discriminant d of a tenth imaginary quadratic field of class 
number one, Idl > exp(2.2* 107) must hold. Here we also use a linear form in two 
logarithms of algebraic numbers, but with integer coefficients (see Stark [15, Section 
9]). We estimate this linear form with the help of a theorem of Mignotte and 
Waldschmidt and find an upper bound Idl < 1034. Now, since our linear form has 
integer coefficients and the upper bound of the discriminant is "small", we can 

Received May 5, 1986; revised November 12, 1986. 
1980 Mathematics Subject Classification (1985 Revision). Primary 11J99, I1E41, 11E45. 

'>1987 American Mathematical Society 

0025-5718/87 $1.00 ()( $.25 per page 

295 



296 JUERGEN M. CHERUBINI AND ROLF V. WALLISSER 

finish the proof using continued fractions. So we avoid Stark's strong lower bound 
and get a proof which is more self-contained. 

The authors are indebted to the referee for mentioning the work of Gross and 
Zagier [8] giving an effective lower bound for the class numbers of all imaginary 
quadratic fields. However, it seems that in case of class number one the algorithm is 
not better than ours because a "medium large" region remains which has to be 
handled by other methods. In this paper we wanted to show that today's lower 
bounds of linear forms in logarithms yield an effective algorithm to prove the 
conjecture of Gauss already on a personal computer. 

1. The Connection of Gauss' Conjecture with the Estimation of a Linear Form in 
Two Logarithms. Let d be the discriminant of the quadratic field K = Q(VH), 

xd,(n) the primitive real character (d/n) and L(s, Xd) the Dirichlet L-series 
00 

L(s, Xd) = E Xd(n)ns, Res > 1. 
1= 1 

Dirichlet showed the following relation between the class number h(d) and L(1, Xd): 

h(d)= -L(1, Xd), 
K 

I 
7 

if d <0, 
(1) Id I 

K In - 
if d > 0 

(w denotes the order of the group of units, E is the fundamental unit). If we assume 
d < -4, h(d) = 1, and if Q(x, y) is a positive-definite quadratic form with integral 
coefficients and discriminant d, k the discriminant of a real quadratic field with 
(k, d) = 1, and L(s, Xk' Q) the Epstein zeta function 

(2) L(s, XkI Q) = 2-1 E Xk(Q(x, y))Q(x, A)~s 
x, V* ,o 

then one has the relation 

(3) L (s, X ) L (s, Xkd) = L(s, Xk' Q) for Res > 1. 

From (1), (2), and (3) one gets (see Stark [15]), if k is not the power of a prime 
number and - denotes the fundamental unit of Q(V), 

h (k) h (kd) ln E 

=k d H(-p2) 

(4) 
6 P117 

pjIAnTjn 7j 
+4 e '1 tdl/k , 1 Xk(Q(jy))expt ky + ) 

, >() 

With the aid of elementary considerations (see, e.g., Heilbronn and Linfoot [10]) one 
can show that the only imaginary quadratic fields Q(rd) with class number one and 
even discriminant d are d = -4, -8 and that for all other such fields, Idl has to be a 



IMAGINARY QUADRATIC FIELDS OF CLASS NUMBER ONE 297 

prime with Idlj 3 (mod 4). It is easy to show that h(-3) = 1. Therefore, if we 
assume d < -4, -d a prime, -d 3 (mod 4), k = 12 or k = 24, then we can apply 
(4). With the fundamental unit 2 + rT of Q( 12) and 5 + 2V6 of Q( 24) we get 
the linear form to handle (see, e.g., Stark [151): If d < -104, -d a prime, -d- 3 
(mod4), h(d) =1, then 

h (12d) < 2 d, h (24d) < 2d and 
(5) 

h(24d)ln(5 + 2A) - 2h(12d)ln(2 + VT)I < 50e- di/24 

2. An Upper Bound of Mignotte and Waldschmidt for the Absolute Value of the 
Discriminant of an Imaginary Quadratic Field. Mignotte and Waldschmidt [11] 
proved the following theorem: Let 3,P a,, a2 denote three nonzero algebraic numbers 
of exact degrees Do, D1, D2, respectively. Let D be the degree over Q of the field 
Q(/3 l, a12). For j = 1, 2 let In a. be any determination of the logarithm of a. and 
let A, be an upper bound for the height of a1 and for exp( ln aj l); put S, Dj + In A j. 
Let B be an upper bound for the height of /3 and for e D0 and let SO Do + In B. 
Put 

T =4+ - + ln D 2SI I2 

Then A = 3 In al - Ina2 satisfies A = 0 or 

(6) I A > exp(-5 * 108D4 2 T 

We apply this theorem to the linear form 

A = pln(5 + 2A6 ) - 2qln(2 + T) 
where p and q are integers bounded in absolute value by 2-dl. We put 3 = p/q, 
a1= 5 + 2V, a2 = 2 + VT and get Do = 1, D1= 2, D2= 4, D = 4, Al = 10, 
A2 4, SI = 4.3, S2 = 3.4; we find the estimation 

(7) IA!> exp(-10'2 in21 d1). 

Remark. With an adaption of the proof of the theorem of Mignotte and 
Waldschmidt to our concrete situation, Cherubini [31 gets the better bound 

}A l > exp(-4.6* 107 1n21 d 1). 

With this estimation one can prove 

PROPOSITION 1. If d < -104 is the discriminant of an imaginary quadratic field with 
h(d) = 1, then d> -1034. 

Proof. From (5) and (7) we derive 

25 exp\-Tr 24 ) > 2 (24d) In(5 + 26) - In(2 + VT) 

> exp(-1012 ln2ldl) 
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or 

_JdjI 24(1012 ? 21n5 

ln2IdI 7T\ ln2jdj 

For this to hold, it is necessary that Idl < 1034. 

3. Investigation of the Medium Large Region -1034 < d < -104 with the Aid of 
Continued Fractions. Under the assumption of (5), we find a rational approximation 
to y = ln(5 + 2r6 )/ln(2 + /3 ) of the form 

(8) ' 
50 1 exp( dKT~Jd p,q < 2 d I 

q In(2 + HV) q 24 

If h,,/k,, is the nth convergent of the continued fraction of -y, and if q < k,1, the 
theory of continued fractions tells us that 

(9) 1 
< hi< 

2 

k17(kn+1 + kn) kn q 

must hold. Cherubini calculated the beginning of the continued fraction develop- 
ment of -y with a Commodore 64 and found 

,, a,, kn a,, k,, 

0) 1 1 1 1 1 
2 2 3 3 1 4 
4 5 23 5 1 27 
6 34 941 7 1 968 
8 5 5781 9 1 6749 

10 4 32777 11 1 39526 
12 2 111829 13 5 598671 
14 3 1907842 15 9 17769249 
16 46 819293296 17 1 837062545 
18 9 8352856201 19 163 1362352623308 
20 2 2733058102817 21 1 4095410726125 
22 1 6828468828942 23 1 10923879555067 
24 8 94219505269478 25 8 764679921710891 
26 3 2388259270402151 27 2 5541198462515193 
28 6 35635450045493309 29 2 76812098553501811 
30 1 11244754898995120 31 3 414154744350487171 
32 9 3839840247753379659 

(a,, = n th partial quotient, k,, = nth denominator) 

Since q < 2 dl < 2* 1017 < k31, we find in combining (8) and (9) that 

k3(k32+ k31) <38exp(- 24 d)' 

or 
(10) d <~~~24 12 

(I10) a I < -(In38 + Ink31 + ln(k32 + k3,)) < 7*10, 

or q < 1400. If we look once more in our table, we find that even q < k8 must hold, 
and a further reduction with (10) yields q < 340 < k6. Finally, we find in this way 
Fd <138.Sowehave 

PROPOSITION 2. If d < -10000 is the discriminant of any imaginary quadratic field 
with class number one. then -1 9044 < d < -1 0000 
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4. All Imaginary Quadratic Fields with Discriminant d, Class Number One and 
d > -19044. Dickson [4] proves the following lemma. 

LEMMA 1. Let d < -3, d - -4, -8 be the discriminant of an imaginary quadratic 
field with class number one and let g = max(n E N012n + 1 < (Id1/3)05), To= 

'(IdI + 1), T1 = To +j(j+ 1). Then all the numbers T7,0 < j g, areprime. 

With the aid of this lemma it is easy to calculate by hand that within 0 > d > 
-19044 only the numbers 

d = -3, -4, -7, -8, -11, -19, -43, -67, -163 

can be discriminants of imaginary quadratic fields with class number one. As is 
known, Gauss has shown that these numbers have the property in question. 
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