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A Note on Elliptic Curves Over Finite Fields 

By Hans-Georg Ruck 

Abstract. Let E be an elliptic curve over a finite field k and let E(k) be the group of 
k-rational points on E. We evaluate all the possible groups E(k) where E runs through all 
the elliptic curves over a given fixed finite field k. 

Let k be a finite field with q = pfn elements. An elliptic curve E over k is a 
projective nonsingular curve given by an equation 

(1) y2Z + a1XYZ + a3yZ2 = X3 + a2X2Z + a4XZ2 + a6Z3 

with coefficients a1, .. ., a6 in k. For each field k that contains k, the set E(k) of 
points with coordinates in k satisfying (1) forms an Abelian group whose zero 
element can be chosen as the element (0,1,0 ). In this note we want to look at the 
following Question 1: Given a fixed finite field k, what are the possible Abelian 
groups E(k), when the coefficients of the equation (1) vary over all the possible 
values in k? The answer to this question is given in Theorem 3. If we just look at the 
possible orders #E(k), the appropriate Question 2 was answered by Waterhouse [4] 
(see also Deuring [1] for k = Fp) using the theorem of Honda and Tate [3] for 
Abelian varieties over finite fields. 

THEOREM la [4]. All the possible orders * h = #E(k) are given by h = 1 + q -/3 

where /3 is an integer with /3I < 2 /q satisfying one of the following conditions: 

(a) (/, p) = 1; 
(b) If n is even: 23= r_ 

(c) If n is even andp 1 mod 3:3= ? r; 
(d) If n is odd andp = 2 or 3: 1 = ?p ) 

(e) If either (i) n is odd or (ii) n is even, andp * 1 mod 4: /3 = 0. 

Following the general ideas of Waterhouse [4] we can also give an answer to the 
first question. 

For an elliptic curve E over k let End(E) be the ring of group endomorphisms of 
E which are given by algebraic equations with coefficients in k. It is known that 
End(E) is an order in a finite-dimensional division algebra over Q. This division 
algebra determines #E(k): 

THEOREM 2 [2]. Let E, E' be elliptic curves over k; then 
#E(k)= #E'(k) ifandonlyif End(E)?zQ=End(E')?zQ. 
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There is a special endomorphism a, called the Frobenius endomorphism, which 
maps a point P = (x, y, z) on E to 7r(P) = (xq, yq, Zq) on E. From this definition 
it follows immediately that E(k) is the set of all the points P on E with 7T(P) = P. 

If h is a fixed possible order #E(k), then by Theorem 2 the division algebra 
K = End( E) ? z Q is fixed. What are the orders in K that are rings of endornor- 
phisms of elliptic curves over k? The answer is: 

THEOREM lb [4]. Let h = 1 + q - 3 be a possible order #E(k), where /3 satisfies 
one of the conditions (a),.. ., (e) of Theorem la. 

In case (a): K = Q(7r) is an imaginary quadratic field over Q; all the orders in K 
are possible endomorphism rings. 

In case (b): K is a division algebra of order 4 with center Q, X is a rational integer, 
all the maximal orders in K are possible endomorphism rings. 

In cases (c), (d), (e): K = Q(7) is an imaginary quadratic field over Q, all the 
orders in K whose conductor is prime to p are possible endomorphism rings. 

Let h be a possible order and h = KHlhI its decomposition in powers of prime 
numbers. Since the genus of an elliptic function field is one, the possible E(k) with 
#E(k) = h are among all the groups of the form 

Z/phpZ x H (Z/la/Z x Z/lhl aIZ) with 0 < a, < hi. 
lop 

The relation between End(E) and the structure of E(k) is given by the following 
lemma: 

LEMMA 1. Let m be a positive integer which is not divisible by p, and let E,, be the 
group of the points P on E with mP = 0. Then E,, is contained in E(k) if and only if 

- 1 is divisible by m in End(E). 

Proof. If X - 1 is divisible by m in End(E), then X - 1 = X m with X E End(E). 
Let PE Em, then (7 - 1)(P) = X - m(P) = 0. Hence 7r(P) = P and Em c E(k). 

If Em C E(k), then the kernel of X - 1 contains the kernel of the multiplication 
by m. Since the multiplication by m is separable, the universal mapping property for 
Abelian varieties (see [5, p. 27, Proposition 10]) shows that X - 1 = m X with 
X e End(E). 

LEMMA 2. We assume that X is not contained in Q; then by Theorem lb the division 
algebra K is an imaginary quadratic field. The maximal order in K is denoted by 
OK. Let 1 be a rational prime number which is different from p and suppose that 

r- = lX. w, where w E OK is not divisible by 1. Then 

(2) x = min2v,(q - 1) [] 

([X] is the largest rational integer < X; v,(-) is the normalized valuation of Z 
corresponding to 1.) 

Proof. The zeta function of E yields the equation 

iFl(kl = (a- 18(-1 = a- (a- r 1- 1 
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From this we get the two equations 

(3) #E(k) 
and 
(4) #E(k)= (q-1)- 1)- 1). 
If / is prime to w, then (3) yields 2x = v,(#E(k)) and (4) yields 

vI(q - 1) > mintx,vI(#E(k))} [ (? (k)) 

This proves (2). If / is not prime to w, then either / is decomposed or is ramified in 
OK. Suppose (1) = Y- ' in 0K with Y A. Let, for example, v(w) > 0. Then 

v X)= 0 and vOa(w + -) = 0. Equation (3) yields 2x < v,(#E(k)) and Eq. (4) 
yields x > min{v,(#E(k)), v,(q - 1)}, where equality holds if v,(#E(k)) and 
v,(q - 1) are different. A detailed examination of the possible values of v,(#E(k)) 
and v,(q - 1) shows that (2) holds. Suppose (1) = 2 in OK. If v(w) > 0, then 

sy(w) = 1. Equation (3) yields 2x + 1 = v,(#E(k)). Thus we get 
v,(#E(k))-1 v,(#E(k)) 

2 [ 2 J 
Equation (4) shows that v,(q - 1) > [v,(#E(k))/2], which proves (2). 

We can now give an answer to the first question and prove the following theorem. 

THEOREM 3. Let k be a finite field with q = p' elements. Let h = ,1P/ be a 
possible order #E(k) of an elliptic curve E over k. Then all the possible groups E(k) 
with #E(k) = h are the following: 

Z/phpZ X H (Z/la/Z X Z/lh/ aZ) 
ICp 

with 
(a) In case (b) of Theorem la: Each a, is equal to h,/2; 
(b) In cases (a), (c), (d), (e) of Theorem la: a, is an arbitrary integer satisfying 

0 < a, < min{v,(q - 1), [h,/2]}. 

Proof. (a) In case (b) of Theorem la we get X E Z and h = (r - 1)2. Further- 
more, X -1 is divisible by m in End(E) if and only if X - 1 is divisible by m in Z. 
Hence Lemma 1 shows that aI = mint vI(7 - 1), [ h /2]} = h /2. 

(b) Let {1, I q} be an integral basis of OK. Then 'r = a + bq with a, b E Z and 
b $ 0. This yields X - 1 = a - 1 + bq with 

mint v,(a - 1) v,(b)} = mint v,(q - 1), [h,/2]} 

by Lemma 2. For each l 0 p let a, be arbitrary with 
0 < a, < mint v,(q - 1), [h,/2]}. 

Consider the order R in OK whose conductor is equal to HI, p lvh)-a'. There is an 

elliptic curve E over k with R = End(E) by Theorem lb. The exact 1-power that 
divides X - 1 in R is equal to la, for each 1 0 p. Hence Lemma I shows that E(k) 
is equal to Z/phpZ X Hcep(Z/laIZ x Z/lh-aZ). 
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