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On the Convergence of a Finite Element Method 
for a Nonlinear Hyperbolic Conservation Law 

By Claes Johnson and Anders Szepessy 

Abstract. We consider a space-time finite element discretization of a time-dependent nonlinear 
hyperbolic conservation law in one space dimension (Burgers' equation). The finite element 
method is higher-order accurate and is a Petrov-Galerkin method based on the so-called 
streamline diffusion modification of the test functions giving added stability. We first prove 
that if a sequence of finite element solutions converges boundedly almost everywhere (as the 
mesh size tends to zero) to a function u, then u is an entropy solution of the conservation law. 
This result may be extended to systems of conservation laws with convex entropy in several 
dimensions. We then prove, using a compensated compactness result of Murat-Tartar, that if 
the finite element solutions are uniformly bounded then a subsequence will converge to an 
entropy solution of Burgers' equation. We also consider a further modification of the test 
functions giving a method with improved shock capturing. Finally, we present the results of 
some numerical experiments. 

0. Introduction. In this note we prove some results concerning the convergence of a 
higher-order accurate finite element method for a nonlinear hyperbolic conservation 
law. As far as we know, no earlier theoretical results for such methods are available. 
We shall consider Burgers' equation in one space dimension, i.e., the problem of 
finding a scalar function u(x, t) such that 
(0.la) ut + uuX =0, x E R = (- , x),t> 

(0.lb) u(0, x) = uo (x), x E R 

where uo is a given function with, say, compact support. As is well known, solutions 
of (0.1) may become nonsmooth and develop shocks after finite time, even for 
smooth initial data u0. Further, weak solutions of (0.1) are not necessarily unique, 
and to guarantee uniqueness, one has to require a certain entropy condition to be 
satisfied. A weak solution satisfying the entropy condition is the (unique) so-called 
entropy solution of (0.1). 

We shall consider a special finite element method for (0.1), namely the streamline 
diffusion method based on a space-time finite element discretization with piecewise 
polynomials of degree k > 0, together with a certain modification of the test 
functions giving added stability. We shall first prove that if a sequence of finite 
element solutions converges (as the mesh size h tends to zero) boundedly almost 
everywhere to a function u, then u is an entropy solution of (0.1). Thus, streamline 
diffusion finite element solutions cannot converge to a weak solution not satisfying 
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the entropy condition, i.e., to a nonphysical solution. The method may directly be 
formulated for systems of conservation laws in several dimensions and the conver- 
gence result just stated extends to this situation if so-called entropy variables are 
used (see [12]). 

We shall further prove that if the streamline diffusion finite element solutions are 
uniformly bounded, then a subsequence will converge almost everywhere to a 
function u. We thus conclude that if the finite element solutions are uniformly 
bounded, then a subsequence will converge to an entropy solution of (0.1). This 
result is obtained by an application of the theory of compensated compactness, 
introduced by Murat and Tartar (see [15]) and exploited by DiPerna [1]. We 
emphasize that our finite element method is higher-order accurate (for smooth 
solutions the error is 0(h k + 1/2 )) and is not based on adding heavy artificial 
viscosity, limiting the accuracy to at best 0(h). The problem of proving uniform 
boundedness for the finite element solutions is left open (no maximum principle 
seems to be available). However, it may in fact be possible to prove convergence 
without the uniform boundedness assumption (R. DiPerna, personal communica- 
tion; cf. also Remark 4.4 below). 

Streamline diffusion type finite element methods (under the name SUPG, Stream- 
line Upwind Petrow Galerkin) were first applied to nonlinear (stationary) hyperbolic 
conservation laws in Hughes and Tezduyar [3] with further development in Hughes 
et al. [4]-[8]. The advantage of using entropy variables in finite element formulations 
was pointed out in [4], [5], with inspiration from, e.g., Harten [2] and Tadmor [14]. In 
the cited work by Hughes et al. several very good numerical results for streamline 
methods for the stationary compressible Euler equations in two dimensions are 
reported. 

Note that we have earlier ([9], [10], [11]) demonstrated the satisfactory properties, 
including good stability and high accuracy of streamline diffusion finite element 
methods, for linear advection problems, in particular for nonsmooth exact solutions, 
and for the incompressible Euler and Navier-Stokes equations. Conventional finite 
element methods lack in either stability (as standard Galerkin methods) or accuracy 
(as classical artificial viscosity methods). In particular, with a standard Galerkin 
method for (0.1) there is a possibility of convergence to a nonphysical solution not 
satisfying the entropy condition. 

Although the streamline diffusion method in its basic form discussed so far gives a 
dramatic improvement as compared to the standard Galerkin method, still some 
overshoots persist at discontinuities of the exact solution. Recently, in the case of 
stationary problems, Hughes et al. [6], [8] introduced a variant of the streamline 
method, a shock-capturing streamline method, based on a certain ingeniously chosen 
additional modification of the test functions and demonstrated in numerical experi- 
ments the improved shock resolution of the modified method. 

In this note we also consider a shock-capturing modification of the basic stream- 
line diffusion method for Burgers' equation obtained by applying the idea of [6] to 
the present time-dependent problem. The resulting scheme indeed shows consider- 
ably improved shock resolution in numerical tests. The convergence results for the 
basic streamline method stated above carry over also to the shock-capturing modifi- 
cation, but the, problem of mathematically analyzing the improved shock resolution 
of the modified scheme is open, even for linear problems. 
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We finally present the results of some numerical experiments for Burgers' equa- 
tion without and with shock-capturing, demonstrating a very satisfactory perfor- 
mance in the latter case. 

Let us recall that the basic convergence results for finite difference methods for 
scalar conservation laws are based on a priori estimates for first derivatives in 

Li-norms (BV-estimates). Such estimates seem to be very difficult to obtain for finite 
element methods on general meshes, and thus the basic theory for finite difference 
methods for scalar conservation laws can most likely not be extended to finite 
element methods. However, for systems of conservation laws one can probably not 
expect to achieve Li-control of first derivatives (cf. [13]), and thus a new approach to 
the convergence problem may have to be made anyway in this case. Here, the theory 
of compensated compactness may open possibilities of proving convergence without 
derivative estimates, cf. [1], [15]. 

To sum up, the theoretical and computational results for the streamline method 
obtained so far indicate that efficient finite element methods may be designed for 
hyperbolic conservation laws (in particular, if coupled with adaptively constructed 
meshes). Thus, in compressible flow there seems to exist a finite element alternative 
to the up till now dominating L1 or BV based finite difference methodology. 

1. The Streamline Diffusion Method. Let us now define the basic streamline 
diffusion method for (0.1). Let 0 = to < tI < t2 ... be a sequence of time levels, set 

I, = (to, tn+1) and introduce the 'slabs' S, = R x I,. For h > 0 and n = 0, 1, 2, . .. 
let Thn be a quasi-uniform triangulation of Sn into triangles K of diameter hK < h 
with smallest angle uniformly bounded away from zero, and define for a given 
k> 1, 

Vhn= {v E H1(S.): V K E Pk(K), KE Th, 

where Pk(K) denotes the set of polynomials on K of degree at most k. Typically, 

tn+l - tn , h and thus Sn will normally be one element wide, cf. Section 6. Note 
that since uo has compact support, it follows that also the solution u has compact 
support in R X [0, t] for any t. This means that we may restrict the functions in Vhn 

to be zero for IxI large. 
We shall seek an approximate solution U Uh in the space Vh = OVhn, i.e., 

for n = 0,1, 2, ..., we will have 

U I S" E= Vh- 

Note that the functions in Vh are continuous in x and possibly discontinuous in t at 
the discrete time levels tn. The streamline diffusion method for (0.1) can now be 
formulated as follows: Find U E Vh such that for n = 0, 1, 2.... 

(1.1) f(Ut + UUx)(v + h(vt + Uv))dxdt + (U+- U)v+dx = 0 

V V C= Vh 

where 8 = h (cf. Remark 4.5) and 

v = lim v(t, + s), U2= un. 
s o 0? 
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As in [10] we see that (1.1) admits at least one solution. Note that (1.1) corresponds 
to an implicit time stepping scheme; see Section 6 below. 

Our main concern is now the problem of convergence of the method (1.1), i.e., 
whether Uh converges in a suitable sense to an entropy solution u of (0.1) as h tends 
to zero. To make this precise, let us recall that a function u E Lo( Q), 2 = R x 
(0, so), is a weak solution of (0.1) if for all qp E C0&(2), K2 = R x [0, xo), we have 

(1.2) (Ut + 2 ? T)dxdt + uOT( 0o)dx = O. 

Further, we recall ([1], [15]) that a weak solution u of (0.1) is an entropy solution if 
the following entropy inequality is satisfied: For all qp E C0(0i2) with q) > 0, 

, [2 3] 

(1.3) J [2Tt + 3 dxdt> 0. 

Thus, our problem is to prove that Uh converges to a function u satisfying (1.2) and 
(1.3). 

Remark. An entropy solution of Burgers' equation according to the above defini- 
tion is most likely unique. However, a proof of uniqueness seems to be available in 
the literature only under the additional assumption that u has bounded variation, 
see [1]. W1 

We will use the following notation: For w a domain in Rd, d = 1, 2, and m a 
nonnegative integer, let Hm(w) denote the usual Sobolev space of functions with 
derivatives up to order m square integrable over w, with norm 11 Irm) and 
corresponding seminorm I Im(x including only highest-order derivatives. Further, if 
m = 0, this index is omitted, so that 11 11, = 11 IIL2(,). Also, we write I = 

IIL ()) We also use the convention that for N > 1 

N-1 

1 +UUx 112QN 11 Ut + U X 112S 

n==O 

where ON = R x (O, tN). By C we will denote a positive constant independent of u0 
and h, not necessarily the same at each occurrence. 

2. Preliminaries. A Basic Estimate. The basic stability estimate for (1.1) is obtained 
by taking v = U, which gives by integration by parts and summation over n: For 
N = 1, 2, .. ., we have 

(2.1) hIIUt+ +UUx 1E IIUn- Un|| + 2 -|U| 2 n= 2 2 

We also note that from (2.1) we may obtain an estimate for IIU(t)IIR for all t > 0 
as follows: For tn < t < tn+I we have 

ju(t) 112 = n +d 112 U() _I s 

R - 2f I (Ut + UUx)Udxds 

Un+ +hII L4+ UUX + tI+ +f?1IU(S)I12 dS 
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so that by Gronwall's inequality for tn < t < tn+1 

||U~t || <C [hIlUt + UUX1125 + |IU- 11R 

Together with (2.1) this proves that 

(2.2) IIU(t) ||R < CIIUOIIRI t > 0. 

Further, with '7ThV E Vh a standard interpolate of v e H1(Q), we have for s = 0, 1 
the interpolation error estimates 

(2.3a) |V - 7hVlls, Q < Chm-sVm ,Q, 1 < m < k + 1, 

(2.3b)~ ~ ~ 1 || V- (7ThV)+ II R < "h I V I 1AZ 
We also have the following "super-approximation" result: 

LEMMA 2.1. There is a constant C such that for qp E H1(Q), v E Vh, n = 1, 2, ..., 

(2.4a) VT) - 7h(VT) |1sQ < Chl |sIVlIIL(Q)II) Q1,, s = 0,1, 

(2.4b) (vT) - (qh(V)) R < CnI(v ILx2)llT II s. 

Proof. To prove (2.4a), it is sufficient to prove that for each triangle K E Thn, 

|| VT 7-h(VT) |1sK < Chl sll V llooKllII1,K, s = 0,1. 

To this end, let Th E PO(K) be defined by 

fThwdx = fK Awdx V w E Po(K 

i.e., Th is the L2(K)-projection of T onto the set PO(K) of constants on K. By 
well-known estimates we have 

(2.5) 1' 
- T 

hllK < Ch||l|l, K. 

Further, 

jVjp 7- h( VT) IIK < IlV h 7- h(Vh) IIK + V - V h 1K + 17Th(V) - 7h(VVh) IIK 
= T1 + T2 + T3 

with obvious notation. Now, since v E Vh and Th is constant on K, 7h(V9h) = V9h 
on K and thus T1 = 0. Further, using (2.5), we have 

(2.6) T2 = VT - V()h llK < ChIl V lo, KII lll K, 

and 

T3 < 7h ( V (T) - )h)) IIK 

(2.7) < IIV( -h) IIK + ||V (T)-h)- 7h(v( - h)) IIK 
< Ch llVlooKIIq)l llK + Ch IV(99 - T9h) 1, K < ChllVIl0, KIIq)Tl1 K, 

where in the last step we also used the inverse estimate 

I V I W.1 (K) < Ch 11 v IL.(K), V GE Pk ( K 
Recalling (2.6) and (2.7), we thus obtain (2.4a) with s = 0. In a similar way we 
obtain (2.4a) with s = 1 and (2.4b), and the lemma follows. E 
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3. Convergence Towards Entropy Solutions. We start our discussion with the 
following result, which proves that if the solutions Uh of (1.1) converge boundedly 
almost everywhere to a function u, then u satisfies (1.2) and (1.3), i.e., u is an 
entropy solution of (0.1). As noted; this proves that the method (1.1) cannot produce 
discrete solutions converging to a nonphysical solution of (0.1), or in other words, 
that (1.1) in some sense has a correct dissipation built in. Again we note that this 
dissipative effect is not obtained by adding a strong dissipative term of, e.g., the 
form -huXX to (0.la), as is typically done in the case of monotone difference schemes 
(e.g., the Lax-Friedrichs' scheme). Such an added dissipative term limits the order of 
accuracy to at most first order, while the scheme (1.1) is of order at least k + 1/2 
for smooth solutions. 

THEOREM 3.1. Suppose the solutions Uh of (1.1) converge boundedly a.e. in Q to a 
function u as h tends to zero, so that in particular for h > 0, 

(3.1) IIUhKQ l <, C. 

Then u satisfies (1.2) and (1.3), and thus u is an entropy solution of (0.1). 

Proof. To prove that u satisfies (1.2), we choose v = ghcp with p e CO (Ki) in (1.1) 
to get 

f (Ut + UUx)Tdxdt + J (U+- U)p+dx 

-I (Ut + UUX)(T - hTh) dxdt + f (U+- Un )(qg+U-(onhs ) dX 

-hf j(Ut + UUX)((ThT)t + U(7rh)X) dxdt 

-E' + E 2 + E 3 
Sn n n 

with the obvious notation. Integrating here by parts on the left-hand side and 
summing over n, we get 

(.fu (Up + 2jq) A dxdt - uOp( ,0) dx 

(3.2)2 
= 5?, E, + A E2 + A E R R1 + R 2 + R'. 

n>O n>n O n>O 

Now, by (2.3), (2.1) and (3.1) we have 

IR'I < ChII Ut + UUxI IIpI m 1|1 < CV1' g jjISQ i = 1, 3, 

Psgohlin3)wn s 1/2 
CR^h < vX |Un Un I Rl~lE < CA|h 11 

Q. 

Pass,-ing to the, limit in (3.2), we, now see that u stsis(.) 
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Finally, to prove (1.3), we choose v = v7h(UcP) with qp > 0, p E CO (Q) to get 

f (Ut + UUx)Uc dxdt +? (U+ U- )U+p+ dx + hf (Ux ? UU )2pdxdt 
SI'R SS 

=|( Ut + UUx ) ( U9e - gts ( Us ) ) dX dt 

n - ,,n ) ) 

+f| (U>- U+)((U)-Q h(U))2)dx 

+hf (Ut + UUx)((U99)t - (Qh(U9))t + U((U9)x -Q(h(U9))X))dxdt 

-hf (U; + UUx)(Ucp ? u2qx) dxdt 1'? + U2 ? F 4 ? F, 

again with the obvious notation. Integrating by parts as above and summing over n, 
we get 

(~ ~~ ~9 ) IS - x dxdt + 2 I (U+UN n dx 

(3.3') 4 4 4 4 
?hf (Ut +? UUx)2cpdxdt= Fj S 

j=1 n>0 j=1 

Using now (2.1), (2.4) and (3.1), we conclude that 

(3.4a) S/iI < Ch|U ? UUX 11IIj,&2 < Cv7hp1 Q, j = 1,3,4, 

(3.4b) |Sl<CrhEIl+ Un II) ||| < CA||h | 9 
n>O 

Passing then to the limit in (3.3), we find that u satisfies (1.3), and the proof is 
complete. E 

Remark 3.1. Theorem 3.1 may be extended to systems of conservation laws in 
several dimensions using entropy variables; see [12]. E 

4. Convergence a.e. by Compensated Compactness. We now relax the conditions of 
Theorem 3.1 and only assume that the maximum norm bound (3.1) is satisfied. 
Under this assumption we shall prove, using a compensated compactness result by 
Murat and Tartar (see [15]), that a subsequence Uh converges a.e. to a function u. By 
Theorem 3.1 it then follows that u is an entropy solution of (0.1). We thus conclude 
that a subsequence Uh converges a.e. towards an entropy solution of (0.1) if 
assumption (3.1) is satisfied. 

THEOREM 4.1. Suppose the solutions Uh of (1.1) satisfy (3.1). Then a subsequence Uh 
converges a.e. to an entropy solution u of (0.1). 

Proof. According to [5] it is sufficient to prove that 

(4.1) -npi(U) + a q(U) E A + B, 

where U = Uh and 

A = compact set of H (), 

B = bounded set of M(M ), 
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with the following two choices of the functions q and q: 

(4.2) q(v) =v, q(V) =2' 

(4.3) 'q(V)=2 q(v)= . 

Here, M(Q) denotes the set of bounded measures on U. 
To prove (4.1) in the case (4.2), let us choose v = VhgP ' EP Co (Q) in (1.1) to give 

as above 

-fuPq U2) xd 
)&(5t + 2 pIX dx dt 

Xf(U + UUX)(p-7Thp) dxdt + f (U> U)(n-( )n)d 
nil R 

-h (Ut + UUX) ((7hcp) t + U(7hp) X) dx dt 

< Ch|lUt + Uux 9Ijll 11,u + CIu E Un 1-|2 

so that by (2.1) 

(4.4) f T (ut 2 ? Tx) dxdt < C h- I I lI 

This proves that 

'q(U) + a- q(U) GE A, 

and (4.1) follows in the case (4.2). 
Finally, in the case (4.3) we choose in (1.1) v = 7h(Up), qp e CO (Q), to get as 

above 

-9( 2 + 3I T dT dt 

-h I(Ut + UUx) 99dx dt -- at(U n Un)299n dx E ,S 
n>O R j-1 

so that, recalling (2.1) and (3.4), 

U2 u3 

(4.5) 4 I 
+ ? 9X dxdt < CIIpII11L-(&)) + CVh I9 S 

This proves (4.1) in the case (4.3), and the proof is complete. El 
Remark 4.1. Notice that since the flux function f(u) = u2/2 in Burgers' equation 

is strictly convex, it is sufficient to establish (4.1) for one strictly convex entropy q 
and corresponding entropy flux q, e.g., with q and q given by (4.3) (cf. [15]). For a 

general nonconvex f we would have to prove (4.1) for all convex entropies q and 

corresponding fluxes q, a considerably more difficult task. El 
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Remark 4.2. In the compensated compactness argument that we have used, the 
assumption of one space dimension seems essential. Thus, extension of Theorem 4.1 
to the case of several space dimensions is not direct. El 

Remark 4.3. We notice that the entropy condition (1.3) for Burgers' equation used 
in this note corresponds to the entropy condition for the compressible Euler 
equations expressed in entropy variables used in [4], [5]. In both cases the entropy 
condition is basically obtained by multiplying the conservation law itself by the 
quantity up, where u is the unknown and p a nonnegative test function, and then 
integrating. From the finite element point of view, this is a favorable situation, since 
the discrete counterpart of the entropy inequality can then be obtained by taking 
v = 7rh(Up) in the finite element equation; cf. [12]. El 

Remark 4.4. The assumption (3.1) is used at two crucial steps above, namely in 
(4.4)-(4.5) and in the Murat-Tartar result used in the proof of Theorem 4.1. In both 
cases the assumption (3.1) may be replaced by a somewhat weaker condition; in (4.5) 
we only need that VhIU h.2 a tends to zero as h tends to zero, and to apply the 
Murat-Tartar result, it seems to be possible to replace (3.1) by the assumption 
II UhIL(a) - C for some p > 6. E 

Remark 4.5. To obtain the theoretical results of this paper, it is not criticial to use 
precisely the test functions (v + h(vt + Uv,)) in (1.1). In fact, it is sufficient to 
choose 8 = 8(h) such that 8 -* 0 and h/ 8 -4* 0 as h -* 0. The choice 8 = h (or 
more precisely 8 3 (1 + U2)-1/2h, cf. [4], [12]), however, seems most natural and is 
also the choice that gives O(h k + 1/2) convergence for smooth solutions; cf. Section 6 
below. El 

5. A Shock-Capturing Streamline Diffusion Method. We now consider a variant of 
the streamline diffusion method (1.1) with improved shock-capturing (cf. [6], [8]). 
Using the notation 

3 = 3(U) = (1, U), Vv = (Vt, V.A 

the modified test function in (1.1) can be written 

v + (v t + UvJ) = v + 3/3. Vv, 

where,/ Vv = v + UVx. 
The further modified test functions in the shock-capturing streamline diffusion 

method are given by 

v + 3/3 V + a/ VV, 

where /3 = /8(U) is the projection of /3(U) onto V U (locally for each (x, t)), that is, 

vU, 

Ivul 

and 8 is a parameter again with 8 - h. Note that by the definition of , we have 
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The shock-capturing streamline diffusion method can now be formulated as 
follows: Find U E Vh such that for n = 0,1, 2,..., 

(Ut + UUx)(v + 83(U) *vv + 83(U) *Vv) dxdt 

(5.2) 

+?fo(L+- U1)v+ dx = O. v E Vh . 

Theorems 3.1 and 4.1 directly extend to the shock-capturing method (5.2). Note 
that the basic stability estimate for (5.2), in view of (5.1), is the same as (2.1) (with h 
replaced by (8 + 8)). As already indicated, the improved shock-capturing of (5.2) 
still awaits analysis. 

6. Numerical Results. We now give some numerical results obtained using the 
obvious version of (1.1) and (5.2) with piecewise bilinear finite elements on a 
uniform mesh of the form 

-+ - - - - t 
-t 1 - i n+ 1 

41 

tn 

For each n we have in this case that (1.1) and (5.2) is equivalent to a nonlinear 
system of equations with unknowns representing the nodal values of Un and Un+1 
at the points marked by solid circles in the above figure. Here, also the known nodal 
values of Un entering (1.1) as data are indicated by squares. The computations were 
made with h = 0.1 and with the following initial data: 

{0 for x < 2.05, 
81 for 2.05 <x < 5, 

u0(X) = - x)/2.9 for 5 < x < 7.9, 
t0 for x>7.9. 

The corresponding exact solution has a rarefaction wave centered at x = 2.05 and 
develops a shock at x = 7.9 at time t = 2.9. 

Below we give the results after 1, 21 and 51 time steps obtained using (1.1) with 
8 = h, and (5.2) with 8 = h and 8 = h, 2.5h and 5h. The exact solution is 
represented by the dashed line. We note the improved shock-resolution of (5.2) with 
proper choice of 8. For comparison we also give the results at the corresponding 
time levels obtained by the Lax-Friedrichs' finite difference method and Godunov's 
method with At = Ax = 0.1 and initial data = Iu0. 
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