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An A Posteriori Parameter Choice for Ordinary 
and Iterated Tikhonov Regularization of 

Ill-Posed Problems Leading to 
Optimal Convergence Rates 

By Helmut Gfrerer * 

Abstract. We propose an a posteriori parameter choice for ordinary and iterated Tikhonov 
regularization that leads to optimal rates of convergence towards the best approximate 
solution of an ill-posed linear operator equation in the presence of noisy data. Numerical 
examples are given. 

1. Introduction. Let X, Y be real Hilbert spaces, T: X -> Y a compact linear 
operator, y E Y. Our aim is to obtain the "best approximate solution" of 
(1.1) Tx = y 
i.e., the unique element that has minimal norm among all minimizers of the residual 

IITx - yl. If P denotes the Moore-Penrose generalized inverse (see, e.g., [17]), the 
best approximate solution is given by Tty. For nonclosed range R(T) of T, the 
problem of determining Tty is ill posed. The best approximate solution exists only 
for y e D(Tt=) R(T) + R(T)' (which we assume from now on) and depends 
discontinuously on the right-hand side. An important example is the (Fredholm) 
integral equation of the first kind 

(Tx)(t):= f k(t,s)x(s) ds =y(t), t E [0,1], 

where k is a nondegenerate L2-kernel and X = Y = L2[0, 1]. In the ill-posed case, 
the crux of the difficulty is that the data are only imprecisely known in general, that 
is, only some y, E Y is available satisfying 

(1.2) 11 Y - Y6 <, 
where 8 is an a priori known error level. Since Tt is unbounded, Tty, is not a 
reasonable approximation to Tty, even if it exists. Because of this, one has to use 
"regularization methods" for approximating Tty. A widely used regularization 
method is Tikhonov regularization. For a > 0 we denote by x, 8 the unique solution 
of 

(1.3) (aI + T*T)x = T*y6. 
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It is well known (see, e.g., [3]) that if the "regularization parameter" a is chosen in 
dependence of 8 such that liman 02a(S)-' = 0 and lima >0a(8) = 0, then 
lima0 I X'(8) a - TtyII = 0. If the exact solution fulfills the smoothness property 

(1.4) Tty E R((T*T)v) 

for some 0 ? v < 1, then for an a priori choice of a such as 

(1.5) a(8) = CS2/(2v+1), C > 0, 

one obtains the convergence rate 

(1.6) || X(8) -Tty = 0(82v/(2v+ 1)) 

(see [19]). This convergence rate is best, 0(82/3), for v = 1. A saturation result of 
Groetsch [11] says that a higher rate of convergence cannot be expected under higher 
smoothness assumptions and other choices of a(8). However, a higher convergence 
rate can be obtained by "iterated Tikhonov regularization" (see [14]), which is 
defined by the formulas 

(1.7) x? 8:= 0; (aI + T*T)xj 8 = T*y+a+ lx , j= 1,..., n. 

If the smoothness condition (1.4) holds for some 0 < v < n, then a parameter choice 
according to (1.5) yields a convergence rate 

(1.8) ||xn - Tty|- 0(682P/(2v+1)) 

which is best, 0(82n1/(2n+1)), for v = n. Unfortunately, one cannot determine a(S) 
by (1.5) in practice, since the number v depends on the unknown solution Tty. 
Therefore, many authors suggest a posteriori methods to compute a reasonable value 
of a using the input data y, and the error level 6. A favorite choice of a is the 
so-called "discrepancy principle" due to Morozov [16], where a = a(8) is computed 
as the unique solution of 

(1.9) |iTXa"6 - Y6 -82. 

Arcangeli [1] proposes a = a(S) as solution of 

(1.10) || TX, 112 682 -1, 

while Engl [4] (for a similar method; see Schock [20]) suggests choosing a = a(6) as 
the unique root of 

(1.11) ||T *Txa, -T *yj112 = a - q 

with suitable constants p, q. Engl [5] applied his method also to iterated Tikhonov 
regularization. 

All these methods do not yield the convergence rates given by (1.6). For Morozov's, 
resp. Arcangeli's approach, this is shown in [10], resp. [13]. Engl has to choose the 
parameters p and q in (1.11) in dependence of the unknown quantity v to obtain 
the rates (1.6). 

The aim of this paper is to give an a posteriori method for choosing the 
regularization parameter for iterated Tikhonov regularization, where no information 
about v is used and the rates (1.8) are achieved, and even improved upon, for v < n. 
The difference is the replacement of the capital-0 condition by the little-o condition. 
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The basic idea of our method is rather simple. Obviously, the best possible 
parameter choice would be such that the squared error lIx"', - TtyII2 is minimized. 
Of course, this criterion is not applicable, but we will find a minimizer of some 
upper bound of the squared error. 

At the end of Section 2 we investigate convergence rates for Morozov's dis- 
crepancy principle (1.9). It is well known (see [12]) that a certain upper bound of the 
squared error is minimized precisely when the parameter is chosen according to 
(1.9). Using the same technique of proof as for our method, we will show that 
Morozov's method yields also the convergence rates (1.6), but only for v < 1/2. In 
Section 3 we adapt the theory developed in Section 2 to make it applicable to 
practical computations. For this purpose, we consider approximations to the best 
approximate solution which lie in a finite-dimensional subspace Vm of X. More 
precisely, for each a > 0 and n E N, we define X m iteratively by the formulas 

(1.12) X m 0; (aI + Tm*Tm)XJm = Tm*Y6 + axJ-1m, j = 1,..., fn, 

where T,1,:= TPm and P,, is the orthogonal projector of X onto Vm. For n = 1, this is 
equivalent to the approaches of Groetsch [12], Engl and Neubauer [6] and closely 
related to Marti's method [15]. 

Now the regularization parameter has to be chosen appropriately in dependence 
of the noise level 8 and the subspace Vm. So Groetsch [12] applied the discrepancy 
principle to this finite-dimensional setting, whereas Engl and Neubauer [6] modified 
(1.11) to obtain finite-dimensional approximations. In view of known results, these 
methods seem to have the same disadvantages mentioned above for the infinite- 
dimensional case. 

We give in Section 3 an a posteriori parameter choice a = a(8, Vm, n) such that 
for Tty E R((T *T)V) we have 

((82v/(2v+1)) + o(y2,v) if 0 < V < 1/2, 

||Xt' - Ttyjj {O(82v/(2v+l)) + O(Ym) if 1/2 < v < n, 

0 (82nl(2n+l)) + 0(Y ) if v > n, 

where Ym IIT(I - Pm) is a measure of how well Tm approximates T. Again, this 
method requires no information about v and is numerically feasible in the sense that 
it depends on finitely many numerical parameters. 

In Section 4 numerical examples are given which show that theory and practice 
agree quite well. 

2. Optimal Parameter Choice for Iterated Tikhonov Regularization with Inexact 
Data. From now on we assume that y E D(Tt), Tty * 0, and we wish to determine 
x = Tty, having at our disposal only an approximation y6 satisfying 

(2.1) jy -yjj2< 82 ,< & 1Qy 2/C 

for some C > 1, where Q denotes the orthogonal projector onto R(T). We believe 
that condition (2.1) is not a severe restriction. It may be interpreted by saying that 
the relative error in the input data, 8/IIQyII, is small. For n E N, z E Y, a > 0 we 
define 

(2.2) fn(a?z):= a 2n+?1K(aI + TT*)-(2n+l)QzQz). 
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We further define the error functions 

(2.3) Tn(a):= a - Ttyl, n a(a) = | - Ttyl, 

where x n is given by (1.7) with y instead of y,. The following lemma states some 
properties of these functions. Proofs of this and subsequent results are given in 
appendices in the Supplements section of this issue. 

LEMMA 2.1. For each z E Y with Qz * 0 and each n E N, the function a fn (a, z) 
is continuous, strictly increasing on (0, oc) and limit ao fn(a, z) = 0, limit 00 fn(a, z) 
= IIQz 112. For each n E N, the function a --> (a) is continuously differentiable and 

strictly increasing on (0, oc). Furthermore, there holds 

a2q9(a) = 2nfn(a, y), lim T9 (a) = 0, lim T9?(a) = ||Tty| 1. 
n ~a - a x- o 

Proof. Cf. Appendix 2. D 
Application of the first part of Lemma 2.1 and the Intermediate Value Theorem 

yields the following corollary. 

COROLLARY 2.2. Suppose that y, y& E Y and 8 > 0 satisfy (2.1) for some C > 1. 
Then for each n E N there is a unique a > 0 such that 

(2.4) fn (a, y&) = CA2. 

From now on, we denote the unique a determined by (2.4) by a(8) (although it 
depends also on y,, C, and n). An expression involving a(8) will be understood in 
the sense that for fixed C > 1 and n e N it holds for all y, satisfying (2.1) and the 
corresponding a determined by (2.4). 

The next theorem gives some motivation for our proposed parameter choice. 

THEOREM 2.3. Let n E N be fixed and suppose that y, y8 E Y and 8 > 0 satisfy 
(2.1) for some C >? 1. Then the function Tpn ̂((a) is strictly increasing for a > a-, where 
a > 0 is the unique solution offn (a, y&) = 62. 

Proof. Using (2.3) and (1.7), we have 

n ~~~~~~~~~~~~~2 

=a) E a k(aI + T*T)fT*y, - Tty 
k=1 

It is easy to see that Tn 3(a) is continuously differentiable for a > 0 and 

(na) = 2K E akl(aI + T*T)kT*y, - Tty 
\k=1 

? [(k - 1)ak-2(aI + T*T)-kT*y& 
k=1 

(2.5) -kaik (aI + T*T)-k 'T*yj) 

= -2nK a ak 1(aI + TT*)-kTT*y8 - Qy, a n '(aI + TT*)(n+1)QY8) 

= 2n~a'"(aI + TT*)'1Qy8 - Qy8 + Qy, a n-1(aI + TT* ) 
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To prove our theorem, it suffices to show that yn 8(a) > 0 for a > a. But a > a 
implies by Lemma 2.1 that fn(a, y,6) > fn(a-, y,6) = 82 and hence 

(2.6) f (a, y) > Sfn ( )1/2 > IQ( -) lit ( )1/2 

Since II a"2(aI + TT*)1/211 1, we obtain 

fA (a yJ2 =la '/2(aI + TT*) (fl/2)Qy8| a>'n+'(aI + TT* QY8 

This, together with (2.6), yields for a > a, 

fn(a, y,) > IQy,8 - Qy a. an1(aI + TT*)(fl?')QY 1 

>( QYy - QY An+ 1 (aI + TT*)-('7+l)Qy ) 

By (2.5) this is equivalent to (a2/2n)yp,3(a)> 0, and hence our theorem is 
proved. E 

Remark 2.4. Theorem 2.3 and the first part of Lemma 2.1 show that a choice 
C = 1 in (2.4) yields the best result among all possible choices of C > 1. However, 
for technical reasons, we also have to consider the case C > 1. 

Our convergence analysis is mainly based on the following three lemmas, whose 
proofs are given in Appendix 2. 

LEMMA 2.5. Let C > 1, C,:= (C12 -1)2, C2:= (1 + Cl/2)2. Then for each 
8 > 0, y, y6 

E Y satisfying (2.1), and for each n E N, we have 

C182 < fn(a(8), y) < C28 2. 
LEMMA 2.6. Let y > 0. Then for all a > 0 and all n E N there holds 

q'n, a) < 2/mint y, 1 } (2yn62/a + qPn(a)) 

LEMMA 2.7. Let y > 0, 8 > 0, n E N. Then a is a minimizer for the one-dimen- 
sional optimization problem 

(2.7) minimize 2n y8 2/a + TPn (a) 

subject to a > 0 

if and only iffn(a-, y) = y62 holds. 

We are now in a position to derive rates of convergence for our parameter choice. 

THEOREM 2.8. Let C > 1, n E N be fixed. For each 8 > 0 and y6 E Y satisfying 
(2.1), let Xn be the result of iterated Tikhonov regularization of order n as described 
by (1.7), where a(6) is the unique solution of (2.4). Then lim& , 0 Xn(8) s = Tty. If, 
further, Tty is an element of R((T*T)V) with v > 0, then 

IIxtZ -T y = o(2v/(2v? 1) ) for v < n 

and 

a(3),3 ty - Q(62n7(2n?1)) for v > n. 

Proof. First suppose C > 1; let C1, C2 be as in Lemma 2.5 and set 

Y fn(a(8), y)/82. Thus C, < y < C2. By Lemma 2.7, a(x) is a minimizer for 
2n-y62/a + pn(a). Thus we obtain, by Lemma 2.6, 

1p,13 (a(8)) < 2/min{y, 1}(2ny82/a(8) + (pn(a ))) 

(2.8) = 2/min{y,1}min{2ny82/a + p,(a): a > 0} 

< 2/min{C1,1}inf{2nC282/a + p,(a): a > O}. 
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Using Lemma 2.1 and the Intermediate Value Theorem, it can be easily shown that 
for each 8 > 0 the equation 

(2.9) qn(/3) = 2n82/13 

has a unique solution, which we denote by /3n(3). Since f3,X(8)pn(f3n(8)) = 2n82, we 
have, together with Lemma 2.1, lima 03n (8) = 0 and also lim602n 2/f3Bn(S)= 

lim8 A 0 0Tn ( fln ( 8 )) = 0. Because of (2.8) 
(2.10) Tn ja) < 2/min{C1, 1}(2nC282/An(8) + ()n(fn(8)))' 

and hence lim = 0 Xn - Tty. 
Now assume that Tty E R((T*T)v) with v > 0 and set u:= min{v, n). Then we 

get, from (2.9), 

(3)(+2g = 2= n8 n( 8 )2/1(n (#n(8)) 

and hence 

fln(S =) (2n82)1/(1?2) ) [n(8)2,/(Pn(An(8)) ]/(1?21). 

Thus we have 

2n 82/An3() =(2n 8 ) I/(1? 22 n (An( 8) )1#n(8)2 I 2 

We obtain from [18] that q)n(f) = o(f32') for A < n, resp. p,(/3) = 0(/2n) for 
tt = n. This, together with lim3 0 /3n(8) = 0, shows that 

2n82//ln(8) = Tn(I3n(8)) = o(84tL/(1+2t)) for v < <n 

resp. 

2n 82/pn3() = Tn(3n (8)) = 0(84t/(1?+2t)) for v > n = [ 
Because of (2.10) this implies our assertion for C > 1. For C = 1 the result follows 
from Remark 2.4. O 

Theorem 2.8 says that the convergence rate can be arbitrarily close to the desirable 
rate O(3) if the data are sufficiently smooth and n is chosen sufficiently large. 
However, our upper bound of the squared error, given by Lemma 2.6, involves the 
factor n, and so it might be problematic to choose n too large. In particular, for 
given y, E Y and 8 > 0, the approximation error Ix4Xna - Ttyll might become 
arbitrarily large if n tends to 0o. However, our next theorem shows that this is not 
the case. 

THEOREM 2.9. For C > 1 let C1, C2 be as in Lemma 2.5. Then for each ye E Y, 
8 > 0 satisfying (2.1), and for each n E N, there holds 

pna8(a(8)) < 2(C2 + 1)/min{C,1)}(pn(fln(8)), 
where f3n(3) is given by (2.9). Further, if m < n, then 3n(I3n(8)) < (pm(fim(8)) for all 

> O. 

Proof. Cf. Appendix 2. El 
We now show that Morozov's discrepancy principle (1.9), under the smoothness 

assumption Tty E( R((T*T)v), yields the convergence rates o(82v/(2v?+l)) for v < 
1/2, resp. 0(31/2) for v > 1/2. More precisely, suppose that 

(2.11) y E R(T), 
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and that our approximate right-hand side y, satisfies 

(2.12) 11 Y - Y6 11 < 8 < 11 Y6 11 

Then it is well known (see, e.g., [12, Theorem 3.3.1]) that (1.9) has a unique positive 
solution, which we denote again by a(8). Note that 

Txa.6 -y = TT *( a I + TT * ) Qy3 - Qy, -( - Q )y 

= -a(aI + TT*)-lQy -(I - Q)y 

and hence T*(y3 - Txa.,) = ax,,,. Thus we obtain 

xa3 - T a= | - 2/a(T*(y8 - Txa3), Tty) + ITY 
2 

= |Xa3 | -2/a(ya - TXa, y8) + Ty 

= -X 2/a(y6- TXa 3 Y3) + 2/a(ya - Txa 6 y- y) + yT y 

Since 

-811 Y- TXa ; < (Ky3 - TXa 6y - y) < 8|| - Txa " 

we obtain 

E( a, y3) - 48/a y3 - TXau I < IIx. - Tty 
2 

< E(a, y), 

where 

E(a, y3):= I|xa 6I -2/a(ya - Txa 3, y3) + 28/aljy3 - TxaJ11 + IITty12 

Thus, 

2 12 

1 Xa ,- Tty < E (a, y3) < 1X1 x - Tty + 48/a y3 - TXa,, 

Because of 11(I - Q)y1II = I1(I - Q)(Qy - Ya)II = I1(I - Q)(y - y,)II < 8 and 
II(aI + TT )l(Qy3 - y)II < 8/a, we obtain, together with (2.13), 

2 2 

(2.14) |Xa3 - Tty| < E(a, y3) < 1 x.- Tty 

+4811(aI + TT*)-1y | + 882/a. 

It is well known ([12, Theorem 3.3.2]) that E(a, y3) is a minimum if and only if 
a = a(8). Hence, we may use a similar proof to that of Theorem 2.8 to establish 
convergence rates for Morozov's discrepancy principle. 

THEOREM 2.10. For each 8 > 0 and y3 E Ysatisfying (2.12), let a(8) be the unique 
solution of (1.9). If Tty E R((T*T)V) for some v > 0, then 

x a _() -Tty = o(82v/(2v+l)) for v < 1/2 

and 

|xa(8)' 
- Tty |= 0(81/2) for v > 1/2. 

Proof. Cf. Appendix 2. E1 
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Remark 2.11. The discrepancy principle (1.9) so far described is only applicable if 
y E R(T). However, if a(x) is computed as the unique solution of 

|Txa38 - Y 
- 2 

then Theorem 2.10 also holds for y E R(T) + R(T)' = D(Tt). 

3. Finite-Dimensional Approximations of Best Approximate Solutions. Let V1 c V2 
C V3 C ... be a sequence of finite-dimensional subspaces of X with Um E N Vm = X- 
For each m E N let 

(3.1) Tm:= TPm, Ym:= ||T(I-Pm) 11 bm:= IlQmT(I -Pm) l 

where Pm is the orthogonal projector of X onto Vm and Qm is the orthogonal 

projector of Yonto R(Tm), the range of Tm. For given m, n E N, a > 0 and y3 e Y 

we consider approximations Xn 
6 m given by (1.12), which lie in R(Tm*) c Vm. In this 

finite-dimensional setting we assume that the available data y, satisfies, with an a 

priori given noise level 8 > 0, 

(3.2) -Y - 2 < 11QmY36 1/C, 

where C > 1. Note that for this finite-dimensional approach also the case 8 = 0 (i.e., 

the data are exactly known) is of interest, because it is not always possible to 

guarantee convergence of Tmty -- Tty if m -3 x (see Seidman [21]). 

Our first result shows that Tmty is the best possible approximation of Tty by 

elements of Vm, if bm = 0. 

THEOREM 3.1. If bm = 0, then Tmy = PmTty. 

Proof. By (3.1) we have QmT = QmTPm = Tm. Hence Tmty = TmtQmQy= 

TmtQmTTty = TmtTmTty. TmtTm is the orthogonal projector onto N(Tm) ' c Vm, 

Pm is the orthogonal projector onto Vm and Py E N(T)'c (N(T) f Vm)' = 

(N(Tm) fn Vm) 1 . Therefore, we have Tm2TmTty = PmTty. E1 

For convergence rates in the situation of Theorem 3.1, see Theorem 3.6. From 

now on we will assume that the number bm and the noise level 8 are not both zero. 

Then, for n, m E N and z E Y, we define 

(3.3) fn (az):= a (K(aI + m mzQmz fora >0. 

LEMMA 3.2. Let K > 0 and suppose that y, yo satisfy (3.2) for some C > 1. 
Further, assume that bm and 8 are not both zero. Then for each n E N the equation 

(3.4) (I - K(2n - 1)bm/a)fnm(a, y3) = C32 

has a unique solution a > 0. 

Proof. Cf. Appendix 2. [1 

From now on, we denote the unique solution of (3.4) by am(8). We will show that 

a parameter choice a = am(8) yields the convergence rates mentioned in Section 1. 

For our convergence analysis we may assume without loss of generality that Ym > 0. 

For, if yn1 = 0, then T = Tm, bm = 0, and so we have the same situation as discussed 

in Section 2. 
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Let X m be the result of (1.12) with y3 replaced by y. Then, analogously to 
Lemma 2.6, one can show the following lemma. 

LEMMA 3.3. Let q > 0. Then for all a > 0 and all n E N there holds 

x n - TY12 < 2/min71,12n82 /a + X nam-Tty 
2 

To simplify notations, we define for j> 1 and a > 0 

zJ~m -a1 1(aI + Tm* Tm)'TY, zJ = -1(aI + T*T)'JT*y. 

LEMMA 3.4. For all a > 0 and all n E N there holds 
n 

||Xa m- xa F , (n -j + 1)(I + bma172/2)||(I - Pm) Z. 

j=1 

Proof. Cf. Appendix 2. E1 

LEMMA 3.5. Let n e N be fixed. Then there exists a function g with lim t 0 g(t) = 0 
such that for all a > Ym 

Ixa m - XaI < g(Ym). 

If further Tty e R((T *T)V) for some v > 0, then 

g(7m) 
- J o?( ym) for v < 1/2, 

O?(Ym) for v > 1/2. 
Proof. Cf. Appendix 2. E1 
The next result gives a convergence rate in terms of Ym for the best possible 

approximation of Tty by elements of Vm. 

THEOREM 3.6. If Tty e R((T*T)V) for some v > 0, then 

I P(I - "P PII - o( ymL1) for v < 1/2, !YII - \(-ym) for i'> 1/2. 

Proof. Since 

(3.5) I|- Pm) Tty| < x - Tty| 

< x -x x| + |x - Tty| for all a > 0 

and 

TtI- I f11 o( ap) for i'<1, 
11 Cf-Tty 0Y = \O(a) for v > I 

(see [19]), the result follows from Lemma 3.5, if we choose a = ym2 in (3.5). E[ 
In order to present the main convergence theorem, we need the following lemmas. 

LEMMA 3.7. For each K > 0 and each a > 0, n E N, there holds 

2 2 2n-1 2 
|xa M- TtyII a mx -Ty|| + Kbm Y ipjm((a) +(1/K)|(I - Pm) Tty 

+ II Tmty- Tty || -2( Tmty, Tmty- Tty) 
2 n-1 

_< IIXn - T y 
11 + 2Kbm2 Y, ijpm(al) + (2/K)||(I- Pm)Tty| 112 

j=l 

where pi~mfa):= ai}-'<(aI + TmT,*,)-(j+')Q ,y, Q ,Y) 
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Proof. Cf. Appendix 2. O 

LEMMA 3.8. Let n E N be fixed. Then there exists a function h with lim t h (t) = 0 
such that for all a > ems 

2n-1 

bm'- E jpy, m ( a) < h ( -ym) 

J=1 

If further Tty E R((T *T)V) for some v > 0, then 

h o(y4,) for v < 1/2. 

0( 2(m for v >, 1/2. 

Proof. Cf. Appendix 2. E 
The proof of the following lemma is analogous to that of Lemma 2.5 and is 

omitted. 

LEMMA 3.9. Let K > 0, C> 1, C1 (C172-1)2, C2 = (C1/2 + 1)2. Then for 
each 8 > 0, y, y& E Ysatisfying (3.2), andfor each n E N, we have 

C1s2 < (1-K(2n - l)bm/am(8))f,[m(am(8), y) < C282, 

where am(S) is given by (3.4). 

Using Lemma 3.9 and the next lemma, we will see that our parameter choice (3.4) 
gives the minimum of an upper bound for the squared error IIx ,m - TtyII2. 

LEMMA 3.10. Let -q > 0, 8 > 0, K > 0, n E N, and assume that bm and 8 are not 
both zero. Then ax is a minimizer for the one-dimensional optimization problem 

2 2n-1 
minimize 2n-q2/a + a - Tmv| + Kbm Ei jpj m(a) 

j=1 

+(11K)||(I-Pm)Tfy12 -2( Tmty, Tmty Tty) +21Tmty-Tty 

subject to a > 0 

if and only if 

(1 - K(2n-1)b ,/()f~ m(o, y) = n 

Proof. Cf. Appendix 2. 0 

THEOREM 3.11. Let C > 1, n E N, K > 0 be fixed. For each 8 > 0, ys E Y 
satisfying (3.2), and for each Vm C X such that bm and 8 are not both zero, let 
xa(o)3m be given by (1.12), where am,(8) is the unique positive solution of (3.4). Then 
limr o m_ 0, x __ ( , ) X m = T ty. If further T ty is an element of R ((T * T) V) for some 
v > 0, then 

o(82P/(2v+l)) + o(y,2,) for v < 1/2, 
#lx n - T ty M={o (82v/(2v+1)) + O(Ym) for 1/2 < v < n, 

O(62n/(2n?l)) + O( Ym) for v > n . 

Proof. It follows from Lemma 3.9 that there exists a number 71, C1 < X < C2, such 
that 

(1 - K(2n - 1)bn2Z/,am(8))fnm(am(d), y) = a,62. 
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Hence we obtain by Lemma 3.2, Lemma 3.7 and Lemma 3.10 that 

Xa (8) 8- Tty 2 < 2/min{,TI}(2n7q2/amGa ) + Xn (8)m- Tty) 

(2 12 
2n-1 

< 2/min {h1, I min 2 / + - n mTmyII + Kbm m jjm(a) 
J=1 

+ 11/K|| (I-Pm) Tty 1 -2 ( T ty, Tmty- T ty) 

2~~~~~~~1 

+ IITmty- Tty|: a > 0$ 

{ ~ ~ ~~~2 2n-1 

< 2/min{C1,1}inf 2nC282/a +|Xn- Ttyfj + 2Kb2 E Ipjm(a) 
\ ~~~~~~~~j=l 

+2/KII(I - Pm)Tty 11: a> 0} 

< 2/min{C 1I}(2nC2J2/im n(8) + OmX nI),m - Tty 2 

2n-1 2 

+2Kbm E jPj,m(Im,n('8)) + 2/K||( -Pm) T y 
2 

j=l 

where flm n(s) max{ 3n(8),Ym } with /3n(8) given by (2.9). Since 

|X~n m- T 'y 2 (|X -X + -T Tty 

< 2[II XpI (8) m - X13n(8)11 + <n(Imn(8))j 

and /,, ,?(8) > we obtain by Lemma 3.5 and Lemma 3.8, 

Xn (8)8m Tty| 

(3.6) < 2/min Cl, 1 }(2nC28 /mn(8) + 24Pn(lmn(8)) 

+2g2(Ym) + 2Kh(Ym) + 2/K||(I - Pm)Tty ). 

By the proof of Theorem 2.8 we have lim68 0 fn(8) = 0 and liMr n 082/fm n(8) = 0 

because of 13m,n(8)> IAn('.8). 

Further, our assumptions on Vm imply limm_ jj(I - Pm)Ttyll = 0 and 
limm ooYm = 0 (see, e.g., [12, Lemma 2.4.1]). This implies limm 0a 8_0o/m n(8) = 0 
and hence limm m * 8 8 Tn(fm n(8&)) = 0 by Lemma 2.1. Hence, all expressions on 
the right-hand side of (3.6) tend to zero, which proves convergence for our parameter 
choice. 
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Now assume Tty E R((T*T)V) for some v > 0. By Lemma 3.5, Theorem 3.6 and 
Lemma 3.8 we obtain 

(3.7) 2g2(yj) + 2Kh(ym) +(2/K)|(I -Pm)Tty 12 
- 0(?ym) for v< 1/2. 

Since /n(3)s A fgm n(8), we obtain by the proof of Theorem 2.8, 

(3.8) 2fn 2/pI mnQ3) < TPn(fQn(8)) ( O(64n/(2n+1)) for v > n 

Further, the results of Schock [19] imply that 

(3.9) g(2) = (.O(ym4 v) fo~r v 
< n 

\nym Q(y~n) forvP> n. 

Hence, by (3.6), (3.7), (3.8) and (3.9) we obtain 

o(84v/(2v?1)) + o(y4v) forO < v < 1/2, 

||Xi? - Tty = o(84v/(2?+l)) + 0(y12) for 1/2 < v < n, 

Q(34n/(2n+l)) + 0(y ) for v > n, 

which completes our proof. E 
Remark 3.12. Although convergence rates are expressed in terms of Ym, only the 

numbers bm are used for the computation of am(S). Note that the numbers bm are 
effectively computable (cf. Appendix 3), whereas only estimates for Ym are available 
in general. Groetsch [12], resp. Engl and Neubauer [6], use information about Ym to 
compute the regularization parameter. This might be detrimental for actual compu- 
tations, since poor estimates for ym could also yield poor convergence rates. 

Remark 3.13. For actual computations the choice of K, C and n is of course 
important. In view of the proof of Lemma 3.7, it seems to be advantageous to choose 
K small, if one has the a priori information that Tty may be approximated well by 
elements of Vm, i.e., I1(I - Pm)Ttyll is small. More critical is the choice of C and n. 
In the infinite-dimensional case, a choice of C = 1 is optimal by Remark 2.4, and 
the approximation error remains uniformly bounded for all n by Theorem 2.9. Our 
numerical experience suggests that analogous results could also be expected for our 
finite-dimensional approximations, but we were not able to prove this. 

4. Numerical Results. All examples are Fredholm integral equations of the first 
kind on [0,1], 

f k(t, s)x(s) ds = y(t), 

where the kernel is given by 

k(t, s):= t(5 - S) If t > S. 

This kernel is the Green's function of the vibrating string with fixed ends. It is well 
known (cf. [2]) that tu.; vj; a)} with u.(t) = vj(t) = 21/2 sin(js7t), t E [0,1], and 

a/ = (ij)-2 forms a singular system for this operator. 
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In our examples, we chose Vm as a space of linear splines on a uniform grid of 
(m + 1) points in [0,1]. For some computational aspects we refer to Appendix 3 in 
the Supplements section. We obtained the following results for bm: 

m 4 8 16 32 
bn1 0.548 x 10-2 0.131 x 10-2 0.325 x 10-3 0.811 x 10-4 

It appears that bm = O(m-2), which agrees with the fact that ym = O(m-2) (cf. [9]). 
Example 4.1. (a) y(t) = (t - t3)/6, Tty(s) = s. Since fol s sin( j"s) ds = 

(-l)J+1/jT, we obtain that Tty E R((T*T)V) for v < 1/8. (Note that Tty E 

R((T*T)V) if and only if EJo -a4(Tty, uJ)2 < oc.) Hence, according to theory, we 
should obtain a convergence rate o(Y2,v) for v < 1/8, independent of the iteration 
number n. For K = 1, the results were as follows: 

n=1 n = 10 n = 100 

m em emb 1/4 em emb-174 em e b / 

4 0.167 0.614 0.153 0.562 0.152 0.559 
8 0.114 0.600 0.104 0.547 0.103 0.541 

16 0.806 x 10' 0.600 0.731 x 10' 0.544 0.723 x 10' 0.538 
32 0.570 x 10' 0.600 0.517 x 10W 0.544 0.511 x 10' 0.538 

Here, em := Ilxxm - Ttyll with am:= (2n - 1)Kbm. The columns headed by em b /4 

show that the convergence seems to be O(b'74). 
Since T ty E Vm for each m, we should obtain better results for small K, 

according to Remark 3.13. The following table shows that for K = 0.05 the absolute 
errors are significantly smaller. However, the convergence rates seem to be as before. 

n=1 n = 10 n = 100 

m em 10 - em . b'4 em 10* e b,-' e e, 

4 0.252 x 10-1 0.926 0.947 x 10-3 3.48 0.245 x 10-3 9.00 

8 0.159 x 10-1 0.836 0.221 x 10-3 1.16 0.218 x 10-4 1.15 

16 0.111 x 10-' 0.830 0.145 x 10-3 1.08 0.131 x 10-4 0.976 
32 0.784 x 10-2 0.826 0.102 x 10-3 1.07 0.925 x 10-5 0.975 

(b) y as in (a); for each m, y was 30 times randomly perturbed with 6m = bm/2. 

Choosing the regularization parameter as the solution of (3.4), the convergence rate 
should be o(bA) with [i < 0.2. The following results were computed with C= 1.01 
and K = 0.01. 

n=1 n = 10 n =100 

m em embm02 em jmbm02 e jbm . 

4 0.336 0.952 0.338 0.958 0.339 0.960 
8 0.242 0.913 0.235 0.886 0.235 0.886 

16 0.176 0.877 0.175 0.872 0.175 0.872 
32 0.131 0.862 0.131 0.862 0.130 0.855 

Here and below, em denotes the maximum error of all tests. 
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Example 4.2. (a) y(t) = (1/24)(t - 2t3 + t4), Tty(s) = (1/2)(s - S2). Since 

fol Ty(s) sin( jrs)ds = (-1)J/(j) 3, we obtain Tty E R((T*T)V) for v < 5/8. 
Hence the convergence rate should be ?(Ym). For K= 1, we obtain the following 
results: 

n=l j n=2 =4 
m em eI, bm- em embm em el2bm' 

4 0.250 x 10-2 0.456 0.242 x 10-2 0.442 0.240 x 10-2 0.438 
8 0.601 x 10-3 0.458 0.594 x 10-3 0.453 0.592 x 10-3 0.452 

16 0.149 x 10-3 0.455 0.147 x 10-3 0.452 0.147 x 10-3 0.452 
32 0.367 x 10-4 0.453 0.366 x 10-4 0.451 0.365 X 10-4 0.450 

The following table gives the errors for the best possible approximation of Tty by 
elements of Vm. 

m 4 8 16 32 

II(,I- gi)Ttyll 0.233 x 10-2 0.582 X 10-3 0.146 x 10-3 0.364 X 10-4 

(b) y as in (a); y was 30 times randomly perturbed with m := bm for each m. 
According to theory, the convergence rate should be o(bm) with A < 5/9. 

n=1 n=2 n 4 
m ~ ~ ~~mb)7-59 m emb)"/9]m-/ m j"I jmbm /M jn emb /m jmb / 

4 0.770 x 101 1.39 0.746 x 10' 1.35 0.731 x 10- 1.32 
8 0.272 x 10-' 1.09 0.224 x 10-1 0.895 0.200 X 10-' 0.799 

16 0.971 x 10-2 0.842 0.728 x 10-2 0.631 0.601 x 10-2 0.521 
32 0.451 x 10-2 0.845 0.372 x 10-2 0.697 0.344 X 10-2 0.644 

Example 4.3. (a) y(t) = (1/30)(3t - 5t3 + 3t5 - t6), Tty(s) = s - 2s3 + s4. In 
this example one has Tty E R((T*T)P) for v < 9/8. Hence, the convergence rate 
should again be ?(Ym). If we choose K = 1, we obtain the following results: 

n = I n = 2 | n = 4 
m em embpm' emn m m em em b- 

4 0.536 x 10-2 0.978 0.531 x 10-2 0.969 0.531 x 10-2 0.969 
8 0.129 x 10-2 0.985 0.129 x 10-2 0.985 0.129 X 10-2 0.985 

16 0.320 x 10-3 0.985 0.320 x 10 - 0.985 0.320 x 10-3 0.985 
32 0.798 X 10-4 0.984 0.798 X 10-4 0.984 0.798 X 10-4 0.984 

Note that our parameter choice yields nearly the best possible approximation 

P,1IT ty: 

m 4 8 16 32 

I|(- POI)Ttyll 0.531 X 10-2 0.129 X 10-2 0.320 X 10-3 0.798 X 10-4 
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(b) y as in (a); y was again 30 times randomly perturbed with am = b,', for each 
m. In this case we should obtain, for n = 1, convergence rate O(b/,) with p = 2/3, 
resp., for n > 2, the convergence rate o(b,,) with p < 9/13. A choice C = 1.01, 
K = 1 yields: 

n=1 n =2 n= 4 

imem b12/ em e bM em emb / 

4 0.124 3.99 0.112 4.12 0.106 3.90 
8 0.353 x 10' 2.95 0.249 x 10' 2.47 0.201 x 10' 1.99 

16 0.116 X 10' 2.45 0.662 x 10-2 1.72 0.474 x 10-2 1.23 
32 0.467 x 10-2 2.49 0.236 x 10-2 1.60 0.165 X 10-2 1.12 

Example 4.4. y(t) = (1/,r2)sin(qrt), Tty(s) = sinks. In this example, T ty E 

R((T*T)V) holds for any v > 0. If the data are known exactly, we again obtain 
nearly the best possible approximation PmTty. If the data are randomly perturbed 
with am = bm1, we should obtain, for each n e N, the convergence rate O(b2n/(2n+l)). 
The test was performed 30 times again; the following table shows the maximum 
error observed for the choice C = 1.01, K = 1. 

n=1 n =2 n = 4 

m | m mbi23 | e embmj5 | em m bm8/9 

4 0.170 5.47 0.135 8.70 0.117 12.0 
8 0.540 X 101 4.51 0.336 x 10- 6.80 0.248 x 10-' 9.05 

16 0.178 X 10- 3.77 0.875 x 1o-2 5.40 0.572 x 1o-2 7.21 
32 0.693 x 10-2 3.71 0.292 x 10-2 5.47 0.169 x 10-2 7.31 
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