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Two-Step Methods and Bi-Orthogonality 

By A. Iserles and S. P. N0rsett 

Abstract. We study order and zero-stability of two-step methods of Obrechkoff type for 
ordinary differential equations. A relation between order and properties of mth degree 
polynomials orthogonal to xvi, 1 < i 6 m, where -1 < /12 < ... < but,, is established. 
These polynomials are investigated, focusing on their explicit form, Rodrigues-type formulae 
and loci of their zeros. 

1. Introduction. There exists a close relationship between certain one-step numeri- 
cal methods for the ordinary differential equation 
(1) y'=f(y), y(O) =yo E R5 

and orthogonal polynomials. This can be demonstrated for linear multi-derivative 
methods by a construction similar to that in N0rsett [4]. Integrating (1) from x0 to 
x= x0 + h, we obtain 

(2) y(x1) -y(x0) = hf (y(xo + th)) dt. 

Given an arbitrary mth degree polynomial p, normalized so that p(m)(x) 
= 

1, we 
proceed by repeated partial integration, obtaining 

y(xl) - y(x0) = hf p(m)(1 - t)f(y(x0 + th)) dt 

m 

(3) - E h't p(m`)(o)f (-)(y(xi)) - p(m-i)(1)f (i-l)(y(xO))} 
i=1 

+hm?lf p(l-t)f(m)(y(xo + th)) dt. 

Let Yk denote an approximation to y(Xk), k = 0,1, and let 
y(_),- Fi(y), i > O, 

be the equation for the i th derivative that is obtained from (1) by repeated 
differentiation: F0(y) = y, F1(y) = f(y), F2(y) = (af(y)/ay)f(y), etc. The iden- 
tity (3) gives rise to the mth order method 

m m 
(4) E hip(m-i)(0)FJ(y1) = hp(M-i)(1)Fi(Y0) 

i=O i=O 

with the local truncation error 

(5) T = hm+1f p( - t)f (m)(y(x0 + th)) dt. 
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It follows from (5) that the order can be further increased to m + s, 1 < s < m, if 

(6) 1 tip(1 - t)dt=O, O < j < s- 1. 

Hence, the maximal order 2m is attained when p is the mth-degree Legendre 
polynomial, appropriately shifted, 

1 dm 
p(x) = (2m)! d m {xm(x- 

Of course, instead of maximally increasing the order, it is possible to seek other 
properties, e.g., numerical efficiency (N0rsett [4]). 

More examples of relations between orthogonality and one-step methods are 
available in N0rsett [5]. 

The purpose of the present paper is to extend this set of ideas to two-step 
methods. To this end, we have to modify the standard concept of orthogonality. This 
leads to a problem in bi-orthogonality: Find Pm in rm, the set of mth-degree 
polynomials, which is orthogonal in [0, 1] to x"', 1 < i < m. The ji's are a set of 
distinct numbers in (-1, so)-in our application they will be either the even or the 
odd nonnegative integers. 

We demonstrate the existence and uniqueness of such polynomials, obtain explicit 
expressions and a Rodrigues-type formula and discuss the location of their zeros. 

The results are specialized to the problem in hand, namely two-step methods for 
the equation (1). 

2. Two-Step Methods. Given an analytic real function y, positive h and arbitrary 
real a, we define the operator L by 

(7) L[y(xo); h] = y(x1) -(1 + a)y(xo) + ay(x1), 

wherexk = x0 + kh, k = -1,0,1. 
If y is the solution of (1) we obtain 

(8) L[y(xo);h] =hI f(y(xo+ th))dt-ah 1f(y(x1 + th))dt. 

In a manner similar to that in Iserles [1], we consider arbitrary p, q E TTm[X] such 
that p(m)(x) 1, q(m)(x) - a, and repeatedly integrate by parts in (8). This yields 

L[y(xo); h] = h f p(m)(1 - t)f(y(xo + th)) dt 

+hf q(m)(1 - t)f(y(x1 + th)) dt 

m { p(m-)(O)f 1-l)(y(xl)) + [q(m-1)(0) 
- p(m-)(1)] 

*=1 

X f "-')(y(xo)) - q(m-i)()f(1-)(y(x-,))} h 

+T[y(xo); h], 

where the local truncation error operator T has the form 

T[y(x); h] = hm+l{ p(1 - t)y(m+l)(x + th) dt 

(9) 1 
+ q(1 -t)y(m+')(x + (t -1)h) dt{ 
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Hence, the method 

E P(mi)(O)Fj(Yj)hi E= { p(-i)() - q(m-i)(o)} F(Y0)hi 
(10) 

i=O i=O 

+ E q( m)(1)Fi(Yj)hi, 
i=O 

where Yk denotes an approximation to y(Xk), is of order p > m. 
We obtain necessary and sufficient conditions for order m + r by expanding 

y(l 1) in Taylor series about x0, 

tip(1 - t)dt +? (t - 1)jq(1 - t)dt = 0, 0 < j < r-1. 

This can be recast as 

(11) f|' t{fp(I - t) +(-1)jq(t)} dt = 0, 0 < j < r -1. 

If q 0, then we are back to one-step methods, and (11) coincides with (6). In 
general, alas, the appearance of (-1)j in (11) means that the classical orthogonality 
analysis is inadequate to provide order conditions on p and q. 

The situation is relatively simple if either p or q are given. For example, we have 

THEOREM 1. Given p E rm m[x], p(m)(x) 1, the order of (10) is at least 2m + 1 if 
and only if q is of the form 

m 

i=O 

where the Pi's are Legendre polynomials, shifted to [0, 1], Pi(')(x) 1, and 

JOf Pj(-t)p(l - t) dt 

Yj - fl p2(t) dt , 0 j m. 

Proof. Order conditions (11) lead to 

(12) f P(-t)p(1 - t) dt + f P1(t)q(t) dt = 0, 0 < I < r -1. 

This follows by multiplying (11) by a1, where P1(t) = ElY=_0aj (-t)', and summing up 
for 0 < j < 1. (Note that Eq. (2.4) in Iserles [1] is incorrect in this respect.) The 
theorem follows at once from the representation of q and orthogonality of the 
Legendre polynomials. El 

To attain zero-stability in (10) it is necessary and sufficient that -1 < a < 1, 

hence, in the framework of Theorem 1, 

f1 Pm(-t) p (1 - t) dt/f pm2(t) dt < 1. 

Example 2. Let m =2, and p(x) = y2- 2yx + x2 for a real y. Theorem 1 
gives 

_y2 + y 2 1- 103y 
3 2 m= -i2Y 6- 

y112-y - + 2, Y2=-360y2+ 240y -31. 
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This leads to 

q(x) = (180oy2 + 120y - 3 )x2 +(192y2 - 132y + 17)x 

+(-37Y2+26y- 24 

The underlying method is of order 5 for all y E R and is zero-stable for 

6 (63 15 u3 + 5 ,2) 
Order 6 is attained for y = (9 + 15 )/33, but the corresponding methods are not 
zero-stable. 

In general, there are 2m + 1 free parameters (including a) in p and q. Hence, it 
should be possible to attain order 3m + 1, resulting in 2m + 1 equations in (11). To 
this end, we set 

(13) U(t):= p(1 - t) + q(t), V(t):= p(l - t) - q(t) 

and restate (11) for r = 2m + 1 as 

(14) t1 t2jU(t) dt =, O. < j _< m; 

(15) ft2j+lV(t) dt=O, O < j < m - 1. 

Since (14) represents a nonsingular homogeneous system of linear equations in the 
coefficients of U(t), it follows that U(t) 0. 

Example 3. Given m = 2, (15) yields 

V(t) = X t2 _ 4 
1 

R. 

Hence it follows from (13) and p(m)(x) 1 that 

12_ 3 1 1 2 5 1 
p(t) = 2t - 8t + , q(t)=- t + t - . 

Note that q"(t) -1, hence the corresponding method is marginally zero-unstable, 
having a double root at 1. 

The possible absence of zero-stability in the highest-order method motivates 
interest in methods of order 3m, one less than the maximum. In that case our 
construction is still valid, with the exception that (14) holds for 0 < j < m - 1, but 
not for j = m. 

3. Bi-Orthogonality. The condition (15) (as well as (14) with 0 < j < m - 1) are 
special cases of the general bi-orthogonality problem: Given a set of distinct 
numbers AL, i = 1, 2,..., in (-1, so), find Pm E vTm[X], normalized so that pmm(x) 

1, such that 

(16) (xtt',pm(x)):= f'xtpm(x) dx = 0, 1 < <i m. 

When A = i - 1 we obtain the classical shifted Legendre polynomials, whereas the 
choices u, = 2(i - 1) and At, = 2i - 1 are of interest to the analysis of two-step 
methods in this paper. 
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Definition 4. Given a function f in C1 and v Ee (-1, oc), we define the differential 
operator D, by 

Df (x) = (v + 1)f (x) + xf '(x) = x+-{ d { xv+ Y(x)}. 

LEMMA 5. (a) Dv maps 'TmI[X] onto itself; 
(b) DP and Dl, v, [i E (-1, oo), commute when acting on a f E C2. 

Proof. The assertion (a) is an immediate consequence of the definition of D, 
whereas (b) follows since 

DDJf(x) = x2f"(x) +(3 + , + v)xf'(x) +(1 ?+ j)(1 + v)f(x) 

is symmetric in v and It. U 

We now define 
1 m 

(17) Pm(X) = m! 171(1 + m + ,10)D1D A2 D {(x )m}, m> 1. 
!j~=1 

THEOREM 6. The functions Pm defined in (17) belong to 7Tm[X] satisfy p(m)(x) 
and obey the bi-orthogonality conditions (16). 

Proof. It follows at once from Lemma 5 that Pm E 7m and, by induction, that 
p(m)(x) =1. Furthermore, by Lemma 5, D,, commutes with D,,j, hence 

PM i1 

(xtk, Pm(X)) =m! 1(1 + m + 1j)_ 
1 

x'1kDk HDJ; f {(x - 1)m} dx m +j= 0 

=~~~~~i ! rll m+a xy k+1?tDi{x m D0, f (x- 1 m 
1 

j=1 
~~~~~i=k0 

since Ilk > -1. U 

Note that no other normalized polynomials in 'rmlx] may satisfy (16): Writing the 
orthogonality conditions as equations in coefficients of Pm leads to a matrix which is 
a section of a Cauchy matrix, hence nonsingular. 

THEOREM 7. The bi-orthogonal polynomials pm have the explicit form 

Pm(x) = mJ!J (1 + m + Il) 

m m 
x E (-1)-k(mk) fi (k + 1 + [tj)Xk, m> 1. 

k=0 =1 

Proof. By expanding (x - 1) ' with the binomial theorem and straightforward 
differentiation. U 

Given 3 Ee R, we define the generalized factorial function (/f, P)m by 
m 

j=1( 
i) 
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Note that if j= j - 1 this reduces to the classical factorial function, (13, P')m = 

(18)m- 
In the present notation, 

PM(X) m! (m?+1,) = ( E (-) k ) (k + 1vL)mxk, m> 1. 

Example 8. The case m = 2, Iu = 1, /A2 = 3 gives 

1X2 5 1 
P2(x)= x 8x + 

This can be identified with the polynomial V from Example 3. 
It is well known that the classical orthogonal polynomials possess all their zeros in 

the support of the measure, that the zeros are simple and that zeros of consecutive 
polynomials interlace. The following theorem shows that all this remains valid for 
our bi-orthogonal polynomials. 

THEOREM 9. Each Pm possesses m distinct zeros in (0, 1). If the [j's form a 
monotonically increasing sequence, then the zeros ofPm 1 and Pm interlace. 

Proof. The first part of the theorem follows at once from the Rodrigues- 
type formula (17) by repeated application of Rolle's theorem to the functions 
x~n?+ I(x - 1)m, Xl xrn1?+iDL 1)m and so on. 

Moreover, given 

(18) PM (x):= m [m 
DA1D2 DtmLnj(X -1)}, 

it follows from (17) that 

(mi, R) m-iPm-i(x) + (Pm(x) 

=I D,. D_ _m(x - ?)M 1 +(m + 1 + -m)(x-l)M} m! An' 

I 
DA, D {(x - 1) = (m + l,)mpm(x), m > 2. 

Hence, 

(19) (m(x) = (m + 1, I.)mPm(x) -(m, R)mi-Pmi (x). 

Repeated application of the Rolle theorem to Tm, as defined in (18), shows that Tm 
has m - 1 distinct zeros in (0,1), in addition to a zero at 1. 

It is straightforward to obtain from (18) the recurrence relation 

(20) x(pm(x) = m(m + 1, it)mpm(x) + (1 + tLm)(m, i)m-pmPM(x). 

Let us suppose that x E (0, 1] exists such that Pm(X) = Pm-i(x) = 0. Then it 
follows from (19) and (20) that 

TPm(X) = TM( X) = 0, 

which is impossible. We conclude that zeros of Pm- 1 and Pm are distinct. 
It is known from the classical theory of orthogonal polynomials that interlacing 

occurs for the choice IJ = j - 1, j > 1. Hence, if the sequence { J } is monotoni- 
cally increasing, a continuity argument completes the proof that the zeros of Pm- 

and Pn1 interlace, since no zero of Pm - may cross a zero of Pm when the sequence 
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{0, 1, . m - 1) is deformed into {f, ... , t y } in a continuous manner and so that 
all components remain distinct throughout this process. El 

Note that if j= / + j - 1, j > 1, for some / > -1, then the bi-orthogonal 
polynomials Pm can be identified with the (shifted) Jacobi polynomials P,,O A). This 
identification with standard orthogonal polynomials provides much information on 
the loci of zeros, as well as recurrence relations, a Christoffel-Darboux formula, etc. 
Hence, it is of interest to check whether, for other choices of { lij }, the pm's can be 
identified with orthogonal polynomials with positive weight functions (acting, possi- 
bly, on a different real interval). Our next result demonstrates that this is not the 
case. 

THEOREM 10. Let Pm satisfy (16) and suppose that 

(21) f xkpm(x) da(x) = O. 0 < k < m - 1, 

where a is a function of bounded variation and [c, d] is a real interval. Then, 
necessarily, c = 0, d = 1, da(x) = xAdx and uj = /+ j - 1 for some/3> -1. 

Proof. Let us suppose that (21) is satisfied. Then, as is well known, the Pm's satisfy 
the three-term recurrence relation 

(22) xpn3(x) = ampm+i(x) + bmPm(X) + cmPmi-(X) m> 1, 

where am, cm * 0. We multiply (22) by xy' for j in {1,..., m - 1) and integrate 
between 0 and 1. By bi-orthogonality, the right-hand side vanishes, hence 

(23) f x'ipM (x) dx =0, 1 < jm-1. 

Let 

H4(p):= (1 + L)mJ xupm(x)dx, /a > -1. 

Hm is a polynomial in 7rm [ ] that, by bi-orthogonality, vanishes for s- [1j, 1 < j < m. 
Hence, 

m 

HmG(mu) = Cm H (it - L)A cm # 0. 
j=1 

Since, by (23), Hm(1 + sj) = 0, it follows that 1 + Gij {Iyi' . ,p M}a < j < m - 

1. Let us assume, without loss of generality, that p, < t2 < ... <5m ym-l Then we 

obtain pj+ = 1 + yj, 1 < j < m - 1, hence pj = 3 + j - 1 for some /3 E R. Since 
/3> -1 is necessary for integrability, the theorem is proved. El 

4. Two-Step Approximations to exp(z). The application of the method (4) to the 
test equation y' = Xy yields 

Y1 = R(z)Y0, z =Xh, 

where 
m m 

R(z) E p(m-i)(1)zi/ E p(m-i)(0)zi Q0(z)/Q1(Z) 
i=O i=O 

is an approximation to exp(z) of order at least m for every p E Sum. Furthermore, if 
p is the (scaled and shifted) Legendre polynomial, then the order is 2m. 
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The order relation can be rewritten as 

Ql(z)ez - QO(z) = OW ") m < p < 2m, 
motivating an extension of the present framework to two-step approximations 

(24) Ql(z)ez - QO(z) - Q1I(z)e-z = (9(zP'), m < p < 3m + 1. 

Shafer [6] has already considered general quadratic approximations of order p = 3m 
+ 1 to a sufficiently smooth function f, 

Q1(z)f 2(Z) - QO(z)f (z) - Q_1(z) = (9z3m+2) Q1 Q0 Q1 G 

He obtained expressions of closed form for the coefficients in (24) with p = 3m + 1. 
Likewise, by our analysis in Section 3 it is apparent that 

m 

Q1(z) = E p(m-i)(O)zl 
i=0 

Q0(z = E 
(p(m-i)(1) - q(M1I)(o))zl, 

i=O 
m 

Q 1(z) = E q(M1)(1)zl 
i=O 

where p(l - x) -q(x) (-)mpm(X) with Iti = 2j - 1,1 <j < m. 

LEMMA 11. The maximal-order method is zero-stable if and only if m is odd. 

Proof. The assertion follows immediately from a = -q(m)(x) = (-l)"pM` (x)= 
(-l)m, since -1 < a < 1 is necessary and sufficient for zero-stability. C 

Hence, since no zero-stability occurs for even m and only marginal zero-stability 
for odd m, it makes sense to sacrifice one degree of freedom in order to enhance 
stability, thus demanding order 3m. The natural choice is a = 0, leading to 
Adams-type schemes. 

To this end, we consider (14) and (15) (both with 0 < j < m - 1). By the analysis 
of Section 3, 

() m m m 
knmr 

U(X) =C, H-Jr (m + 2j - I)- E (4) ( k~ + 2j 
J=1 = = 

lmm m (\m 
V(x) =C2 m! H (m + 2)Z E (-1) ( k )H (k + 2j)x. m J=l k=O kj=1 

The constants C1 and C2 are determined from (13) by the conditions p(m)(x) 1, 
q(m)(x) = 0, which give C1 = C2 = (-1)m. Hence, 

p(x) = 
I 

(U(1 - x) + V(1 - x)), q(x) = 2(U(x) - V(x)), 

resulting in an order-3m zero-stable scheme. 
Another interesting choice of p and q in (10) leads to singly-implicit approxima- 

tions, with a single pole of multiplicity m, that were discussed by Iserles [1]. They 
follow from 

p(x) = (-I)mymLm (X/y), 

where Lm is the mth Laguerre polynomial 

Lm( ) E i! i 
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and possess order 2m. It has been proved in Iserles [1] that for 1 < m < 3 there exist 
y > 0 that yield A-acceptability. 

Yet another option is to choose 

q(x) = (-1)p(l -x) 

obtaining a symmetric method, Q 1(z) Q1(z). 

We do not address here the question of stability for stiff systems. Since attention 
has been focused on methods of order p > 2m + 1, A-stability is out of the 
question (Wanner et al. [7]). (The methods in Iserles [1] are an exception, since there, 
p = 2m.) Hence, less severe stability requirements, e.g., A(a)-stability and stiff- 
stability, need to be analyzed in this context. 

5. Extensions of Bi-Orthogonality. The bi-orthogonal polynomials Pm with l= 
2 j - 1 can be related to generalized hypergeometric functions via the representation 

()M -F 2 ~ m,2=(M 
- 1), m + 

2 
PM(X) ((+2)/2)m 3F2[ 111 

22 

+ (-1)m 1(3/2)m - 3 (m- - 2) m + X2 
(m - 1)!((m + 2)/2) 33 2 3 2 2 

2 ' 2 

This follows by splitting Pm from Theorem 7, with the above-mentioned parameters, 
into even and odd polynomials and by using the factorial identities 

(a)2k 4 k(a) k ( 2 ) m k ( 

( 1 + (x + k)m - (1 +) m (1 + m + a) k 

Another, easily obtainable, hypergeometric representation, which is valid for every 
choice of tt1, t2, . ..,iS 

1 F[-Ml2 +tj2 t ... ,2 + tm; 
Pm(X) 

= 
m! m+ Fm [1 + /1, 1 + /2 

2,.. *' + A m; ] 

The concept of bi-orthogonality can be extended in a natural manner: 
I. Given a real function a(x) of bounded variation with the support (a, b), a 

nonnegative function w (x, p), x E (a, b), tt E Q, which is not identically zero in 
(a, b) for every tt E Q, and a sequence {t}tj I1 E Q, find monic Pm E'7Tm[x] such 
that 

f Pm(X)W (xI Lk) da(x) = 0, 1 < k < m. 

This problem has been explored in Iserles and N0rsett [2] and has been further 
discussed in [3]. 
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II. Given Ill, P2,... E (-1, Xc) and v...E (0, oc), find Pm in 
span{x', x"'+'} such that 

Pm(x)xkdx = 0, < k < m. 

This problem will be the subject of a forthcoming paper. 
Many other interesting problems are implicit in the construction of bi-orthogonal 

polynomials: quadrature, interpolation, representation, Lp approximation, etc. The 
present paper makes only preliminary inroads into this new type of orthogonality. 
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