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Some Inequalities for Continued Fractions* 

By R. M. Dudley 

Abstract. For some continued fractions Q = ?o + al + * ) with mth convergent Qm it 
is shown that relative errors are monotone in some arguments. If all the entries a and b, in Q 
are positive, then the relative error IQ,/Q - 11 is bounded by IQn/Qn. 1 - A which is 
nonincreasing in the partial denominator b, for each j >?O ,as is IQ,,/Q - 1I for j < m + 1. 
If ,a >? 1 for all j > 1, 1bo > O. and al = (-1)/ ' l/ where c/ O and for j even, c1 < 1, then 

IQ,/Q - 11 is bounded by IQn,/Qn, 2 - 11, and both are nonincreasing in b, for even 
j < rn + 2. These facts apply to continued fractions of Euler, (Gauss and Laplace used in 
computing Poisson, binomial and normal probabilities, respectively, giving monotonicity of 
relative errors as functions of the variables in suitable ranges. 

For computation of various functions in suitable regions, continued fractions 
provide the current method of choice because of their speed of convergence for a 
given accuracy. Another advantage is that in certain cases error bounds are rather 
easily available at each stage, since one or two successive convergents are alternately 
above and below the final result. Thus, even in regions where continued fractions are 
less efficient than other methods, they may provide checks on the accuracy of those 
methods, which may lack such easy error bounds of their own. Then, monotonicity 
properties of the errors in some of the arguments are useful in reducing the amount 
of checking to be done. This note treats such monotonicity properties, specifically 
for Laplace and Gauss continued fractions useful in computing hypergeometric 
functions and thus probabilities of the gamma and beta families such as Poisson and 
binomial probabilities. For a different monotonicity property of continued fractions, 
see [9]. 

1. Continued Fractions. A continued fraction is given by two sequences of numbers 

{bn})n>0 and (an}n>1, and will be written as 

(1.1) a1b?+b + b + 

In this paper all the a1 and b will be real numbers. Let Tn(z)= an/(b + z) for 

any z (the symbol ":= " means "equals by definition"). Then the mth convergent of 
the continued fraction is given by 

Qm = b( + T1( T2 (T (O)) )) 
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586 R. M. DUDLEY 

if this is defined, where 0/0 is undefined but a/0 = x for a 0 0 and b/(c + tc) = 0 
for any finite b, c. Qm is usually written as 

(1.2) Qm bo + b a + b2 . . am m > 0. 

The continued fraction will be called convergent to a finite value Q if for m large 
enough, Qm is defined and finite and limm -oQm = Q. A convergent continued 
fraction will be said to terminate at the mth term for the least value of m such that 
a = 0. 

Associated with a continued fraction is the Wallis-Euler recurrence formula [15, p. 
5] 
(1.3) Xm bmXm_1 + amXm-2, m = 1,2,... 

For m = 0,1,..., Qm = Am/Bm, where each of the sequences { Am) and { Bm} 
satisfies (1.3) with A-1 = 1, B1 = 0, AO = bo, and Bo = 1 [18, p. 15]. It is often 
convenient to combine two successive applications of (1.3), giving 

(1.4) Am+, = (bm+lbm + am+?)Am-, + bm+lamAm-2, 

(1.4) B,1+1 = (brn+lbm + am+?)Bm-, + bm+1amBrn -2 

Then we have four-tuples defined for k = 0,1,2, ... by recursion, 

(1.5) (A2k1, A2k, B2k-1, B2k). 

Am and B., are polynomials with integer coefficients in the 2m + 1 variables 
boo a,, bl, .. ., am, bm. (Bm does not depend on bo, a,.) For j < m we have 

Q, = Qm(b0, a,, bl,. ., am, bm) = Q,(bo, a,,,.,, bel, a., bj + Qjm) 
(1.6) where 

Qj'm := Qm-y (0 a,+I, b,+l .. am, Qm. 

If for a given j = 0, 1, 2,. . ., the vectors (A.1, A.) and (B.1 Bj) are linearly 
independent (as is true for j = 0 by the definitions), then the two-dimensional space 
of all sequences { X,}, >j-1 satisfying (1.3) for i > j + 1 has a basis given by 
{ Al I I> X - 1 and { B, )i ;> J- 1 The linear independence is equivalent to nonvanishing of 
the determinant D := AJ AjBj, where 

(1.7) Do = 1 and D. = (-1)Jala2 ... a1, j > 1 [18, p. 16]. 

The following fact is known; for example, it follows from a special case of [13, Eq. 
(8)], and follows rather directly from [16, Eq. (6.1)]. It has been applied to study the 
propagation of errors; here it will be used in proving monotonicity properties. 

1.8. THEOREM. Suppose {X,},>1 satisfy (1.3), i > 1, Y_1 = X_1, and {Y},>1 
satisfy the same relations except that either 

(a) for some> 1, YJ = bjYJ_1 + a1Y>2 + U, YO = XO andD, 0, or 

(b) j = 0 and YO = X0 + u. 
For any k > j - 1 let 

AJ-lBk - BjlAk 
Tj k DJ 

Then Yk - Xk = UTjk. 
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Proof (based on [13]). Iterating (1.3) gives, for any { Xi } satisfying the hypotheses, 
Xk = UXj-1 + VXj for some U and V. For {Xi} = {Ai} and {Xi} = {Bi} we get, 
by hypothesis, two linearly independent equations for U and V which can be solved 
by Cramer's rule, giving V = Tjk. Then replacing Xj by Yj = Xj + u gives the result. 
11 

Note that for k = j - 1, Tjk = 0. To clarify that T1k is a polynomial in 
{ ai, bi}1j+ I ? i << k, consider the An and Bn as functions of the sequences {fa}i>1 and 
{ bi i ,>0. So, for example, 

B1({ai})i>, {bi}i,>) = b1 and B1({ai+1}i>1l, {bi+1}i>0) = b2. 

1.9. PROPOSITION. If Dj = 0, j> 0, and k > j- 1, then 

T1k = Bk-j ({ ai+? } i) I bi.+> } i ) 

Proof. The proof of Theorem 1.8 shows that if {Si}>ij-l and {Ti}i>j-I both 
satisfy (1.3) for all m > j + 1, and are linearly independent, then 

Tjk = (SjlTk - Tj1-Sk)/(WSj-1T2 - TjSj) k > j- 1. 

Specifically, take Si = 1, Tj-1 = 0, S1 = bj, and Tj = 1. Then, without loss of 
generality, j and k can be shifted by ], so it is enough to prove 

T0r = Br({ai}ii>, {b,}i>0) = Br, r = -1,0,1,... 

(r = k - j), and this is clear from the definitions. l 
The next fact follows directly from Theorem 1.8. 

1.10. COROLLARY. If j > 1, Dj * 0 and k > j- 1, then aAk/abj = Aj-lTJk, 
aBk/ab1 = B_11Tjk, a~k/aaj = Aj2 Tjk, and aBk/aaj = Bj 2T1k' while aAk/3b0 = 

Bk and aBk/abo = 0. Also, forj > 1, 

aQk = (BkAjI - AkBj-l)Tjk (BkAj1 - AkBj-l)2 

a bj B 2 B 2D 

(Qj-1 Qk) Bj_1, and - = 1. 
(Qj- - Qj)Bj abo 

1.11. THEOREM. If Dj # 0, and the continued fraction Q converges for bj in some 
open interval, then on that interval, forj > 1, 

WaQ (Q -1Q) Bj-1 n a b ( and- and 

Proof. For j > 1, this is the last form in (1.10) with a/abj interchanged with the 
limit Qk -> Q. To justify the interchange, first note that if the continued fraction has 
terminated by i = j, then simply Q = Qk, k > j. Otherwise, the Qj k defined in (1.6) 
are the convergents of a continued fraction converging to some Q j ,, and we have 

Q (bj + QjQ0)Aj1 + aA 2 1>1; Q = bo + Q 0. 
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In this form, where the dependence on by is explicit, it is clear that replacing k by so 
in the corresponding expression for Qk, and thus replacing Qk by Q, can be 
interchanged with a/abj. El 

Next, the derivatives of (signed) relative errors are found. 

1.12. COROLLARY. If k > j - 1, m > j - 1, DJ = 0, and Qk and Qm are defined 
and finite, then forj > 1, 

a_ Qm- B1 i(QM Qk )(Q2l_- QkQm) orQk-Qm ij0 
j k ) j~~~~k (Q J1)Qk 

If the continued fraction Q converges for bj in an open interval, then Qm can be 
replaced by Q on that interval. 

Proof. One need only apply 1.10 and 1.11 and a little algebra. E 

2. Inequalities for Fractions with Positive Terms. The following fact is rather easily 
proved. It was stated, or very nearly so, by Euler [3, pp. 103-105] = [6, Vol. 14, pp. 
191-192], cf. [11, Theorem 2]. 

2.1. THEOREM. If am > 0 and bi > O for all m> 1, and if Q converges, then 

QO < Q2 < Q4 < .. 4 Q < < Qs 5< Q 3 < Q I 

If Q does not converge, the inequalities remain true if " < Q < " is deleted. 

If (2.1) applies, and Q converges, one can stop calculating Q when Qm-i/Qm is 
as close to 1 as desired. In this case it may be better to use (1.3) individually rather 
than " two terms at a time" as in (1.4). Next, here is a first monotonicity result. 

2.2. THEOREM. In a continued fraction as in (2.1) with a1 > 0 for allj, by > 0 for all 
j > 1, bo > 0, and either bo > 0 or a, > 0, the magnitude of the relative error, given 
by 

|rm 1(Q) 1:= IQ/QM?+- 1I 

is nonincreasing in bj for each j > 0 (for any fixed a, and the other bk). Also, if 
j < m + 1 and Q is convergent for an open interval of values of b , then in that interval, 

IQm/Q -11 is also nonincreasing in bj. 

Proof. If a, = 0, then Qm = bo > 0 for all m, and the result holds trivially; so 
assume al > 0. We have BJ > 0 for all j > 0 by (1.3). First consider the statement 
about rmlj. We can assume that j < m + 1 and DJ 0 0, since otherwise Qm/Qm+l 
does not depend on bj (using (1.7)). By Corollary 1.12 we have, if j > 1, or j = 0, 

a(Qm/Qm+i) Bji(Qm- - QmQm~i) Qm m - Qm abJ ~ J-( Bjm+JQ-Q-1 Qm+l a bj ~ ~ jQ2+?(Qj - ,j 
or QA? 

respectively. Now by Theorem 2.1, QJ - Qj1 has the sign of (-1)J+ 1. Also, since 
j - 1 < m, Q2_1 - Qm+lQm has the sign (-1)J. So, the displayed expressions have 
sign opposite to that of Qm - Qm+1 (or are 0), which implies the first result. 

For the case of Qm/Q, with j < m + 1, the proof is essentially the same, using 
Theorem 1.11. E 

3. Alternating Continued Fractions. As will be seen in Section 5, some useful 
continued fractions have the following property. 
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Definition. A continued fraction (1.1) will be called alternating if for all j < J, the 
least i with a, = 0, 

(a) a} (-1)'~1c, where c,> 0 and for j even, c, < 1, and 

(b) bo > 0 and b. > 1 for j >1. 
The following fact is known, at least in some cases [12, p. 108]; [14, p. 1452]. It 

follows directly from (1.2). 

3.1. THEOREM. For any alternating continuedfraction Q, if Q converges, we have 

QI -<- Q 4 -<- Q5 -<- Q8 < Q < < Q 7 < Q 6 < Q 3 < Q 2 

If Q fails to converge, the inequalities are true with "< Q < " deleted. 

For an alternating continued fraction, in view of (3.1), Q is between Qm and 

Q,2+2 for any m, so it is natural to consider the error after two more terms, 

rm,2(Q) := (Qm/Qm+2) - 1. 

To compute Q to a given relative error (neglecting rounding errors), we can iterate 
(1.3) ,and (1.4), stopping when Irm,2(Q)I is as small as desired. 

3.2. THEOREM. For any alternating continued fraction Q, any m >? 1, and even 
j < m + 2, the magnitude Irm 2(Q)I of the relative error is nonincreasing in b., and if 
Q is convergent for an open interval of values of bj, then in that interval, I(Qrn/Q) - 11 
is nonincreasing in bj. 

Proof. Let J:= mini: c, = 0}, or + so if there is no such i. If j > J, then 
nothing depends on b. and the results are clear. Suppose 1 < j < J. Then (since j is 
even) J > 3, Al =b1b + cl > bo > 0, and B1 = b, > 1 > 0, so Q1 > 0. Thus 

Qrn > 0 for all m ? 1 by (3.1). Then Dj 0 0 and Qj - I QJ by (1.7). 
Inductively, it will be shown that Bk > 0 for all k >? 0, as is true for k = 0, 1, 

and that for k odd, Bk> Bk-l, as is true for k = 1. In fact, for k odd, Bk = 

bkBk-l + CkBk-2 > Bk-1 > 0 by the induction hypothesis. For k even, k > 2, 
Bk= bkBkI - ckBk-2 > 0 since Bk-1 > Bk-2 > 0 and Ck < 1 < bk, proving the 
claims. Thus also Am > 0 for all m > 1. 

Now consider Qm/Qm+2. By Corollary 1.12, if 1 < j < m + 1, or j = 0, 

a(Qm/Qm+2) _ Bj-i(Qm - Qm+2)(QJ 
_ I- QmQm+2) or Qm+2 - Qrn 

MBQA+2(QJ -QJ-1) m+2 

respectively. Now by (3.1), for j= 2 mod 4, QJ > QJ-1, and since j - 1 < m, we 
have Q_ < QmQn+2. For 0 j= 0 mod4, both the last two inequalities are 
reversed. Thus in any case, the above derivative and Qn/Qm+2 - 1 have opposite 
signs or are 0, giving the desired result. 

If j = m + 2, then by 1.10, 

d(Qm/Qm+2) (Qj-1- Qm+2) BJiQm 

a M+2(Qj- -QJ)BJ 

which has the sign of Q. - QJ Recalling that j is even, this sign is + 1 for j 2 
mod4 and -1 for j 0 mod 4, which is opposite to the sign of Q,, - Qm?2 = 
Q-2 - QJ, completing the proof for the Qm/Qm+2 case. 

Now for the Qm/Q case, the same proofs as above apply with Q in place of Q, +?2 
foreachcase jA m ? lorj= m + 2. E 
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4. Even Parts of Continued Fractions. Starting from an arbitrary continued 
fraction Q given in (1.1), one can form another continued fraction V such that the 
convergents of V equal the even convergents of Q, Vk = Q2k for k = 0, 1, 2,..., by 

ajb2 -a2a3b4 -a4a5b2b6 
V = bo + 

b?b2 + a2 + (b2b3 + a3)b4 + b2a4 + (b4b5 + a5)b6 + b4a6 + 

-a a ab b8 6 7 4 8 

(b6b7 + a7)b8 + b6a8 + 

provided that for all k = 1,2,..., b2k / 0 and (for Q2k to be defined and finite) 
B2k + 0 [15, pp. 200-201]. From this it is easily seen that: 

4.1. THEOREM. For an alternating continued fraction Q, with even part continued 
fraction V = bo + s1/(t1 + s2/(t2 + * * )), the entries sj and tj are nonnegative, at 
least until some s, = 0. 

It is clear from (2.1) that for any continued fraction such that the entries in its 
even part are nonnegative, with denominators strictly positive, we have 

(4.2) QO < Q4 < Q8 < ... Q1 < Q6 < Q2 
This includes some of the inequalities in Theorem 3.1. The "alternating" property is 
not necessary for the conclusion of Theorem 4.1, so that Theorem 3.1 can be 
extended if desired. 

5. Continued Fractions for Normal, Poisson and Binomial Probabilities. For the 
standard normal probability density function 

O(x) := (27) -1/2 exp(_X2 /2) 
and cumulative distribution function 

(D x) JX (t dt 
00 

we have Laplace's continued fraction [18, formula (92.15)] 

(5.1) (D(-x) = (P(X)(+ X > x x+ X + X + X + X+ 

For x > 0, Theorem 2.2 implies that the number of terms needed to attain a given 
relative error in (5.1) decreases as x increases. Thus (5.1) is more useful for larger x, 
say x > 2 or 3. See, for example, [1] and [2]. Also, 4'(x) 1 - (-x). 

Individual Poisson probabilities are defined by 

p(k,X) :=e-X~k/k!, k=0,1,..., forX>0, 
and cumulative probabilities by 

P(k,AX) := Y, p(j,AX), Q(k,A/) := p0jA)- 
0 <j<k k < j< oc 

For ratios of cumulative to individual probabilities we have 

P(k, X)/p(k, X)=1 + k/X + k(k - 1)/X2+ +k!/Xk 
(5.2) 1 k/X 1/A (k- 1)/X 2/A (k- 2)/X 

1 - 1 + 1- 1+ 1- 1+ 

[15, p. 313]; [18, p. 350] 

1 k 1 k-1 2 k-2 3 
(531 + 1 ? \ * 1~~~- A+ 1 A+ 1- A+ 1 
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Sometimes called Legendre's continued fraction [10, Chapter 17], this was given by 
Euler [4, p. 232] and [5, pp. 40-41] = [6, Vol. 14, p. 612 and Vol. 16, Part 1, pp. 36, 
41]. For alternate forms of (5.2), see [8, Section 4.3]. Next, 

(5.4) Q(k, A)/p(k, A) = 1 + X/(k + 1) + X2/((k + 1)(k + 2)) + 

(5.5) 1 X/(k + 1) X/((k + 1)(k + 2)) (k + 1)A/((k + 2)(k + 3)) 
15.5 =- 1.+ 1+ 

[15, p. 312, (18)] 

1 A X (k + 1)X 2X (k+ 2)X 3X 
1- k?+ + k+2 - k+3+ k+4- k+5+ k+6 - 

[18, p. 348]. 

There is another continued fraction for Q(k, X)/p(k, X) [8, Section 5] but its 
convergents are just the partial sums of the series (5.4) of positive terms. Thus, it 
cannot have such properties as (2.1) or (3.1); for large k and A, for example 
k A + 3X1/2, (5.4) tends to converge more slowly than (5.5). 

Individual binomial probabilities are defined by 

b(kn, p) = (k)pkqnk, whereO s<p < 1, q :1-p, 

and k = 0, 1, . . ., n, where 00 is replaced by 1 in this case. Cumulative probabilities 
are defined by 

B (k, n, p) :- b(j, n, p), E(k, n, p) := E b(j,n,p)- 
O<j k k<j n 

For the ratios of cumulative to individual probabilities we again have continued 
fractions. In terms of the hypergeometric function F we have 

E(k, n, p)/b(k, n, p) = F(k - n, 1, k + 1, -p/q) [18, p. 335, (89.1)] 

1 + (n - k)p ? (n -- k)(n - k - 1)p2 + 

(k + ?)q (k + 1)(k + 2)q2 

1 (n - k)p/((k + 1)q) (n + 1)p/(q(k + 1)(k + 2)) 
1 - 1?+ 1 - 

(k + 1)(n - k - 1)p/(q(k + 2)(k + 3)) 
1 + 

2(n + 2)p/(q(k + 3)(k + 4)) 

(5.6) 1 - 

(k+ 2)(n - k - 2)p/(q(k + 4)(k + 5)) 
1 + 

3(n + 3)p/(q(k + 5)(k + 6)) 
1- 

[15, p. 312]; [18, p. 340] 

1 (n - k)p/q (n + ?)p/q (k + 1)(n - k - 1)p/q 
1 - k+1 + k+2 - k+3+ 
2(n + 2)p/q (k + 2)(n - k - 2)p/q 3(n + 3)p/q 

k+4 - k+5+ k+6 - 
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The lower cumulative binomial B(k, n, p) need not be treated separately, since it 
equals E(n - k, n, q) = 1 - E(k + 1, n, p). 

Now the relative errors rm 2(Q) = Qm/Qm?2 - 1 in some of the above continued 
fractions will be treated as functions of X or p. 

5.7. THEOREM. For any fixed integers k and m > 0, the relative error Irm,2(Q)I in 
(5.2) is decreasing in X for X > k and converges to 0 as X T + oo. Likewise in (5.5), 

Jrm 2(Q)I is increasing in X for X < k + 1 and converges to 0 as X I0. In (5.6), for 
fixed k, n and m, Irm.2(Q)I is increasing in p for p < (k + 1)q/(n - k) and 
converges to 0 for p IO. 

Proof. In all three of these continued fractions we have bo = 0, a, = I and br = 1 
for all r > 1. All are alternating, for the ranges of variables being considered, so that 
(3.1) and (3.2) apply. We consider pairs of variables (a2j, a2j+1) for j = 1, 2,.... In 
(5.2), replacing X by I > X multiplies both a2j and a2+ 1 by X/j. Equivalently, one 
can leave a2, and a2j+l fixed and replace b2j = 1 by b2j = I/X. By (3.2), this can 
only decrease Irm,2(Q)I. Doing this for j = 1, 2, . . ., [(m + 1)/2] gives the result for 
m odd. For m even, we still have the j m + 2 term, where increasing X is 
equivalent to increasing by, so again (3.2) applies, giving that Irm 2(Q)l is decreasing 
in X for X > k in (5.2). The monotonicity of Irm 2(Q)I is proved likewise for (5.4) 
and (5.6). We have Qm -* 1 for all m, and so rm 2(Q) -' 0, if X -> + ox in (5.2), 
X 0 in (5.5), orp IOin(5.6). E 

The restrictions on X or p in (5.7) are needed to obtain the alternating property 
and thus (3.1). The condition on p is equivalent to k > np - q. If it fails, the 
continued fraction (5.6) still converges (if 0 < p < 1: [18, p. 339]), but it may first 
hover around an incorrect value. For example if k = 150, n = 319, and p .63, 
then Q22, Q24,. .. , Q42 are all between - 1.047804 and - 1.047805, but Q = 

limm ,, Qm is 4.362- 108 to the given accuracy, as is Qmn for m > 132. On such 
"deceptive" convergence see also [7]. 

Waadeland [17] considers partial derivatives aQ/aak when bn 1. His results do 
not seem strongly related to those in (1.10) and (1.11) above. 
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