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A Table of Elliptic Integrals 
of the Second Kind* 

By B. C. Carlson 

Abstract. By evaluating elliptic integrals in terms of standard R-functions instead of Legendre's 
integrals, many (in one case 144) formulas in previous tables are unified. The present table 
includes only integrals of the first and second kinds having integrands with real singular 
points. The 216 integrals of this type listed in Gradshteyn and Ryzhik's table constitute a 
small fraction of the special cases of 13 integrals evaluated here. The interval of integration is 
not required, as it is in previous tables, to begin or end at a singular point of the integrand. 
Fortran codes for the standard R-functions are included in a Supplement. 

1. Introduction. Let 

(1.1) [PI = [P'IP2 ...An] = f (al + ... (an + 

where Pi',. .p.,n are nonzero integers, the integrand is real, and the integral is 
assumed to be well defined. Many integrals like 

f (1 - k2sin2p)P/112dp and f (a + bz2)P,12(c + dz2)P2/2 dz 

can be put in the form (1.1) by letting t = sin2 0 or t = Z2. 

For purposes of classification we assume the b's are nonzero and no two of the 
quantities ai + bit are proportional. If at most two p's are odd, the integral (1.1) is 
elementary. If exactly three p's are odd (the "cubic case"), the integral is elliptic of 
the first or second kind if all the even p's are positive, and otherwise it is third kind. 
The only such integral of the first kind is [-1, -1, -1]. If exactly four p's are odd (the 
"quartic case"), the integral is elliptic of the first or second kind if all the even p's 
are positive and P1 + . +Pn < -4; otherwise it is third kind. The only such 
integral of the first kind is [-1, -1, -1, -1]. If more than four p's are odd, the 
integral is hyperelliptic. 

Integrals of the first kind are traditionally expressed in terms of Legendre's 
F(4, k) with 0 < k < 1 and 0 < 0 < 7T/2. Integrals of the second kind require 
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E(4., k) and usually F also. We shall replace F by the symmetric integral 

(1.2) RF(xyz) = 21f [(t + X)(t +Y)(t + Z)] dt 

and E by 

(1.3) RD(XI Y, Z) = 
3 o 

(t + x)-112(t + y)2(t + Z)-3/2 dt. 

These R-functions are homogeneous: 

RF(XX, XY, XZ) = X /2 RF(X, Y, Z), 
(1.4) 

RD(XX, XY, XZ) = X 3/2 RD(X, Y, Z), 

and they are normalized so that 

(1.5) RF(x, XX) = X-12 RD(x, XX) -/ 

Fortran codes [6] for computing R F and RD when x, y, z are real and nonnegative 
are listed in the Supplements section of this issue and can be found also in most of 
the major software libraries. 

Customary integral tables [1], [7], [9] assume that the interval of integration begins 
or ends at a branch point of the integrand, and many special cases are listed 
according to the positions of the other branch points relative to the interval of 
integration and to one another. If the integral at hand does not have either limit of 
integration at a branch point, it must be split into two parts that do. In the present 
paper these two parts are recombined by the addition theorem, and the need to 
specify the relative positions of the branch points then disappears. The use of 
R-functions greatly facilitates the application of the addition theorem and leads to a 
further unification that cannot be achieved with Legendre's integrals, because the 
expressions for RF(X, y, z) and RD(X, Y, Z) in terms of Legendre's integrals with 
O < k < 1 and 0 < 4 < 7r/2 depend on the relative sizes of x, y, and z (see [5, (4.1), 
(4.2)], (5.25), and (5.32)). 

Integrals of the third kind and integrands with conjugate complex branch points, 
resulting from an irreducible quadratic factor a, + bit + cit2, will be deferred to 
later papers. (Integrals of the first kind with quadratic factors are treated in [3].) The 
main table in Section 2 consists of quartic cases, since cubic cases can be obtained 
from these by putting ai = 1 and bj = 0 for various choices of i. To select integrals 
that are relatively simple and occur most commonly in practice, we arbitrarily 
require XI p, I < 8. Apart from permutation of subscripts in (1.1), there are just nine 
quartic cases of the first or second kind satisfying this criterion: [-1, -1, -1, -1], 
[1, -1, -1, -3], [-1, -1, -1, -3, 2], [-1, -1, -3, -3], [1, -1, -3, -3], [1, 1, -3, -3], 
[-1,-1,-1,-5], [1,-1,-1,-5], and [1,1,-1,-5]. The integral [-1,-1,-1,-3] is a 
special case of [-1, -1, -1, -3, 2] with a5 = 1 and b5 = 0. 

Section 3 presents four cubic cases not contained in the nine quartic cases: 
[3. -1, -31, [3, -1, -1], [-3, -3, -31, and [1, 1, 1]. 

The method of evaluating the integrals is discussed in Sections 4 and 5. The 
fundamental integrals are [-1, -1, -1, -1] and [1, -1, -1, -3], and the rest are ob- 
tained from these by recurrence relations. The single formula (2.7) for [1, -1, -1, -3] 
replaces 72 cases occupying the nine pages of ?3.168 in Gradshteyn and Ryzhik's 
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table [7], as well as 72 cubic cases: 18 cases of [-1, -1, -3] in ?3.133, 18 cases of 
[1, -1, -1] in ?3.141, and 36 cases of [1, -1, -3] in ?3.142. 

By using [5, (4.1), (4.2)], (2.6) was checked against formulas 1, 3, 5,7 of [7, ?3.147], 
and (2.7) was checked against formulas 1, 5,42,70 of [7, ?3.168]. The nine integrals 
in Section 2 and the four in Section 3 were checked numerically to 6S for y = 0.5, 
x = 2.0, ai = 0.5 + i, bi= 2.5 - i by the SLATEC numerical quadrature routine 
QNG and the routines for R F and R D in the Supplements section of this issue. 

2. Table of Quartic Cases. We assume x > y and ai + bit > 0, y < t < x, for all 
i, and we define 

(2.1) dij = aibj -ajbi, 

(2.2) Xi = (ai + bix)1/2, Yi = (ai + biy)1/2, 

(2.3) Uij = (XiXjYkYm + YiYjXkXm)/(X - 

where i, j, k, m is any permutation of 1,2,3,4. These definitions imply 

(2.4) Uidk - im jdkm, 

and consequently the arguments of the R-functions appearing in the table differ by 
quantities independent of x and y. If one limit of integration is infinite, (2.3) 
simplifies to 

(2.5) Uij = (bib )'7 YkYm + YiYj(bkbm)1/2, X = + 00, 

U1j = XIXj(bkbm)"'2 + (bibj )'/XkXm, Y = -0x, 

all square roots being nonnegative. 
If one limit of integration is a branch point of the integrand, then Xi or Yi will be 

0 for some value of i (with pi > -1 since we assume that the integral exists), and one 
of the two terms in every Uij will vanish. If both limits of integration are branch 
points, the elliptic integral is called complete, and one of the U;j will be 0. It is not 
assumed that bi 0 0 nor that dij 0 0 unless one of these quantities occurs in a 
denominator. The relation dij = 0 is equivalent to proportionality of ai + bit and 
a1 + b t. The nine quartic cases listed in Section 1 follow. Only the first two are 
treated by Gradshteyn and Ryzhik [7, ?3.147, ?3.168]. 

fX[(a, + bt)(a2 + b2t)(a3 + b3t)(a4 + b4t)] -/2dt 

(2.6) 
= 2RF(U122, U123, U124). 

f (a, + blt)""2[(a2 + b2t)(a3 + b3t)] '2(a4 + 

(2.7) 

= dl2dl3RD(UI22, U13 U14) + 2XY, 3 ~~~~~~x4y4U14. 
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The next equation remains valid even if a5 + b5 t changes sign in the interval of 
integration. 

f [(a, + blt)(a2 + b2t)(a3 + b3t)]"1"2(a4 + b4t)3/2( a5 + b5t)dt 

(2.8) - ~~2dl2dl3d54 (2 .8) = 2d1 4R D ( U122, U123, U124) 
3d14 

2dI5 2d54X1Y1 + d R (U U U U2 U )+23 XY R 
d14 l4 4 X4Y14 

f (a + bt)(a2 + b2t)] /2[(a3 + b3t)(a4 + 3/2dt 

= 2dn b3d + b~t)(a) +D(U2,U2,U2 

2(2 (2.9) 2 (b-d(4d24 + b4dl3d23)RD(UI2, U124, U122U) 
M3d4 

b3b4R( U +Y4 + b4X3Y3-13 

d32 
U122 IU123 I U124 2 X3 Y3 X4 Y4 

JX (a, + b t)""2(a + b2t)""/2[(a3 + b3t)(a4 + b 3/2dt 

!' 

f [(al + blt)( 2 + 2t)a+ b3t 3/(a4 + 40)5/ 

( d2b4bd4 + b4d23)RD (U, U, U12) 
34 

(2.10) 2 
3 (b3dI4 + b4dl3)RU ul, u 

2b3dl3X4Y4 2b4dl4X3Y3 + + - 
d 3U1 2X3 Y3 d 34U 2 X4 Y4 

fX[(a + b~t)(a2 + b t)]'/2 [(a3 + b t)(24d+ 

(2.11) ~~~~~~4dl2dl3d24 12 3 4 2dI2 
3d34 RDU 2u)+d34 R(~U,~ 

+ 2341 (d24XIY dI 3X2Y2) 

JX [ + 
b~t)(a2 +2t)(a3 + b3t)]"(a4 + t 

4b b,+ d 2+ b3 d- 1 12', U13 U1) +3X 

(2.12) $){lalR(U U 
2 2b 2 b1b2 b b3 b b 

3d14 d14d24 dl4d34 d24d34)Fu2uu) 

2b 2 

1d4d24d34(xxxx-- 
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J (al + b1t)' [(a2+ b2t)(a3 + b3t)] "2(a4 b4t)5"2dt 

(b~ 2b -2b3){ RU12, u12, u1~ + 3X1Y 
9 ( d(dl2dO3RD( l2 3 142uyj) + 14} 

(2.13) 
2b4d12d13 R(U12, ~2 U1?) 

3d 4d,4d34 ) 

1b4 

3d d (x1XX3X43- Y1Y2Y3Y4- 3). 

f [(al + b1t)(a2 + b 1/2(a + b3) 1/2(a4 +b4t)5/ 

=9d1d3 (dl3d24 + d23d14){dl2dl3RD( u12 u31~ 4) + X } 

(2.14) 2d d 

3d12d3 R F( U22.U123 U?4) 

-3d3 (xiX23X -3- Y Y2Y3Y4 )3 

3. Cubic Cases. By putting a,= 1 and b, = 0 for various choices of i, 13 cubic 
cases can be evaluated from the quartic cases in Section 2 and do not need to be 
listed separately. Eight of these are given by Gradshteyn and Ryzhik [7, 
??3.131-3.135, 3.141, 3.142]: [-1, -1, -1], [-1, -1, -1,2], [-1, -1, -3], [-1, -1, -5], 
[-I, -3, -3], [1,-1, -1], [1,1,-1], and [1, -1, -3]. They do not give the other five: 
[1, 1, - 31, [1, 1, - 5], [1, -1, - 5], [1, - 3, - 31, and [ -1, - 1, - 3, 21. 

In this section we list four cubic cases not contained in the quartic cases of Section 
2: [3,-1,-3], [3,-1,-1], [-3,-3,-3], and [1,1,1]. Only [-3, -3,-3] is given by 
Gradshteyn and Ryzhik [7, ?3.136], and only two cases of this are listed, each with 
an infinite limit of integration, because the integral diverges if it begins or ends at a 
finite branch point with pi = -3. If the closed interval of integration lies in the open 
interval between two finite branch points with p, = -3, there is no way to evaluate 
the integral by using previous tables. 

In place of (2.3) we define 

(3.1) U, = (XYJY? + YXiX4 )/(x-y) 

where i, j, k is any permutation of 1, 2, 3. Since this implies 

(3.2) U2 - I= bd 

the arguments of the R-functions in the table differ by quantities independent of x 
and y. If one limit of integration is infinite, (3.1) simplifies to 

(3.3) Ub= (bjbk)1/2Yj if x= + C U = (bbk )1/2X, if C= . 
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the square roots being nonnegative. The remarks in the paragraph preceding (2.6) 
apply, after replacement of U1j by Uj, also to the following integrals. 

J (a1 + b1t)3"2(a2 + b2t) 12(a3 + b3t)3/2dt 
y 

(3.4) bd3 ( 3dl2(bld23 + b2dl3)RD(U2, U3, U1) 

-dl2RF (U U2 U3) + dX3Y3 )I + 2b3U1XY 

j (a1 + b2t)(a3 + b30 d 

(3.5) = 3b2bb2dO 3 + b3dl2) {3dl2dl3RD(U2, U3 2Ul2) + UX ) 

212d13 R U2 2 2)____ RF(UUU) + b I (X1X2X3 -Y1Y2Y3). 3b2b3 b3 

J [(a, + blt)(a2 + b2t)(a3 + b3t)]3dt 
.v 

_4bib2 / b1b2 b2b3 b3b (2 2 2 - I + ~~ ~~+ I RD(U1,U2,UIZ 
3d 2 (d12 d 23 d3 j 

2b1b2 (b b2 2b2 
(3.6) + d2 d ( d ' + dU2 U37) d13d23 X3 Y3U3 

2( bl3X2Y2 + b2X1Y1 
d12U3k d13X1Y1 d23X2Y2) 

= ddd23 {blb2RD(Ul2,U2, U3) X? YU)} 

where ? denotes summation over cyclic permutations of the subscripts 1, 2, 3. The 
same notation is used in the next formula. 

I 
[(a, + b1t)(a2 + b2t)(a3 + b3t)]112dt 

_ 5 a2(b~d% bz(3dd2 RkD(UlU22UJ + X3Y3}) 

(_ 2d3d23 (b d23 + b2dl3)RFtU1,UM2,U3) 

+21X 
2 Id (U2 U2 U2) + +3 

15b(b b 2 [ 3 1l3d23RD-(Ul , U2 I U3 
3 + X3Y3)} 

2~~~~~~~~ 311 1X 3-1Yy 
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4. The Two Fundamental Integrals. In this section we shall prove (2.6) and (2.7) for 
[-1, -1,-1,-1] and [1, -1, -1, -3], from which the remaining integrals can be ob- 
tained by the recurrence relations of Section 5. In order that the first part of the 
proof shall apply for future purposes to [1, -1, -1, -1, -21, which is an integral of the 
third kind, we do not restrict the number n of factors in (1.1) to be 4. It will be 
important that these three integrals have Pi > -2 and E pi = -4. 

In (1.1) we assume x > y and ai + bit > 0, y < t < x, for all i. In the notation of 
Section 2 this implies X,2 > G and y2 > 0 for all i. Temporarily we assume further 
that -al/b1 > x and that ai + bit > 0, y < t < -al/bl,'fori > 1. This assumption, 
which will later be removed by analytic continuation, means that -al/b, is the first 
singularity encountered to the right of the interval of integration. The first part of 
the assumption implies (a1 + blx)/bl < 0, whence X12 > 0, b, < 0, and Y12 > O, 
since Yi I - b1(x - y). The second part of the assumption implies ai + 

bi(-al/bl) > 0, whence d1i > 0, i > 1. 
We can now split (1.1) into two parts, both well defined if Pi > -2: 

[PI = f a/ H (ai + bit) dt 

(4.1) f-a'/b ' Hr (aj + bit) pj2dt =IY -Ix 
x i=1 

It suffices to consider Iy because Ix is the same with y replaced by x. The interval of 
integration is mapped onto the positive real line by a change of integration variable: 

u = tY , t =y + aY,2u 
Y1 (al + bit) 1 - bYlu 

(4.2) dt ai+bit=Yl _ bU?2 

du (1 - bY,2u) 
1 - bYu 

where dl= 0. If E pi = -4 the powers of 1 - bY 1u cancel, and we find 
n 

Iv - Y4?pif H(Y dlu + y2)Pdu 

(4.3) 
2 

= H (d1j) pJ12f rH (u + y2/y2di)Pi/du 
j==2 0i-2 

The integral Ix is the same with Yi/ Yj2d, replaced by X72/XfrI1, and the 
difference, 

X2/Xd1 - y= (x - y)X2Y2, 
is positive and independent of i. Using the notation 

(4A4) X = (X - y)/X1Y12, Zi = Y2/Y2dli, z2 + X = 
X7/XJd11, 

we find from (4.1), (4.3), (1.2), and (1.3) that 

[-1,1,-1-1] =2(dl2dl3dl4 ) 1/2 

[RF(Z2, Z3, Z4) 
- 

RF(Z2 + X, Z3 + AX Z4 + X)]S 

[1( -1, -), -31 
2 

(d12d13 )-1/2(d14)-3/2 
(4.6)3 

[RD( Z3 Z4) 
- 

RDZ + , Z3 
_ 

, Z4 
_ | E 
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The addition theorem [4, (9), (13)] for RF is 

RF(2, 23 4) = RF(Z2 + X, Z3 + ?4 ) 

(4.7) R 1 (4 7) +RF(Z2 + y Z3 + y 4 + M)*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~( 2+1,Z3+1,Z 

i+ = ?[(Z [Z (Z ? X)(zk? jj + A } 

where i. j, k is any permutation of 2, 3, 4. Thus (4.5) becomes 

(4.8) [-1-i, -1.-i] = 2(dl2d13dd4) 12RF(z9 + , Z3 + M. z4 + M)% 

(4.9) + (XXI Y Yk? 
Y 

Y1?XiJXk)2 _ ___ 

( 9) /1.=( 'I _ Y)2 d.d ld, 
dlidljdlk(X 

12 )21 

By the homogeneity property (1.4) we find 

(4.10) [-1,--1, -1]= 2RF(U1 ,, U73, U174) 

which is the same as (2.6). 
This removal of the d's from the arguments of R F is the critical step. As shown 

by (1.2), an argument of RF must not be negative, and so the functions on the 
right-hand side of (4.5) require the branch points to be ordered so that d12, d13, and 

d14 are positive. To show that (4.10) holds without the assumption that -al/b1 is the 
first singularity to the right of the interval of integration, we use analytic continua- 
tion in b1 or more conveniently in w, where 

X 2 
4, ~~~- y12 

u=X19 = al + bjxy bl X-Y' - 

w X 2a?~. b = (4 .11 ) x Y 9- y -al1 w ( x-} 

a1 x - f Yi7 - w 

We fix x. vI Y > 0, 1 < i n, and X, > 0, 2 i < n. Then a, and b1 are 
functions of wu and we can make -al/b1 be the first singularity to the right of the 
interval of integration by choosing w positive and sufficiently small. For such values 
of wi we have proved that (4.10) is true. We shall show that both sides of (4.10) are 
analytic in w on the complex plane cut along the nonpositive real axis. It follows by 
the permanence of functional relations that (4.10) holds in the cut plane and in 
particular for all positive values of w. Therefore it holds for any real value of -a1/b, 
outside the closed interval of integration. The last statement is immediately evident 
from the graph of a, + b1t as a function of t, since al + b1y has been fixed and 
w = al + bjx. 

To prove analyticity, we recall that an R-function is analytic when each of its 
arguments lies in the plane cut along the nonpositive real axis [2, (6.8-6), Theorem 
(6.8-1)]. Since (2.3) shows that U7J = aJW1/2 + /3w, where a1J and PlJ are positive, 
U., lies in the cut plane when w does, and so the right-hand side of (4.10) is analytic 
in the cut w-plane. The left side is defined by (1.1), which can be rewritten, when 

E,= -4. as 

(4.12) [P] = (X-. )| HyRt 2 2 yP 2 X2) 
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by taking s = (x - t)-(t -y) as a new variable of integration and using [2, 
(6.8-6)]. Since Y,2 is positive and X1 = w, the right side of (4.12) and the left side of 
(4.10) are analytic in the cut w-plane, and the proof of (2.6) is complete. 

A different proof of (2.6) was given in [3], but the present proof is adaptable to 
(2.7) with only minor changes. The addition theorem for RD' obtained by putting 
p = z in [11, (8.11)], is 

RD(Z2, Z3, Z4) = RD(Z2 + X, Z3 + Xi z4 + X) 

(4.13) +RD(Z2 + 11, Z3 + A, Z4 + A) 

+3[z4(Z4 + X)(z4 + A)] /, 

where ti is the same as in (437). Thus (4.6) becomes 

[1, -1, -1, -3] = -(dl2dl3) (d14 

(4.14) RD(Z2 + /-t Z3 + /Al Z4 + /) 

+ 3z4(z4 + X)(z4 + )]-1/2} 

Substituting (4.4) and (4.9) and using the homogeneity property (1.4), we find (2.7). 
The temporary assumption about -a1/b, can again be removed by the permanence 
of functional relations. In the first term on the right-hand side of (2.7), d12 and d13 
are linear functions of w = X12 by (2.1) and (4.11), and RD is analytic in the cut 
w-plane by the same reasoning that applied earlier to RF. The second term also is 
analytic because Xl/U14 = w'/2/(a14w"I2 + /814), where a14 and /814 are positive. 
Since the left side of (2.7) is a special case of (4.12), the proof is complete. 

5. Recurrence Relations. Let ei denote an n-tuple with 1 in the ith place and O's 
elsewhere (for example, [ p + 2 e1] = [ p1 + 2, P2' . . - Pn]). We shall first list some 
relations between different integrals, then give their proofs, and finally show how 
they can be used to obtain all the integrals in the table from the two fundamental 
integrals (2.6) and (2.7). The most useful relation is 

(5 .1) diy p ] = bjt p + 2ei] - bi[p + 2ej] . 

Two others, involving the quantity 
son 

(5.2) A (p) = 1 xipi -I H YPi, 
are ~ ~ ~ il ~ 

are 

(5.3) pibi[p - 2ei] = 2A(p) 
i=1 

and 

(5.4) (P1 + +P,7 + 2)b1[p] = E pjdji[p - 2ej] + 2A(p + 2ei). 
j=1 

The latter, which can be used to raise the value of 2pi, contains n integrals since 

dii = 0. 
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Recurrence relations for a single p1 depend on the value of n. For n = 3 and 
i, j, k any permutation of 1, 2, 3, we have 

(P1 + P2 + P3 + 4)bjbk[ p + 2ei] 

(5.5) + ((p, + p, + 2)bJdkl +(Pi + Pk + 2)bkdJI}[P] 

+pidJldkl[p - 2e] = 2bA(p + 2ej + 2ek). 

The analogous relation for n = 4 and i, j, k, m a permutation of 1, 2, 3, 4 is 

(P1 +P2 +P3 + P4 + 6)bjbkbm[p + 4e1] 

(5.6) + >S(Pi + P, + Pk + 4)bjbkdmi[ p + 2e,] 

+ 2(pi +pj + 2)bjdkidmi[P] +pidjldkldmi[p - 2ei] 

= 2b2A(p + 2e1 + 2ek + 2em), 

where E denotes summation over cyclic permutations of j, k, m. This relation is 
especially useful if E p1 = -6, because the first term vanishes. 

Equation (5.1) follows at once from the definition of [p] and the identity 

(5.7) dlj = bj(al + bit) - bl(aj + bjt). 
To prove (5.3) we integrate both sides of 

(5.8 n b n) ~ 
(5.8) 2- H (al + bit)' = L plbi(ai + bit)- H(a + jt) p/ 

dt i= 1= 
with respect to t over the interval [y, x]. 

If p is replaced by p + 2ei, (5.3) becomes 
n 

(5.9) (pi + 2)bi[p] + L pjbj[p + 2ei - 2ev] = 2A(p + 2ej), 
j=1 

and if p is replaced by p - 2ev, (5.1) becomes 

(5.10) bj[p + 2ei - 2ev] = bi[p] - d1i[p - 2ej]. 
Substitution of (5.10) in (5.9) yields (5.4). To prove (5.5) we use (5.7) twice to 
write b2(a, + bJt)(ak + bkt) as a quadratic polynomial in ai + bit, multiply by 
H(ar + brt)'Pr2 , and integrate to get 

b2 [bp + 2ej + 2ek] = bjbk[p + 4ej] +(bjdk1 + bkdJi)[p + 2ei] 
+ dJldki [ P ] 

Next we replace p by p + 2e, + 2ek in (5.3) with n = 3 and find 
(5.12) pib1[p - 2e, + 2e + 2ek] +(pj + 2)bj[p + 2e] 

+(Pk + 2)bk[p + 2ej] = 2A(p + 2ej + 2ek). 

In the first term we substitute (5.11) with p replaced by p - 2e,; in the second and 
third terms we use (5.1) with or without replacement of j by k. The result is (5.5), 
and (5.6) has a similar proof starting from b3(aJ + bjt)(ak + bkt)(am + bmt) as a 
cubic polynomial in aI + bit. 

The following special cases of (5.1) show how to obtain (2.8), (2.9), (2.10), and 
(2.11) from (2.6) and (2.7): 
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(5.14) b4 [ -1 -1, -1,-3,2] = d 54 [1 1_, -1,-3] + b5 [-1, -1, -1, -1], 

(5.15) d34 [-1, -1, -3, -3] = b4[-l, -1, -i, -3] - b3[-1, -1, -3, -1], 

(5.16) b3[1, -1, -3, -3] =d13[-1l-1, -3, -3] + b[-1, -1, -1, -3], 

(5.17) b3[1, 1, -3, -3] = d231, -1, -3, -3] + b211, -, -I, -3]. 

We have omitted p5 = 0 in the two integrals on the right-hand side of (5.14). In 
(5.15), [-1, -1, -3, -1] is found by interchanging the subscripts 3 and 4 in formula 
(2.8) specialized to [-1, -1, -1, -3]. Letting [p] = [-1, -1, -1, -3] and i = 4 in (5.6), 
we get [-1, -1, -1, -5] from [-1, -1, -1, -3] and [-1, -1, -1, -1], since the first term 
of (5.6) is 0. Equations (2.12) and (2.13) then follow from two more special cases of 
(5.1): 

(5.18) b4[11 -1,-I, -5] =d14 [-I I-II -II-5] + bl[-II -II -II-3], 
(5.19) b4[1,1, -1,-5] = d24[1, -1, -1, -5] + b2[1, -1, -1, -3]. 

The formulas resulting from this procedure can sometimes be simplified with the 
help of various identities: 

(5.20) b X -b X7=biY92-b)y =dj, 

(5.21) X, - Y2X2 =(X-y) d1, 

(5.22) adjk = bidk = E dimdjk = 0, 

(5.23) E Xi2dJ, = k Y=dJI = 0, 

(5.24) E djUtjXkYk = 0, 

where E denotes summation over cyclic permutations of i, j, k. These identities are 
obtained from definitions (2.1) to (2.3). Equation (5.22) is used to prove (5.23) and 
(5.23) to prove (5.24). Since RD, unlike RF, is symmetric in only its first two 
arguments, another useful relation is 

dlijdkiRD(U1,2Uj2, U k) = dlkdljRD(UUU2k 1J) 

(5.25) +3R F (U122NU1231 U124 3U [/ 

where i, j, k is any permutation of 2,3,4. This can be proved by using [5, (4.14)] to 
express both sides in terms of the symmetric functions RG and RF and simplifying 
with the help of (2.4). 

The four cubic cases in Section 3 can be obtained from (5.1) and (5.4) as follows: 

(5.26) b3[3, -1, -3] = d13[1, -1, -3] + b[1, -1, -1], 

(5.27) b2 [3, -1, -1] = d12 1, -1, -1] + b4 [1,1, -1], 

(5.28) dl2[-3, -3, -3] = b2-1, -3, -3] - bj-3, -1, -3], 
(5.29) 5b4[1,1,1] = d21[1, -1,1] + d31[1,1, -1] + 2A(3,1,1). 
Aside from permutation of indices, each integral on the right-hand side of these 
equations is among the 13 cubic cases listed in the first paragraph of Section 3. 
Equation (5.24) is replaced by two identities, 

(5.30) E diJUkXkYk =0 

(5.31) bUX1 Y-bb[ UXY= d1 Uk, 
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and (5.25) is replaced by 

b~dkRD(U2, U2 2u,) = bkdlJRD(U, U2, UL2) 

(5.32) + 3RF(U12v U227 U32) - j__ 
Ujk 

In these three equations i, j, k is any permutation of 1,2,3, and E denotes 
summation over cyclic permutations of i, j, k. Equation (5.23) is used to prove 
(5.30), and (5.20) to prove (5.31). Equation (5.32) is proved in the same way as (5.25) 
except that (3.2) is used in place of (2.4). 
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