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By James H. Bramble and Joseph E. Pasciak 

Abstract. This paper provides a preconditioned iterative technique for the solution of 
saddle point problems. These problems typically arise in the numerical approximation of 
partial differential equations by Lagrange multiplier techniques and/or mixed methods. 
The saddle point problem is reformulated as a symmetric positive definite system, which 
is then solved by conjugate gradient iteration. Applications to the equations of elasticity 
and Stokes are discussed and the results of numerical experiments are given. 

1. Introduction. This paper provides and analyzes some new methods for 
the iterative solution of the algebraic systems corresponding to saddle point prob- 
lems. Such systems typically arise in 'multiplier' or mixed discretizations of partial 
differential equations. Important examples of saddle point problems include the 
systems of discrete equations which result from the approximation of the equations 
of elasticity and Stokes [13], [14], [16]. Other examples result from the Lagrange 
multiplier and mixed formulations of second-order elliptic problems [2], [4], [5], [20]. 
Applications to mixed formulations for second-order problems will be described in 
a subsequent paper. 

The elasticity/Stokes equations are perhaps the most important applications for 
the iterative methods to be described. Accordingly, we shall consider this appli- 
cation in detail. In addition, we shall include numerical examples illustrating the 
performance of the iterative method for these problems. 

We shall develop the iterative methods in a general saddle point framework. 
Specifically, we consider systems of the form 

(l.l) ( ~~~~~B -C )(Y ) (G) 
Here F E S1 and G E S2 are given, X E S1 and Y e S2 are to be determined, and 
S1 and S2 are Hilbert spaces. We assume that the operator A is positive definite, 
C is positive semidefinite (it may be 0), and B* is the adjoint of B. In practice, 
the above operators are often the matrices which determine the nodal values of the 
ciscrete solution corresnondincr to a finite Plpmpnt 2nnroYimttiAnn 
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A sufficient condition for the solvability of (1.1) is the so-called 'inf-sup' condition 
[1], [9]. Applying block Gaussian elimination to (1.1) shows that Y is the solution 
of 

(1.2) (C + BA-lB*)Y = BA-1F - G. 

Equation (1.2) will be solvable if the symmetric system BA-1B* is positive definite. 
A direct computation gives 

(BA-lB*V, V) = (AA-lB*V, A-lB*V) = sup U E S1 (AAlB*V, U)2 
(AU, U) 

(1.3) =supUeS1 (V, BU)2 

(AU, U)~ 

Here and in the remainder of the paper, (., ) will denote the inner product on 
either S1 or S2, as will be clear from the context. Thus (1.2) is solvable if there is 
a positive constant c satisfying 

(1.4) supUeSl(VAU) UcIIvII2 forallV S2, 
(AU, U) 

where 11.112 is the norm on S2. Equation (1.4) is equivalent to the inf-sup condition. 
If (1.4) holds, then (C + BA-lB*) is a symmetric positive definite system. One 

can then solve (1.2) by applying any of the standard iterative methods for positive 
definite systems, for example, the conjugate gradient method or a simple linear 
iteration. Then, once Y is known, X is given by 

(1.5) X = A-1(F - B*Y). 

We note here that the well-known Uzawa Algorithm is a linear iteration technique 
applied to the solution of (1.2). In the case of the discretizations of the equations of 
elasticity and Stokes by mixed methods [16], the convergence rate of these iterative 
methods is usually independent of the number of unknowns in the discrete system. 
Each step of the iteration requires the evaluation of the operator (C + BA-1B*) 
on some residual vector. 

One drawback of the above solution processes (and, in particular, the Uzawa 
Algorithm) is that the action of A1 must be computed on various vectors. In 
many important applications, the cost of computing the action of A1 may be 
much more than the cost of evaluating the action of some other symmetric positive 
definite operator A-1 which is a preconditioner for A. One is then faced with the 
question of how to effectively use the preconditioner A-1 to obtain the solution 
to (1.1). Naively, one could use a double iteration, i.e., use a conjugate gradient 
iteration for (1.2) as an outer iterative scheme and use a preconditioned conjugate 
gradient iteration to evaluate A-1. The problem with this approach is that in 
order to ensure convergence of the outer iteration, it becomes necessary to iterate 
the inner until it converges within computer roundoff, thus making the overall 
solution process somewhat costly. 

In this paper, we will develop a single-level iteration approach for the solution of 
(1.1) which utilizes A-1 and does not require the computation of the action of A-1. 
We develop a positive definite reformulation of (1.1) and iterate for its solution. In 
many applications, the amount of work required to solve (1.1) with this single-level 
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iteration is comparable to that required for one evaluation of A-1 in the double 
iteration. 

We should remark that in the case of the equations of elasticity and Stokes 
with the boundary conditions considered in this paper, the operator A is equiva- 
lent to two copies of a second-order elliptic operator in one variable. Thus, with 
the iterative techniques to be developed, the problem of efficiently solving the dis- 
crete Stokes systems reduces to the problem of preconditioning the discrete systems 
corresponding to second-order elliptic equations. Preconditioners for second-order 
equations have been a topic of intensive theoretical and computational research and 
many techniques have appeared in the literature ([3], [7], [8], [10] and the included 
references). 

It is possible to use the preconditioner A-' in an Arrow-Hurwicz [23] 'like' 
algorithm to obtain the solution of (1.1). This Arrow-Hurwicz algorithm requires 
the selection of iteration parameters. In contrast, the application of the conjugate 
gradient method with the reformulation to be developed in this paper does not 
require any parameters and leads to an 'optimally' converging scheme. 

The outline of the remainder of the paper is as follows. In Section 2 we reformu- 
late the saddle point problem as a symmetric positive definite system, and a general 
comparison theorem is given for the reformulated system. In Section 3 we describe 
the application of this technique to the equations of elasticity and Stokes. We con- 
sider applications to the Lagrange multiplier formulation of Dirichlet's problem in 
Section 4. Finally, the results of numerical experiments illustrating the iterative 
method's performance are given in Section 5. 

2. The Positive Definite Reformulation. In this section we shall describe 
a way to develop a positive definite system for solving (1.1). The evaluation of this 
system and the implementation of the corresponding iterative method does not 
require the evaluation of A1 and takes full advantage of available preconditioners 
for A. We prove a comparison theorem which can be used to estimate the condition 
number of this system. In the applications described in later sections, this theorem 
can be used to show that the new systems will be either well conditioned or easily 
preconditioned. 

Let Ao be a preconditioner for A. To be effective, Ao should satisfy two criteria. 
Firstly, the cost of applying the inverse of Ao on a vector should be considerably less 
than the cost of applying A-1. The second condition required for the effectiveness 
of Ao is that there exist positive constants ao and a, whose ratio a&/aO is small 
(preferably bounded independently of the dimension of S1) such that 

(2.1) ao(AU,U) < (AoU,U) < aI(AU,U) for all U ES1. 

We shall make the additional assumption that 

(2.2) al <1. 

Note that for a = 1 - ao, 

(2.3) 0 < ((A - Ao)U, U) < a(AU, U)> 

holds for all U :# 0 in S1. 
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To derive the positive definite system, we again apply row operations to the 
matrix (1.1). Straightforward manipulations give 

tX\ I A-'A AJlB* - ( -' 
(2.4) M 00 

( \) (Y) \BA01(A-Ao) C+BA-lB* Y) - BA-1F-G 

As a consequence of (2.3), we can define the following inner product on S1 x S2, 

(2.5) [ ( (AU, W) - (AoU, W) + (V, X). 

We note that 

(26 V)'(X) =((AA-' 1- A)U1 W) + ((A -Ao)A-'B*Vl W) 

+ (BAo1(A - Ao)U, X) + ((C + BAo 1B*)V, X), 

and hence the operator M is symmetric in the inner product defined by (2.5). We 
will show (see Theorem 1) that M is also positive definite. Thus we can apply 
any of a number of iterative techniques [19], [24] to solve (2.4). In the Appendix, 
we include a discussion of the application of the conjugate gradient method in the 
inner product (2.5) for the solution of (2.4). 

Remark 1. In applications, a preconditioner is usually selected which a priori 
may not satisfy (2.2). It is easy to compute an appropriate scaling factor for the 
preconditioner so that the scaled preconditioner satisfies (2.2). This can be done, 
for example, by using the power method to estimate the lowest eigenvalue of A'1A 
with the unscaled operator A-1. The cost of this computation is small compared 
to the cost of the subsequent iteration for the solution of (2.4). Note that the 
computation of the action of the inverse of the scaled operator is no more difficult 
than that corresponding to the unscaled operator, and the comparison ratio al /ao 
remains unchanged. 

The following result provides a basic conditioning estimate for the operator M. 

THEOREM 1. Let M be given by 

(2.7) M C+BA-1B*) 

Then the following inequalities hold: 

(2.8) AO (V) (Vf] (V) (V)] ?Al [M (f '(fl] 
where 

Ao= (1+ + a+ > and Al = 
2 4 ~~~1-a 

Remark 2. In the case of the Stokes equation, M is well conditioned and hence 
the theorem implies that M is also. In other applications, the theorem is used 
to show that any preconditioner for M can be used as a preconditioner for M. 
Thus, the problem of constructing a preconditioner for M is reduced to that of 
constructing one for (1.2). 

Remark 3. The constants appearing in the inequalities of (2.8) tend to one as a 
tends to zero. This means that as the preconditioner tends to A in an appropriate 
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way, the eigenvalues of M1M tend unifonnly to one. Thus, it is advantageous 
to scale the preconditioner so that (2.3) holds with a as small as possible. This is 
equivalent to scaling the preconditioner so that a, is close to 1. 

Remark 4. The theorem also gives some indication of how well the iterative 
scheme behaves when the condition number K of A-'A becomes large. In this 
case, if Ao is appropriately scaled, (1 -a)-' grows like K. The theorem guarantees 
that the condition number for M1M grows at most proportional to K. 

Proof. To prove the theorem, we shall use an appropriate decomposition in 
Sl x S2. Let (U, V) e S' x S2, and write 

(U (Uo) +(UH) 

where UH is the unique function in S' satisfying 

AUH + B*V = 0. 

It is then straightforward to verify that 

(i) (AUH,UH) = (BA-lB*V,V), 

(ii) M = (BAl1B*V, V) + (CV, V)I 

and 

(iii) U U = uo + M 

We start by proving the first inequality of (2.8). By definition, 

if 
UV I (V] ((A -Ao)U, U) + ((C +BA-1B*)V, V). 

Thus, 

[MV) 
I 

(V) < (1 +-y) ((A - AO) U0IUO) 
(2.9) + (1 + -y1 )((A - AO)UH , UH) 

+ (BA-1B*V,V) + (CV,V) 

holds for any positive -y. Combining (2.3) and (i) gives 

(2.10) ((A-AO)UH, UH) < a(BA -B*V, V). 

Hence, 

(2.11) [M I VG)'(V (1 + I) (((A-Ao)Uo Uo) 
+ (1 + (1 + -yl)a)(BA-lB*V, V) + (CV, V). 

But 

(2.12) [M ( o) , (0?)] = ((A - Ao)A-1 (A - Ao)Uo, UO) + ((A - Ao)Uo, UO). 
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Combining (2.11), (2.12), and (ii) gives 

(2.13) [ ()() (+)MU? U) 
+ (l + (1 + 7 t M UH UH (V) 

The first inequality of (2.8) follows from (iii) and (2.13) with 

a 

We next prove the second inequality of (2.8). We shall consider the two terms 
of (iii) separately. For the first term, by (2.1) and (2.3), it follows that 

(2.14) (AO-W, W) < a 
((A - AO)1W, W). 

Using (2.12) and (2.14) yields 

[M( 0?)( 0?) < (1 
- 

at)-' ((A- Ao)Uoj Uo) 

* ~~~~~~~< (1 - a) -'(1 + y) ((A -AO) U, U) 

+ (1 + a )((A - AO)UH, UH)}. 

By (2.10), (ii), (iii) and (2.15), 

[M (V) I (V) < 1 a ((A- Ao)Uj U) 
(2.16) / ( --I 

+ (1 + (1+a)) ((BAlB*VI V) + (CV, V)). 

The second inequality of (2.8) follows from taking -y = a in (2.16). 
To see that the bounds in Theorem 1 are essentially sharp, we consider the 

following example. Let A be a symmetric positive definite operator on Rn. We 
apply the reformulation of Section 2 to the system 

(A A1/2 (X) F 
with AO = (1 - a)A and 0 < a < 1. The reformulated system M is given by 

(2.17) M = (1 -a)- 1/2 A )1/2 

For this example, M is the identity. It is easy to show that M has only the two 
eigenvalues 'yo = (1 - Vfa-)/(1 - a) and -yi = (1 + Vfa-)/(1 - a). Thus the estimate 
for A1 in the theorem is sharp. The estimate for AO in the theorem is essentially 
sharp in that 

(i) both AO and -yo remain bounded away from zero for 0 < a < 1, and 
(ii) both 1 - Ao and 1 - -yo tend to zero like X as a tends to zero. 

3. The Elasticity - Stokes Application. In this section we shall apply the 
reformulation developed in Section 2 to the steady state Stokes equations and the 
equations of linear elasticity. Let Q be a domain in N-dimensional Euclidean space 
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for N = 2 or N = 3. The velocity-pressure formulation of the steady state Stokes 
problem is: Find u and p satisfying 

N 
aa 

(3.1) -E- Eij(u) + =Fi in Q, 6, 5xj axi 

(3.2) V u=O in Q, 
N 

(3.3) Eeij(u)nj -fpni = 0 on rl, 
j=1 

(3.4) u = 0 on r2, 

(3.5) fP=O ifr1=0 

for i = 1, ... , N. Here we have partitioned the boundary of Q into rJ U r2, and 

eij(u) is the usual symmetric strain tensor defined by 

1 f6iuj 6iuj 
Eij (u)=2 {axj + 9x- 

To get the equations of linear elasticity, we replace Eq. (3.2) by 
1 

(3.6) - 12 V u = p. 

In Eq. (3.6), 0 < v < 1/2 is Poisson's ratio. We note that the iterative methods to 
be described converge to the discrete solution with rates independent of v. 

The two types of boundary conditions (3.3) and (3.4) are interesting in the 
case of linear elasticity. Condition (3.3) corresponds to a free boundary where the 
material is allowed to deform at the boundary. Condition (3.4) corresponds to 
a fixed boundary where the material is clamped. Two other types of boundary 
conditions are possible, but will not be treated in this paper. 

We consider a weak formulation of problem (3.1)-(3.6). Let (,.) denote the 
L2 (Q) inner product and II 11 the corresponding norm. Let H(Q) be the set of func- 
tions defined on Q which vanish on r2 and which along with their first derivatives 
are square integrable on Q. Define H(Q) _ H(Q) x H(Q) and let III 1 denote the 
corresponding norm. To simplify the presentation, we shall assume that r2 $A 0.** 
Let II = L2() if1 0 and II = L2(Q)/R _ {0 EL2() L f dx = 0} if rJ = 0. 
A weak formulation of (3.1)-(3.6) is then given by 

(3.7) A(u, v) - (p, V . v) = (F, v) for all v E H(Q) 

and 

(3.8) (Vu, q) + -y(p, q) = 0 for all q E , 

where y = 0 in the Stokes case (3.2), and y = 1- 2v in the elasticity case (3.6). 
Here the form A is defined by 

N 

(3.9) A (w, v)- E: | ij(w)Eij(v) dx. 
i,j=l f 

**If r2 = 0, then for existence of solutions to (3.1)-(3.6) compatibility assumptions must be 
made on F. In such cases, solutions axe determined only modulo a rigid motion. This results in 
some changes in the algorithms. 
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We note that an alternative weak form may be derived in the special case when 
rJ = 0. For example, we consider the Stokes application; the situation is com- 
pletely analogous for the equations of linear elasticity. Equation (3.1) can be rewrit- 
ten 

(3.10) --Au+Vp=F in Q. 
2 

Then for ri = 0, (3.10) implies that u satisfies the alternative weak formulation 

(3.11) 2D(u,v) - (p,V .v) = (F,v) for all v E H(Q), 

(3.12) (V. u,q) = 0 for all q E H. 

Here, 

(3.13) D(w,v) D(wi,vi) + D(w2, V2), 

and D(., ) is the Dirichlet form defined by 

D(v, w) = Vu Vv dx. 

Computationally, formulation (3.11)-(3.12) is easier to handle than (3.7)-(3.8) since 
there are no cross terms between the components of w and v in the form D. 

To approximately solve (3.7)-(3.8) or (3.11)-(3.12), we introduce a pair of ap- 
proximation subspaces Hh, Hh indexed by h in the interval 0 < h < 1. Functions 
in H(Q) and HI will be approximated by functions in Hh and Hh, respectively. We 
will assume that the inf-sup condition holds for the pair of spaces; i.e., we assume 
that there is a constant c which does not depend upon h such that 

(3.14) inf Q E Hh supV E Hn IV,, i Q,, > c. 

Many subspace pairs satisfying (3.14) have been studied, and their approximation 
properties are well known [16], [18], [21]. The bibliography of [18] contains addi- 
tional references. 

The approximations to the functions u, p are defined by replacing the spaces 
in (3.7)-(3.8) by their discrete counterparts. Specifically, the approximations are 
defined as the functions U E Hh and P E 1h satisfying 

(3.15) A(U V) - (P, V .V) = (F, V) for all V E Hh 

and 

(3.16) (V U,Q)+-y(P,Q) =0 for all QEIh. 

The variables U and P satisfy a system of the form (1.1). To see this, we need 
only cast (3.15)-(3.16) in the notation of Section 1. First, we set S1 = Hh and 
S2 = Hh. Define A: S1 ~-4 S1 by AV = W, where W satisfies 

(W,X)=A(V,X) forallXESl. 

Define B: S1 -_ S2 by BV_ Q, where Q satisfies 

(Q, R) =-(V V, R) for all R E S2. 



MIXED APPROXIMATIONS OF ELLIPTIC PROBLEMS 9 

Finally, set C to be -y times the identity operator on S2. Then for appropriate F, 

(3.17) (A B (U) (F) 

Hence, we can apply the reformulation (2.4) as well as Theorem 1 for the solution 
U, P. We then have the following theorem. 

THEOREM 2. Assume that a preconditioner A-1 is given and satisfies (2.3) 
with constant a. Let M be given by (2.4) with A, B, and C as above, and assume 
that (3.14) holds. Then the solution of (3.15)-(3.16) satisfies the system 

M( p ) = 
(~~BAo 1F) 

and the condition number of M is bounded by c(1 - a)-1. Here c is a positive 
constant which is independent of h. 

Proof. We only need to estimate the condition number of M. By Theorem 1, 
it suffices to show that there are positive constants co and c1 not depending on h 
satisfying 

co IIQI12 < ((C + BA-lB*)Q, Q) < cl IIQI12 for all Q E Ih. 

The form A(., ) is equivalent to II -I2 on Hh. We have by (1.3) and (3.14) that 

((C + BA-lB*)Q, Q) = a 1Q112 + supV E Hh A(V V) A(V, V) 
, co IIQI12. 

By (1.3) and the Schwarz inequality, it follows that 

((C + 

BAl'B*)Q, 

Q) < IIQII 
(2 

+ 
AVV)) 

< 
cl 

1Q112. This completes the proof of the theorem. 
Note that if a is independent of h, then the condition number of M is bounded 

independently of h. This holds when Ao is such that (2.1) is satisfied with ao and 

a, independent of h. 

4. The Lagrange Multiplier Method for Dirichlet's Problem. In this 
section we apply the reformulation of Section 2 to Lagrange multiplier type methods 
for the numerical approximation of second-order elliptic equations. We will consider 
in detail the Lagrange multiplier method for Dirichlet's problem as developed in 
[2], [4]. In this case, we shall see that the resulting operator M of Theorem 1 
will not be uniformly well conditioned (independent of h). In a similar way, the 
techniques of Section 2 could be applied to the discrete systems developed in [5] for 
magnetostatic field problems. However, a complete description of this application 
is somewhat involved and will not be given. 

We shall consider the problem of approximating the solution u satisfying 

(4.1) 
Lu=f inQ 

u=g on an, 
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where Q is a bounded domain in RN with smooth boundary. Here L is given by 

Lu- 
N 

(aiia)u u Lu 
l axi ( xj) 

The assumptions on a and aij are as in [4]. 
To define the Lagrange multiplier approximation to (4.1), we shall need to intro- 

duce two sets of finite element approximation subspaces. The first set {Sh, 0 < h < 
1} consists of approximation spaces defined on Q. The second set {Sk, 0 < k < 1} 
consists of approximation spaces defined on K2. We shall not give explicit assump- 
tions and descriptions of these spaces; these details are available in [4]. Let us, 
however, note that functions in Sh are not required to satisfy essential boundary 
conditions and that k must be appropriately related to h. 

We shall also use a generalized Dirichlet integral Af(., -) defined by 

A3 (v w) =E aij ax dx + (av w) + 0(v w) 

Here, i is a nonnegative constant, (., ) denotes the L2 inner product on Q, and 
(,.) denotes the L2 inner product on K2. 

We next define some discrete operators. As in [4], let Th: H-1(Q) F 'Sh and 
Gh: H-1/2(ap) -* Sh be defined by 

Afl(Th0,V) = (0,V) for all V E Sh, 

and 
A: (GhU,V) = (a,V) for all V E Sh. 

The Lagrange multiplier approximation to the solution u of (4.1) is the function 
Uh E Sh defined by 

(4.2) Uh = GhUk + Thf, 

where Uk is the function in Sk which satisfies 

(4.3) PkGhUk = Pk(g - Thf). 

Here, Pk is defined to be the L2 projection onto Sk. 

We shall see that Uh and Uk satisfy a system of the form (1.1). First, we set 
S1 = Sh and S2 = Sk. We next define the operator A: H1(Q) F-* Sh by 

(Av, W) = Al(v, W) for all W E Sh. 

Straightforward manipulation of (4.2) and (4.3) gives 

(4.4) (Ak _A ) (Uh) f 
(-Pk 0 ) k ) (Pkg) 

We then set B = -Pk and C = 0. The matrix in (4.4) has the form of (1.1) since 

(4.5) (PkW, 6) = Ad (Gh6, W) = (AGh6, W). 

Note that (4.3) can be derived from (4.4) in exactly the same way that (1.2) was 
derived from (1.1). 
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Reference [4] discusses an algorithm for computing Uh when one is willing to 
invert the Af(., .) form, i.e., evaluate the action of Th and Gh. In that algorithm, 
a preconditioned iteration is set up for computing Uk, the solution of (4.3). It is 
shown in [4] that the form (Gha,a), when restricted to Sk, is equivalent to the 
square of the norm of a in H-1/2(aQ). Accordingly, the operator PkGh exhibits 
a condition number growth like O(h-1) and should be preconditioned. Techniques 
for constructing efficient preconditioners I for PkGh are discussed in [4] and [5]. 
For these preconditioners, there exist positive constants co and c1 independent of 
h and k satisfying 

(4.6) co(l6, 6) < (Gh6, 6) < c I(l6, 6) for all 6 E Sk. 

It is often much more economical to compute the action of a preconditioner A-1 
than to evaluate the operators Th and Gh. In this case, we can use the technique 
of Section 2 to derive a well-conditioned iteration. The following theorem is a 
consequence of Theorem 1 and (4.6). 

THEOREM 3. Assume that a preconditioner A-1 has been given which satisfies 
(2.3). Let M be given by (2.4) with A, B, and C as above. Then the solution of 

(4.2) -(4.3) satisfies 

(4.7) M (uh) ( AJ f)) 

If (4.6) holds, then there are positive constants 3o and I1 not depending on h such 
that 

(4.8) ( w ) < m < 

where 

( I 

Theorem 3 shows that the system J-1M is uniformly well conditioned if a is 
bounded away from one. Thus, preconditioned iteration for the solution of (4.7), 
with preconditioner J-1, will converge rapidly. To apply such a scheme, we must 
evaluate the action of M. Suppose the operator Ao: H1 (Q) |-4 Sh is defined using 
another form A by 

(4.9) (AoV, 0) = A(V, 0) for all 0 E Sh. 

To apply M to a vector (V, q)t, i.e., compute 
(W) =M (v), 

we first compute W = A -1 (AV + B*q) and then r = Pk(W - V). It is not difficult 
to see that W solves 

(AoW,0) = Afl(v,0) + (q,0) for all 0 E Sh. 

Thus, neither the action of Th nor Gh is required for the computation. 
In an analogous manner, we can apply the reformulation of Section 2 to the dis- 

crete equations resulting from mixed methods for second-order elliptic equations, 
using, for example, the Raviart-Thomas elements [20]. The resulting operator M 
(and hence M) is not uniformly well conditioned. The derivation of effective pre- 
conditioners for M will be considered in a subsequent paper. 



12 JAMES H. BRAMBLE AND JOSEPH E. PASCIAK 

5. Numerical Examples. In this section we shall present some results of 
numerical experiments using the reformulation described in Section 2. All of our 
examples will be for problems discussed in Section 3. We shall use the conjugate 
gradient method applied to the symmetric positive definite systems corresponding 
to either (1.2) or (2.4). 

We first define the subspace pair {Hh,1h}. For simplicity of exposition, we 
shall only describe these spaces when Q is the unit square. Generalizations to more 
complex domains are possible. 

Let n > 0 be given. We start by breaking the square into 2n x 2n square shaped 
subregions and define h = 1/2n (see Figure 5.1). Let xi -ih and yj = jh for 
i, j = 1, ... ,2n. We partition the square subregions into pairs of triangles using 
one of the subregion's diagonals (for example, the diagonal going from the bottom 
right corner to the upper left corner). Let Hh be the collection of functions which 
vanish on the boundary of the square and are piecewise linear and continuous on 
this triangulation. The subspace Hh is defined by Hh X Hh. 

FIGURE 5.1 
The triangular mesh. 

To define the space Hh, we first consider the space Hh which is defined to be the 
space of functions which are piecewise constant on the square regions (see Figure 
5.2). It is interesting to note [17] that the subspace pair {Hh, Hh} is not stable in 
L2, i.e., the inequality 

(5.1) inf Q E Hh supV E Hh >(V) c > 

does not hold for c independent of h. To get a stable subspace, we shall consider 
a somewhat smaller subspace of Hh. Let Okl for k, 1 = 1, . .. , 2n be the function 
which is one on the subregion [Xk.1,Xk] x [yl-1,Yl] and vanishes elsewhere. We 
define the functions oij E Hh, for i, j = 1,... , n, by 

(5.2) oij 02i- 1,2j- 1 - 02i,2j- 1 -02i- 1,2j + 02i,2ji 

We then define Hh by 

Hh =-IQ E Ihl(Q, Oij) = 0 for i,j = 1, ... , n}. 

An estimate of the form of (5.1) holds with c independent of h for the subspace pair 
{Hh, ih} [17]. Furthermore, the exclusion of the functions of the form (5.2) does 
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FIGURE 5.2 
The rectangular mesh used for Hh; the s8upport (shaded) 

and values for a typical Oij. 

not result in a change in the order of approximation for the space (we obviously 
still have the subspace of constants on the mesh of size 2h). 

Remark 5. The exclusion of functions of the form (5.2) poses no difficulty in 
practice. In fact, it only affects the definition of B in a trivial way. By definition, 
BV- Q, where Q E Hh solves 

(Q,R)=-(V.V,R) forallREllh. 

It is easy to see that Q is the LI orthogonal projection of the function Q E Hh 
satisfying 

(5.3) (Q, R) =-(V V, R) for all R E Ih. 

This projection is a trivial local operation since the supports of the functions {kij} 
are disjoint. Furthermore, the computation of Q is straightforward since the Gram 
matrix for (5.3) is diagonal (with the obvious choice of basis). 

Remark 6. Other authors suggest solving for U, P in the space Hh, Hh [17]. Then 
an accurate solution U, P can be computed by projecting the resulting pressure P 
into the space Hh. This seems to be computationally more difficult than working 
in the smaller space Hh since the discrete system with Hh is not well conditioned, 
i.e., the constant c in (5.1) grows like h-2 [17]. 

Example 1. For our first example, we consider the Stokes equation 

-Au+Vp=F in Q, 

V*u=O inQ, 
(5.4) u = 0 on X2, 

fP=O. 

Since rP = 0, we can use the alternative weak formulation (3.11)-(3.12). The 
matrix A then reduces to two copies of the discrete Laplace operator. In this case, 
there are many efficient methods for computing the action of A1 (see, for example, 
[22]) and hence we can apply either (1.2) or (2.4). 

To investigate the efficiency of the iteration method of Section 2, we shall com- 
pare condition number and iteration results for the systems (1.2) and (2.4). For 
simplicity, we have taken Ao to be .8A in (2.4). We give the condition numbers K1 
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and K2 corresponding to the systems resulting from (1.2) and (2.4), respectively, in 
Table 5.1. The condition number of the system*** can be used to provide bounds 
on the rate of iterative convergence. We also give the observed number of conju- 
gate gradient iterations N1 and N2 necessary to reduce the discrete L2 norm of the 
residual by a factor of .001. 

Note that in this simple example the use of the full system (i.e., that corre- 
sponding to (2.4)) is artificial since the action of A-1 is no more difficult than the 
evaluation of A-1. Later examples illustrate applications where (2.4) gives rise 
to algorithms which are more efficient since only preconditioners for A need be 
evaluated. 

TABLE 5. 1 

Convergence results for (1.2) (K1 and N1) 

and (2.4) (K2 and N2) applied to (5.4) 

h K1 N1 K2 N2 

1/8 4.5 6 9.0 11 
1/16 4.9 7 9.5 11 
1/32 5.2 7 9.8 11 
1/64 5.2 7 9.9 11 

Example 2. We consider a variable-coefficient Stokes problein in this example. 
Although this example may also be somewhat artificial, it illustrates the behavior 
of the composite method (2.4) on a nontrivial problem. We consider the solution 
of the following "Stokes like" problem: 

-V ,uVu+Vp= F in Q, 

V u=0 in Q, 

(5.5) u = 0 on Q, 

where ,u(x, y) = 1 + xy + x2 _ y2/2. In this example, we use .5 times the discrete 
Laplace operator in each component as a preconditioner. This preconditioner can be 
'fast solved' by, for example, Fourier techniques [22]. In contrast, if we were to use 
(1.2) to solve the discrete equations corresponding to (5.5), we would have to solve 
variable coefficient discrete Dirichlet problems on Q. Although many techniques 
exist for the solution of such problems [12], [15], much more complicated and less 
efficient algorithms must be introduced. Table 5.2 gives convergence results for this 
example. 

***As is well known [19], the rate of iterative convergence for cQnjugate gradient applied to 
the solution of the problem Mx = b can be bounded in terms of the condition number K of M 
by the expression (Me2, ei) < 4p2i(Meo, eo). Here ei - x - xi, {xi} is the sequence of iterates 
generated by the conjugate gradient algorithm, and p (Vk - 1)/(V'k + 1). 
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TABLE 5.2 

Convergence results for Example 2. 

h K N 

1/8 60 25 
1/16 74 28 
1/32 82 31 
1/64 97 31 

Example 3. In this example, we consider a Stokes equation with mixed boundary 
conditions. Specifically, we consider (3.1)-(3.4) with Q the unit square and r1 = 

{(x,I Y) I x = 0 or x = 1}. Accordingly, the functions in Hh are only required to 
vanish on r2 = afl/r1. In addition, we must use the weak formulation (3.7)-(3.8), 
and A becomes the 'stiffness matrix' derived from the form (3.9). Note that for 
this case, A does not correspond to two component-wise copies of the discretization 
of an elliptic operator but contains cross terms between the components. However, 
Korn's inequality [11] gives 

(5.6) cD(V, V) < A(V, V) < CD(V, V). 

Equation (5.6) implies that the A of this example can be preconditioned by A-' 
where Ao is the stiffness matrix corresponding to .5 times the form D(., ) on Hh X 

Hh. The equations for computing A-1 v decouple component-wise and can be solved 
using 'fast' direct methods. The condition number K and the number of iterations 
N are given in Table 5.3 as a function of h. 

TABLE 5.3 

Convergence results for Example 3. 

h K N 

1/8 34 19 
1/16 39 20 
1/32 40 20 
1/64 40 20 

Appendix 

For completeness, we include a discussion of the application of the conjugate 
gradient method to the solution of (2.4) in the inner product given by (2.5). We 
also include a remark which can be used to simplify these computations. 

The conjugate gradient algorithm for the iterative solution of (2.4) in the inner 
product (2.5) is defined as follows. Let Zo be an initial approximation (for example, 
the zero vector) to the solution pair (X, Y)t. Let 

F-( BA-1F - G )' 
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and define Po Ro _ F - MZo. Then define 

[Ri, Pi] 
ai [MP2,Pi] 

Zi+l = Zz + aiPi, 

4+i = F -MZz+ 

[MRi+l,Pi] 
[MPi,PPi] 

Pi+i = R4+1 - 3pi2. 

Remark 7. The evaluation of Ao is not necessary for the implementation of the 
above algorithm, even though it appears implicitly in the definition of the inner 
product [., .]. Note that the evaluation of Ao is not necessary for the computation 
of [MPi, Pi] or [MR,+,, Pi] since the first component of either MPi or MR-i+ is 
A-' applied to a known vector. The same holds for [Ri,Pi]. This observation 
is essential when using, for example, substructuring [6], [7], [8] or multigrid [3] 
preconditioners , where the action of the preconditioner A-1 is defined as a process 
whose inverse is not easily computed. 
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