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High-Order Schemes and Entropy Condition 
for Nonlinear Hyperbolic Systems of 

Conservation Laws 

By J. P. Vila* 

Abstract. A systematic procedure for constructing explicit, quasi second-order approximations 
to strictly hyperbolic systems of conservation laws is presented. These new schemes are 
obtained by correcting first-order schemes. We prove that limit solutions satisfy the entropy 
inequality. In the scalar case, we prove convergence to the unique entropy-satisfying solution 
if the initial scheme is Total Variation Decreasing (i.e., TVD) and consistent with the entropy 
condition. Finally, we slightly modify Harten's high-order schemes such that they obey the 
previous conditions and thus converge towards the "entropy" solution. 

1. Introduction. We present here a systematic procedure for constructing explicit, 
quasi second-order approximations to hyperbolic systems of conservation laws. 
Other authors have recently dealt with high-order schemes: Majda and Osher [10], 
Harten [3], Le Roux and Quesseveur [9], Osher and Chakravarthy [11], but they have 
no result for systems, except in the case of time -continuous approximations ([10], 
[11]). 

In Section 1 we recall basic useful features of numerical schemes for systems of 
conservation laws, in particular consistency with the system of conservation laws 
and its entropy condition (following ideas in Harten, Lax and Van-Leer [5]). In 
Section 2 we give examples of numerical schemes verifying consistency and study 
more precisely the scalar case with Total Variation Decreasing (TVD) schemes (see 
also Harten [3] and Tadmor [12], [13]). Section 3 is devoted to the description of our 
algorithm for constructing high-order schemes (see also Le Roux and Quesseveur [9]) 
and to the statement of our main result. We prove that limit solutions of our 
schemes are weak entropy solutions of the system of conservation laws. We also give 
more precise results concerning the scalar case and TVD high-order schemes. In 
Section 4 we examine a slight modification of Harten's high-order TVD schemes 
which enforces entropy inequalities for limit solutions. In the last section we present 
numerical experiments. 
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1. Generalities. 
1.1. Systems of Conservation Laws. In this paper we consider numerical approxi- 

mations to admissible weak solutions of the initial value problem (I.V.P.) for 
hyperbolic systems of conservation laws, 

fu,? f (u),X = 0, (x, t) EER X R~, (1.1) (\u(x, O)=uO(x), u ER x. 

The system is assumed to be strictly hyperbolic (i.e., X,(u), the eigenvalues of Df (u), 
are real and distinct), 

u1(U) < ... < X(U) < ... < Xm(U). 

We consider systems of conservation laws that possess an entropy function 71(U) 
defined as follows: 
(1.2.a) i1 is a strictly convex function of u, 

(1.2.b) 7u- fu= Fu 
where F is some function called the entropy flux. 

Admissible weak solutions of (1.1) satisfy the following inequality in the distribu- 
tion sense, 

(1.3) 7q(u)? + F(u) x < 0 Vi verifying (1.2). 
In the scalar case (m = 1), the condition (1.3) guarantees uniqueness of the 

solution to (1.1) in the range of admissible solutions. For m greater than 1, the 
results are weaker (see, e.g., DiPema [2]). 

1.2. Numerical Schemes and Consistency. We consider finite difference approxima- 
tion of (1.1) in conservation form: h is the space step, k the time step, r = 

k/h; Uh(x t) is the approximate solution: Uj(x t) = (Jf for (x, t) e((j -2 
(j + )h)x [kn, k(n + 1)); A+ is the spatial difference operator: A + a = aj+1 - aj. 
(1.4) un?l = i)n n - rA n(g(L 'q+1. Ln -p1)) 

is the general form of a (p + q)-point scheme in conservation form, g is the 
numerical flux of the scheme; we note 

n ( U n P 

Definition 1.1. The scheme (1.4) is consistent with (1.1) if 

(1.5) g(u . ... 9 U ... 9U) = U 

and g is K-Lipschitz, 
I=(p-l) 

(1.6) 3K > 0; gj-1/2-f (Uj) < K E IA+ Uj+?l 1. 
l=-(q-2) 

Definition 1.2. The scheme (1.4) is consistent with the entropy condition (1.3) if: 
For each 7, the entropy of (1.1), there exists some numerical entropy flux F 

(function of p + q arguments) which satisfies 
(i) F(U, . .., U, .. ., U) F(U); 
(ii) F is K-Lipschitz in the sense of (1.6); 
(iii) 1( Un+l) 71 (UJn) nA+F / j JL 7 rA Fj j-1/2 '- 0. 
The following theorem, due to Lax (see [5]), shows the interest of these two 

concepts. 



NONLINEAR HYPERBOLIC SYSTEMS OF CONSERVATION LAWS 55 

THEOREM 1.1. A limit solution of a numerical scheme satisfying Definition 1.1 
(consistency with the system) is a weak solution of the initial value problem (1.1). 
Moreover, if the numerical scheme satisfies Definition 1.2 (consistency with the entropy 
condition), then the limit solution is a weak admissible solution of the I. V. P. (1.1). 

Remark. We call limit solution a limit in the sense of bounded Lls convergence 
(i.e., Uh converges towards U in Ll as h goes to zero and Uh is bounded in L?). 

2. Numerical Schemes. 
2.1. Godunov Type Schemes. In [5], Harten, Lax and Van-Leer define a class of 

approximate Riemann solvers and their associated Godunov type schemes. They 
give two properties that allow numerical schemes to verify Definitions 1.1 and 1.2 
(we refer the reader to [5] for more details). 

The canonical example of Godunov type schemes is the Godunov scheme: The 
exact solution is taken as the Riemann solver; we can easily prove that it satisfies 
Definition 1.1 and it is known to be consistent with the entropy condition when the 
generic Riemann solution exists. 

We can only prove such a result in the scalar case, in some particular cases (e.g., 
Euler isentropic equations) and for some particular entropy (in the last case, L? 
stability is also proved, see Le Roux [8]). The problems are similar for any other 
Godunov type scheme. 

The only known example in which we can prove that a scheme satisfies the exact 
Definition 1.2 is the Lax-Friedrichs scheme (see Lax [7]). In [5], Harten, Lax and 
Van-Leer present a one-intermediate-state Riemann solver, 

uL if < aL, 

u( Y UL UR) { ULR if aL < aR 

x 
uR if aR < - R R ~~~t9 

aRUR -aLUL fR 
- 

fL 

aR-aL aR-aL 

They show consistency with the entropy condition under the following restriction: 
aL and aR are lower and upper bounds, respectively, for the smallest and highest 

signal velocity in the Riemann problem. For m greater than 1, there is no general 
method for calculating such bounds (unless IUL - URI is small). For the particular 
case of Euler isentropic equations, we present in [14] an algorithm that calculates 
some aL and aR and hence we obtain consistency with entropy condition for the 
physical choice of entropy ("mechanical energy"). 

2.2. Scalar Case and TVD Schemes. In the scalar case, a basic tool for inducing 
convergence of a numerical scheme is the concept of TVD. We study it in detail and 
show that any 3-point TVD scheme in conservation form is at most first-order 
accurate. This shows that schemes with more than 3 points are required to achieve 
second-order accuracy. 

2.2.1. 3-point TVD schemes (in conservation form). Let 

TV(U) = E1A+Uj 1. 



56 J. P. VILA 

Consider 

(2.1) ujn?l = n - rAg(Ln un). 

Definition 2.1. The scheme (2.1) is TVD if and only if TV(U +1) < TV(Un). 
A 3-point scheme is characterized by its numerical viscosity 

(2.2) Qn = rf(j) - 2g(Uj, Uj+1) ? j(UA+) 
AUnJ 

Hence, the scheme (2.1) can be written as 

(2.3) ujn?l = - j(f(Uj+i) - j(1)) n n 

A 3-point scheme is also characterized by its incremental form: 

(2.4.a) Cl++stf/2 = r gj+ 1/2 (gn g(Un, Un 1); fjn f (Un)) 

(2.4.b) CfA 
I 
j_ 1 

(2.5) Ui+= lJ ? Cj++72A A+ Uj - C1/2A+ UJ_1. 

The coefficients Cj+ 1/2 are related to the numerical viscosity by 

(2.6) ~iC + 1/2 = (Q;+1/2 + + Uj1 ) 

We note that C + 1J/2, QJ +1/2, gj+ 1/2 are functions of two arguments: U)" and Uj+1. 

THEOREM 2.1. A 3-point TVD scheme is at most first-order accurate (in smooth 
regions). 

Similar results can be found in Harten [3] and in Tadmor [13]; we therefore omit 
the proof and just recall some interesting lemmas. 

LEMMA 2.1. Let a scheme be given in its incrementalform (2.5). We assume that its 
incremental coefficients are positive. We denote by (i) and (ii) the following conditions 
on these coefficients: 

(i) C,[1/2 + C+1/2 < 1 V} E Z, 

(ii) C,j3/2 CJ+1/2 < 1 VJ EZ 

If condition (i) is satisfied, we have TV(U" '1) < TV(U"). If condition (ii) is 
satisfied, we have IIU +"1'IK < IIUnl"K. 

LEMMA 2.2. A 3-point scheme in conservation form is completely determined by its 
numerical viscosity Q, or by its incremental coefficients C+, C-. The following 
conditions are equivalent: 

(i) (2.1) is a 3-point TVD scheme; 

(jj) I ?> Q 1?/2 > rIA?fJ/A+LUjI Vj E Z; 

(iii) Cl++ 1/2 + Cl 1/2 < 1, CJ+ 1/2 > O, CJ+ 1/2 > , VJ E Z 

We now recall a recent result of Tadmor [12] on TVD schemes in the scalar case. 
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THEOREM 2.2. A 3-point TVD scheme containing more numerical viscosity than the 
Godunov scheme is consistent with the entropy condition under the Courant-Friedrichs- 
Levy (CFL) condition 1/2, and it converges towards the unique entropy-satisfying 
solution. 

3. High-Order Schemes. 
3.1. General Algorithm and Main Theorem. We present here an algorithm that 

converts a 3-point first-order accurate scheme in conservation form to a 7-point 
more accurate scheme in conservation form. 

Suppose the initial 3-point scheme satisfies Definition 1.2 (consistency with the 
entropy condition). Then we shall prove this algorithm to ensure that limit solutions 
are weak entropy-satisfying solutions of the initial value problem. 

We first compute U.n? from Ujn with the 3-point scheme, which can be consid- 
ered as a predictor 

(3.1) Un = (J - rA +gj1_2 

We then compute antidiffusion vectors a4+ j/2 = (a+ ? ..a . ajm+7n), 

(3.2) a?+1/2 = 2 (i(U?+ ) - 2g 71/2 + j(Un)) 

- _-DIA7 n (t(n1) -f (Un)). -2 Dj+ 1/2 * ( f (Ujn+)- (j). 

Dfj +1/2 is some approximation of Df(U) (the Jacobian of f (U)) near Li) and jL+1. 
If we compute Ui"n+1 by 

(3.3) n+1 = U"+1 - A a /2 

we obtain the well-known Lax-Wendroff second-order accurate scheme which ad- 
mits unstable and entropy-violating solutions. A correction of antidiffusion vectors 
is necessary to achieve stability and good entropy production. We thus use a 
correction based on the Boris and Book FCT algorithm [1] (see also Le Roux and 
Quesseveur [9]), VI E {1, 2,.. ., m } 

(a = sgn A+ Uj"n, 

(3.4) -I,n Ia U"" 'a'A U"'jP la;+ 1/2 =a max (0, min Ch ,a + 1/2 1 2 ? + Uj'l 2 ?a 

C is some positive constant and a a chosen real number such that 0 < a < 1. The 
final solution at time step n + 1 is computed as follows: 

(3.5) un+l = Un+l - A ?n+1 

We can briefly describe our scheme as a two-step algorithm: a prediction step (3.1) 
and an antidiffusion-correction step (3.2), (3.4), (3.5). 

We now state our main results; proofs will be given in Subsection 3.2. 

THEOREM 3.1. Let a 2-step scheme be defined by 

(3.6) Uin = Ui n - rA +gjn-1/2, 

(3.7) un+1 = un+1 - A + 
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Assume that 
(i) the predictor scheme (3.6) is consistent with the conservation law (1.1) and its 

entropy condition (in the sense of Definitions 1.1 and 1.2); 
(ii) the "antidiffusion coefficients" aj 1/2 satisfy 

(3.8) Iai-1/2 e e(h) Vj E Z with lim e (h) = 0. i ~~~~~~~h-0O 

Then, if the approximate solution Uh(x, t) (computed by (3.6)-(3.7)) is bounded in TV 
and L?, Uh converges boundedly towards some u in LlOC and u is a weak entropy-satis- 
fying solution of the I. V. P. (1.1). 

Remark 3.1. In the scalar case we can take DfIA+ 1/2 = A+f(Ujj)/A +])" and 

1 ( ,, _ _ _ _ _ _j_ _ U n 
(3.9) a1?1/2 = 2 -Q?l/2 r2 A ()j) .I? UJ 

which exhibits the numerical viscosity coefficients. 
We also claim that our algorithm preserves the "TVDness" of the 3-point 

schemes. It converts a 3-point TVD scheme to a 7-point second-order accurate TVD 
scheme. This will be proved by the following theorem. 

THEOREM 3.2. m = 1 (scalar case). Suppose the predictor scheme is TVD and 
satisfies Definitions 1.1 and 1.2 (consistency with the system and its entropy condition). 
Then the approximate solution Uh, calculated by our 2-step algorithm converges 
towards the unique admissible solution u of the IVP (1.1). 

In particular, if the numerical viscosity Q of the predictor scheme satisfies 

(3.10) QJC+ 1/2 < Q < 1/2 

(where QG'+172 is the numerical viscosity of the Godunov scheme), the hypotheses of 
Theorem 3.1 are satisfied and the final scheme is second-order accurate in the regions 
where the solution is smooth. 

3.2. Proof of Main Results. 
3.2.1. A general form of correction and its properties. To clarify the proof of 

Theorem 3.1, it is useful to examine some properties of a general algorithm 
(including (3.1), (3.2), (3.4), (3.5)). 

Definition 3.1. Consider the following algorithm: 

(3.1 1 a) n+1 = -n+1 A ++1 

with j+ 1 given by some scheme UJ) +h, k, j ? j j+ 
(i) The algorithm is said to be a M.C. (monotone correction) if and only if 

(3 .llb) Vl E {1, 2, . . ., m } aiJ+ 1/2 =j+ 1/2A + Uj+ = ?+1/2 U'j1 

with 

(3 .11c) 4J+ 1/2 J 0, j+ 1/2 
? 0 +J3/2 + Mj+1/2 

- 1 J+ 3/2 + - j1/2 < 1; 

(ii) an M.C. correction is said to be MCe if and only if there exists a function 
e(h), positive, such that limh (e(h) = 0 and 
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PROPOSITION 3.1. The correction algorithm (3.2), (3.4), (3.5) is MCe with e(h)= 
Ch 

Proof. al1/2 is defined by the following identity 

a-l+2= a lmax(O, min Ch'a, al1/2 , 2a'A?+i-1, 2A /Ai+UJ+)- 

So we get 
- either 

sgn + 1=sgn A + Uj'= sgn AU = 

+1/2 = aX min Cha, |al+1/21, , A+ 1 1 } 

thus I + 1/21 < Chu, j+ 1/2= 8L+UJ1 = A+UJl1withO 2andthenO < 

2 ,, so that inequalities (3.11b, c) are satisfied; 
-or 

a,+112= 0, in which case (3.11b, c) again holds. C 
We now present the main property of M.C. schemes. 

PROPOSITION 3.2. An M.C. correction does not increase the TV and L? norms: 

(3.13) u 

(3.14) TV(U +) TVU- +) 

Proof of Proposition 3.2. Substituting for aj ? 1/2 from (3.11b) in (3.11a), we obtain 
the following incremental form for UL/j' ? 1: 

(3.15) = -+ii'~+,r% ( 3 . 5 ) U Xt U/, t?+1 t1+/2 + UJ-_1 j J- 1/2 + J 

Taking relation (3.11c) into account, we note that the incremental coefficients are 
positive and satisfy hypotheses (i) and (ii) of Lemma 2.1 with 

(3.16) C172 a'1721 ~7+1/ /1?222 ( 3 .1 6 ) CJ _ 1/2 =j+ 1/2 CJ +1/2 
= 

j-1/2 - 

The results now follow immediately. C 

3.2.2. Proof of Theorem 3.1. 
* Convergence towards a weak solution. This part of the proof is straightforward, 

since the scheme is in conservation form, and is therefore omitted. 
* Entropy condition. This is the crucial part of the proof. 
We use the approximate entropy inequality associated with the scheme (3.1), 

(3.17) (U- ) -,q (U ) + rAI? 12 '< O0 

We denote by Fh(x, t) the function 

Fh(x, t) = 'Fn1/2 for (x, t) E ((j - 1)h, jh) x [kn, k(n + 1)) 

and by 4 some positive test function in C(o, 

,(pn + p fln 

Oa(X ) for (x, t) E- ((j j-')h, ( j + ,) h) X [ kn, k (n + 1)), 

n?o n 

hX(x =Jh J 1 for(x,t) E((j-1)h, jh] x[kn, k(n + 1)). 
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We multiply (3.17) by hon and sum over n and j, 

x,h7(Un+1) _,q(Ujn))(pn + E /+Fn n/)? ~~~ - + ~~~~~~~j-12)O 

(3.18) J n,j 
Y. h (q(bJ j)j 
n,j 

In the sequel we denote by RS (resp. LS) the right (resp. left) side of inequality 
(3.18). Integrating LS by parts with respect to each increment, the left-hand side of 
(3.18) becomes 

-E hk j - Y hkF'/ ? - 

P1/ ~~~k j?1/2 h n7,/ nli 

which turns out to be equal to 

-|JJ|XR? dxdt{ q(Uh(x, t))q.h1t(X, t) + Fh(x, t)Oh^(x, t)}. 

The convergence of LS towards the quantity 

- ffdxdt{'q(u(x, t)) t,(x, t) + F(x, t) >x(x, t)} 

follows immediately from the Lebesgue dominated convergence theorem and the 
K-Lipschitz continuity of Fh (see Definition 1.2). 

It remains to prove that limhO 0RS < 0. We shall use a consequence of the 
convexity of q: 

If q is a ' 2 convex function in R", then 

(3.19) V(X, Y) E (Rm)2, 7 (X) -1 (Y) _< 7'(X) (X - Y). 

Thus, 
RS ~~ 4hrfU)n?1) .(Un?1l Un?l) R1 RS < E (pjnhq1( jn uj+_ uj+ )RS1 . 

n,j 
By (3.11a), 

RS, = - p h 1(2 a+ 
n,j 

Integrating by parts, we obtain 

RS1 = E hA?(on,,,(U)n+1))* = . hifjlj(A1n (Un+l)) -n+1 
11, j n,j 

+ ( h (4n;) 1'(un+?1) _ jn+1 

We denote by RS2 and RS3 respectively the first and second sum in the right-hand 
side of the previous equality, thus RS, = RS2+ RS3. 

We examine first RS2. Since 4 has compact support, we can assume that 
p(x, t) 0 for Itt > T. Furthermore, since Uh is bounded in L', we have 

| j |IIq 7tt(uh( (n + 1)k)) Uijl - unl < K ?LA+j+| 
We can thus write 

RS2 < Kle(h) Y h1jn+l A+ j UKj eK(h)II(II 2, kTV(Un+l). 
nj nk T 
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Since Uh(_, t) is bounded in TV, and h/k is bounded, there exists a constant K2 
such that 

(3.20) RS2 < K2(4, T, h/k)e(h). 

We next analyze RS3. We have 

RS3 < L e(h) E kh h I |7(Un?l) RS4 
nj 

By introducing ohV and q1(Uh), the step functions associated with A+Ojn/h and 
q'( Uj + 1), respectively, we get 

RS4 = ke(h)ff dxdtlh (x, t) |l71(Uh(x, t)) |- 

By the Lebesgue dominated convergence theorem there exists a positive constant C 
such that 

(3.21) RS4 < Ce(h) 

Combining relations (3.20) and (3.21), we obtain limh - 0 RS = 0. C 
3.2.3. Proof of Theorem 3.2. The first part (convergence) is a straightforward 

corollary of Theorem 3.1. Using BV estimates together with LX estimates (the initial 
condition is supposed to have a compact support), we obtain L1 estimates. Com- 
pactness results of LIo n BV in L'oc permit us to construct a subsequence Uh 

converging towards the unique admissible solution u. 
* Second-order accuracy. We shall discuss two complementary points of view: 
-Characterizing the "smooth regions" in which our scheme reduces to the 

Lax-Wendroff scheme. 
- Proving directly second-order accuracy by the use of standard Taylor expansion 

methods. 
We first have to characterize the "smooth regions". We use boundedness of 

derivatives and we limit ourselves to regions far away from critical points of u. We 
shall take (R.C.) as a regularity criterion near x = joh at time nk: X 

(i) A j retains a constant sign for j E [jo - p, jo + p], p E N, 

p > 2; 

(R.C.) (ii) |+j Ih| CR Vj 1E+U [j j- p + l, jo + p- 1]; 

(IA?LUnI IA?LUn 11 5 
t(iii) mint n5U '1Un >1 8 Vj E [ jo -p + 2, jo + p -2]_ 

We make the following comments about (R.C.): (i) expresses the monotonicity, (ii) 
the boundedness of the first spatial derivative; criterion (iii) is similar to the 
boundedness of the second spatial derivative. From (3.9) we have 

?n+ = 1 ( - 2 
j 
U A Un 

12 2 j+ 1/2 rA+ UI/ 

We shall take 

-i"++ 2 = af max(0, min 4 CRh, a j+2 2 + j?1 2 ? +?1 j, 
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and prove that = aj+412; therefore, the scheme is second-order accurate near 
Xj, since it has the same numerical flux as the Lax-Wendroff scheme. 

For simplicity we assume / (jn >0; then aj+41/2 is positive, and from (3.10) we 
have 

I aj?+ 1/2 < 4 ? 4CRh. 
By using the increment form of the predictor scheme, we get 

11+Uj+l 1 - Qjn+/)+U+ + J2 2,j+/ r( fn)+Un+ + 1?1 - J+3/2?? jn+15/2 +rUJn ) + 2j 

2?A:jA2 

We set X = ^+j/+U 

By using (R.C.) (iii) and (3.10), we are led to 

+ ?y+ L? ((1 + 2:(Qj+l/2 + rx))A?L/j,n)- 

Then 

___ -n 
aj+/2 I\Uj )< 2Q n - n- rx 

+aJ?1/21 - 5 16 22 + A j 
a-n+l2 = 21?1/2 j 

* A direct proof of second-order accuracy is possible. A sufficient condition is 
that 

U -n?1 fn n?1 

g+ j+ ry1/2 = fj+1/2 + ray11/2 + 0(h ) 

2,i n?1 is the2 

'.6?1l/2 + rajn++ll/2 is the numerical flux of the Lax-Wendroff scheme). We shall use 
an equivalent condition, 

-Jn 2 = an?1 +0 (h2)2 

In a smooth region away from critical points of u, the following estimates are valid: 

Qj+5/2 = Q;?+1!2 + o1(h), Q7?r3/2 = Qr?l/2 + 02(h), ArX+u =03(h), 

a ? 2 = X + 04 ( h), A + (l = A+U (1 + 05 ( h )), 

A?+U)'L==A?/)+Uj(i+ o6(h)). 
It follows that 
(3.22) A+ ~j1 = A+1 AU(1 + 07(h)), ?Unjn1 = A+ Uj.(i + 08(h)). 

Iaf t f1/2 I aj + 1/21 either J+/2 = SA +ry, w or ain1/2= 2 (}+? . Suppose first 
that a1/2= + U>i (it follows that j(aJ1/2 - + Uj1)> 0; then 

+a/2 j--1 = 22i (Qj+l/2-r2x2-1 + Os(h)) 

1 21 0 2 

j - 12r2x2+ /2 O + 
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which contradicts a(a1+1/2- ^ b>_) A 0, unless 

Qj1 r2x2-r12=2 09(h). 

Therefore, a,+ 1/2 
- 

+1/2 = (h 2). The proof is similar if aj+12= 2 A+ UJ + 1. The 
case a = 0 never occurs if a1?172 a aj?1/2' since, away from critical points of 
u, sgn A + UJ - 1 = sgn A + Uj+ 1 by (3.22). C 

3.3. Some Remarks About Second-Order Accuracy. In [3] Harten presents his 
second-order accurate TVD schemes as first-order TVD schemes applied to a 
modified equation. We shall use similar heuristic arguments to describe our algo- 
rithm. 

The 3-point predictor TVD scheme is 

un+1=un- Ui 
n 1= - rA + gjn_1/2 - 

Denote 

/3(u,r)= 22(1 ag _ag )- If (U)2. 

Consider the following problem (P.1): 

Find u at t = (n + 1)k such that 

(P.1) u,t + f (u),.x = At(# (u, r)u jx)x 

tu(x, nk) = U'". 

We can say that U'+ 1 is a second-order accurate TVD approximation to (P.1) (see, 
e.g., [6]). 

1t+ l is defined by L?+1 = -U+ _ A+ja+1/2. Consider the problem (P. 2): 

Fin du att= (n + 1)k such that 

(P.2) t = -At(13(u, r)u)j, 

tu(x, nk) = us+ 

We can say that U ,i+1 is a second-order accurate TVD approximation to (P.2). So 
Un''+l is a second-order accurate TVD approximation to (P.1), (P.2), and (P.1), (P.2) 
is a 2-step formulation for: 

Find u att= (n + 1)k such that 

(P.0) 't +f(u)X= 0, 

u(x, nk) = U'1. 

4. Entropy Condition for Harten High-Order Schemes. In this section we extend 
the ideas developed in the previous parts to Harten's high-order schemes [3]. In the 
scalar case, we slightly modify them, keeping their "TVDness" and their second-order 
accuracy in smooth regions. We then prove that the resulting schemes converge 
towards the unique entropy-satisfying solution (under reasonable conditions). 

4.1. A Modified Algorithm. Let us consider a 3-point TVD scheme with the 
following numerical viscosity: 

(4.1) , = Q(v71172) 
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in which 

r ' if A Uj# (4.2) j+ 1/2= | L? i j 

rf ( i ) iA+ UJn 

Q is some Lipschitz function of x which satisfies 
(4.3) Ix I < IQ (x) I < 1 forO0 < Ix I < ,u < 1. 
From Lemma 2.2, the resulting scheme is TVD under the following CFL restriction: 

(4.) 1 Vj+ 1/21 -<A 

We now construct the corresponding 5-point scheme by applying the 3-point 
scheme to a modified flux f M, 

(4.5a) fiM 
= f (O + +-a., aj = a( Uj_ 1, Ui, Uj+J). 

Then 

(4.5b) vim1/2 = Vj+1/2 + Yj+l/2, j ]?1/2= a 
A+ i 

The numerical flux of the 5-point scheme is fj /2, 

(4.5c) jm2 = jf(U) +(U )] + [aj+ aj+l - Q(V+2)+U 
The coefficient aj is given by the following algorithm 

(aj = a max[O,min(Iai+1/2I1, aj1/2G, Cho)], 

(4.5d) aj 1+1/2 
= 2[Q(Pj+1;2)-(l?172)2JA?Lj, 

ag = SgnG!j+1/2) 

C is a positive constant, a a fixed real number such that 0 < a < 1. 

LEMMA 4.1. The 5-point scheme (4.5) is TVD under the same CFL condition as the 
3-point original scheme, 

(4.6) max I vjl/21 1 

It is second-order accurate in smooth regions. 

Proof of Lemma 4.1. Compared to Harten's scheme, we have simply added the 
term Cho in (4.5d). The new scheme is obviously as accurate as Harten's scheme, 
since in smooth regions i 1/2 is O(h) (first spatial derivative of u is bounded), thus 
Ch is greater than I j+1/21 and Iaj-7/21, and therefore aj is the same as gj for the 
original Harten's scheme; therefore, the scheme is second-order accurate. It remains 
to prove that the scheme is TVD. Since it consists of the 3-point scheme applied to a 
modified flux, it is obviously TVD under the following CFL condition: 

max I vi+ 1/2 | < 1. 

Suppose IVj+1/21 S u; then from (4.5d). 

Vm+1/2I +1/2 + Yj+l/21 V I+?1/2I + 12Q(?Vj +l2) 1 (2?j+l/2 
)2 

AIVj?i72I + I11 -(_ ,j2 _)2 1. 
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Let us consider now a simplified form of (4.5), 

Q(j+=1/2) = Q(vj+1/2) + IYj+1/21 

We get as in [3] the following scheme: 

(4.7a) Un+1= =Ujn - rA JjM 

(4.7b) fj+1/21 j+1/2+ raj+1/2 

( fJ + 1/2 is the numerical flux of the 3-point scheme), 

(4.7c) a.,+ 1/2 = a max{0, min[Cha, 1 aj+1/21, aai- 1/2, aaJ+1/21]} 
This scheme has some resemblance with the schemes developed in Section 3. This 
particular form enables us to apply this construction to any 3-point TVD scheme 
(the numerical viscosity Qj+ 1/2 is not necessarily a function of vj+ 1/2). The resulting 
scheme has the same properties as the previous scheme (i.e., it is TVD and 
second-order accurate). 

4.2. Entropy Condition for the Modified Scheme. 

THEOREM 4.1. Suppose the 3-point TVD scheme satisfies Definition 1.2 (i.e., 
consistency with the entropy condition). Then the limit solutions of the 5-point schemes 
(4.5) and (4.7) are entropy-satisfying solutions of the initial value problem. 

Proof. We shall use Theorem 3.2. 
The scheme (4.7) has the following form: Let 

(4.8) rin+ = - 1/2 

Then 

(4.9) 
11+1 ~~~- A 

n+ 

(4.9) 
U 1 + 1 = jU+ + j-1/29 

and from (4.7c), Iaj+1/21 < Ch . 
We get the result by a direct application of Theorem 3.2. 
The scheme (4.5) also has a similar form: From (4.5c), 

fM1/2 = 2[f(UL) +f(Uyj+)] + 
I 

[aj + aj+l -Q( 
M 

fl 12 +1/2+12)A+u 

X l1/2 2r 
I 

fa + aj+l + [Q(Vj+12) -Q(vM 12)] A+U } 

fl + /2 is the numerical flux of the 3-point scheme. 
Let 

aj+1/2= 2{a+a? +[Q(vj+l/2) - Q(VJ+1/2)]A+UJl}; 
then we can write the scheme as (4.8), (4.9). 

From (4.10) and (4.5d), 

|ax+ 1/21 < 2 {Cha + ChG + |Q(VJ+ 1/2) - Q(vJ+1/22) A+ Uj 

IQ( V, + 1/2) - Q( VM 1/2)I < K Iyj+ 1/21 since Q is K-Lipschitz, therefore 

Iaj+l/21 < ChG + KIyj+1/2 1A+ Uj < Ch' + K(a,+ -aj I 

< (C + 2KC)ha. 
A direct application of Theorem 3.2 gives the result. O 
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We shall now use the results of Tadmor [12] to make the results of Theorem 4.1 
more precise. 

THEOREM 4.2. Suppose the numerical viscosity Q(x) satisfies 

x x2 

Q(x) = 4 + E for lxl < 2,E, O < E < 

lxl for lxl < 2E, 

Then the scheme (4.5) converges towards the unique entropy-satisfying solution under a 
sufficiently small CFL condition. 

Suppose the numerical viscosity of the 3-point scheme satisfies 

IK?+1/21 QJ+1/2 < Qj1?/2 < 22 

where QJG?1/2 is the numerical viscosity of the Godunov scheme. Then the resulting 
5-point scheme converges towards the unique entropy-satisfying solution under the CFL 
condition 

max IVj+ l/2 1 < 2 
I 

Moreover, if the 3-point scheme is the Godunov scheme, the result holds with 

maxIvj+l/21 < 1. 
I 

Proof. Part A. From Corollary 5.1 of Tadmor [12], the 3-point scheme satisfies an 
approximate entropy inequality for sufficiently small CFL number. The result then 
follows immediately. 

Part B. Here again, we make a direct application of Theorem 5.1 of Tadmor: For 
the Godunov scheme we can use CFL = 1, since we have an approximate entropy 
inequality under the same CFL restriction. C1 

5. Numerical Experiments. We compute solutions to the Euler 1-dimensional 
isentropic equations of compressible gas dynamics (with p(p) = kp2), using the 
schemes developed in the previous sections. 

We first solve these equations with the following initial condition (a Riemann 
problem): 

u(x,0 (424+ 0) if x <0, 
5( ) if x >0. 

The exact solution consists of a 1-rarefaction wave (containing a sonic point) and a 
shock wave of speed a = 5, separated by a constant state U* = (25, 5). (See Figure shock (~~~2 4 12~ 

1 for a view in the (x, t)-plane. 
We present results at time T = 4.8, obtained respectively with 
1- the Lax-Friedrichs modified scheme (with Q = 2) - (Figure 2). 
2 - the Godunov scheme - (Figure 3). 
3 - the L.F. modified scheme, plus the correction algorithm (3.4), (3.5)-(Figure 4). 
4 - the Godunov scheme plus a M.C. correction algorithm - (Figure 5). 
5 - the Godunov scheme plus the correction algorithm (3.4), (3.5)-(Figure 6). 
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t X =2 - 5 /2 t 
2~~~~~2F 

2~ ~ ~~~~~~~~~~2f 

U (2525) 

37/z, 5</ > 
2 24~ 2V ,O)24 

FIGURE 1 

Exact solution in the (x, t )-plane. 

RESULTS FOR T=. 4t80E+01 
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FIGURE 2 
Lax-Friedrichs modified scheme 

DT = .08 Current number = 0.5 

/exact solution /computed solution 
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RESULTS FOR T=. 480E+O 1 
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FIGURE 3 

Godunov scheme 
DT = .16 Current number = 1 

/exact solution /computed solution 

In practice, for higher-order schemes, we always omit the correction term Cha. It 
is only efficient in shock regions, where we already have aj+1/2 = 0. 

In case 4, we use the following M.C. algorithm, which is more restrictive than the 
simplest component-by-component ones ((3.4)-(3.5)): 

* is given by (3.2) with DfJn = Df(U(UJ 1)) (U is the stationary 
value of the Riemann problem used in the Godunov scheme). 

* As in (3.4), we define for l = 1, 2, 

Jal =sgn Al+ UJb ', 

(i) l = a lmax O,m min( Ch 'a, | a +2 |, 
a I la lA + ? 

,) 

(5.1) 
a1 -0 if& 2 =0 (..i j c?1/2 - ? 1/2 j +1/2 = O, 

a, = /+1/2 in the other cases; 

(5.2 ) U yn+?1 = U - A /2 - 
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RESULTS FOR T =.480E+01 
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FIGURE 4 
L. F. modified scheme + (3 .4) -(3 .5) correction scheme 

Idem Figure 2 

We note that (see Figure 3) the Godunov scheme does not perfectly resolve the 
rarefaction wave at a sonic point ("dog-leg" phenomenon). As a consequence, we are 
obliged to use a stricter flux limiter than (3.4), if we want to avoid amplifying this 
phenomenon by using a higher-order scheme (Figures 5-6). 

Figure 4 exhibits the efficiency of our algorithm even for the Lax-Friedrichs 
modified scheme; the resulting scheme is less accurate than the Godunov scheme 
plus (5.1)-(5.2), but it is very easy to implement and at low costs. These results show 
the efficiency of the method compared to a field-by-field flux limiter, which requires 
diagonalization of Df as in Harten [3]. In Figure 7 we finally present results of 
2-dimensional numerical simulation of water waves generated by a landslide in a 
lake. The basic equations are shallow-water equations (which are similar to Euler 
isentropic equations). We use the Godunov scheme with the correction algorithm of 
case 4, and dimensional splitting with the Strang algorithm. Total reflection condi- 

tin r se ttebonais 
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RESULTS FOR T = 480E+0 1 
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FIGURE 5 
Godunov scheme + (M. C. ) correction scheme (5 .1)-(5 .2) 

Idem Figure 3 
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RESULTS FOR T=. 4I80E+01 
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FIGURE 6 
Godunov scheme plus correction algorithm (3.4)-(3.5) 

DT = .16 Current number = 1 
/ exact solution momentum computed solution / density 



72 J. P. VILA 

SUBMERSION 2-D S'UBMERSION 2-D 
T-3,2..s T=17,4 s 

Boundary 

CONTOUR PLOT CONTOUR PLOT 

SUBMIERSION 2-D SUBMERSION 2-D 
T=7,85 T=22 s 

CONTOUR PLOT CONTOUR PLOT 

SUBAIERSION 2-D SUBMERSION 2-D 
T=12,6 s T=26,4 s 

CONTOUR PLOT CONTOUR PLOT 

FIGURE 7 
Time evolution of water wave generated by landslide, with reflections at boundaries. 

Grid calculation: 30 x 40 
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