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Upper Semicontinuity of Attractors for Approximations 
of Semigroups and Partial Differential Equations 

By Jack K. Hale, Xiao-Biao Lin, and Genevibve Raugel 

Abstract. Suppose a given evolutionary equation has a compact attractor and the 
evolutionary equation is approximated by a finite-dimensional system. Conditions are 
given to ensure the approximate system has a compact attractor which converges to the 
original one as the approximation is refined. Applications are given to parabolic and 
hyperbolic partial differential equations. 

1. Introduction. Suppose X is a Banach space and T(t), t > 0, is a Cr- 
semigroup on X with r > 0; that is, T(t), t > 0, is a semigroup with T(t) continuous 
in t, x together with the derivatives in x up through the order r. 

Following standard terminology (see, for instance, Hale [12]), a set B c X is 
said to attract a set C C X under the semigroup T(t) if, for any E > 0, there is a 
to = to(B,C,e) such that T(t)C C NA(B,E) for t > to, where ) (B,E) denotes the 
e-neighborhood of B. A compact invariant set A is said to be a local attractor if 
there exists an open neighborhood U of A such that A attracts U. The set A is an 
attractor if, for any bounded set B in X, A attracts B. Conditions for the existence 
of an attractor may be found in Hale [12]. 

Now suppose the semigroup depends on a parameter A belonging to an open 
subset of a Banach space, say T(t) = TA (t), where TA (t)x is continuous in (t, x, A), 
the continuity in A being uniform on bounded sets. If AA0 is a local attractor for 
TA0 (t), then additional smoothing properties of TA (t) will imply there is a neigh- 
borhood V of A0 such that TA (t), A E V, has a local attractor AA and AA is upper 
semicontinuous at A0, that is, 8X(AA, A,O) -* 0 as A -* A0 where, for any two 

subsets A, B of X, 

ex(A, B) = sup distx(x, B) and distx(x, B) = inf lx - yx. 
xEA 

The most general result of this type is due to Cooperman [7] and may be found 
also in Hale [11]. The result for gradient systems is in Hale [12]. 

The spirit of this paper relates to the above property of upper semicontinuity of a 
local attractor. Here we consider semigroups Th (t) depending on a parameter h > 0 
which "approximate" the semigroup T(t) and give conditions under which there 
exists a local attractor Ah for Th(t) with the property that &X(Ah, A) -* 0 as h -* 0. 
The essential difference between the results here and the ones mentioned before 
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is that the approximate semigroups can correspond to Galerkin approximations, 
splines or discretizations in time of evolutionary equations. These approximations 
have no uniform continuity property with respect to h. 

The outline of the paper is as follows. In Section 2 we give a general approxima- 
tion result which attempts to bring out the essential elements of the approximate 
and exact semigroups to ensure that there is a local, compact attractor which is 
upper semicontinuous. We also give one result in which we assume the approx- 
imate semigroups have a local compact attractor and then infer that the exact 
semigroup has a compact attractor. For the Navier-Stokes equation and the case in 
which the local attractor for each approximation is a point, Constantin, Foias and 
Temam [6] have given conditions which ensure that the original equations have an 
equilibrium. Schmitt, Thompson and Walter [31] discuss the solution of an elliptic 
boundary value problem in an infinite strip by analyzing solutions of approximate 
differential equations. This aspect of the problem is important but much more 
difficult and will be developed further in subsequent publications. The remain- 
der of the paper is devoted to giving specific approximation schemes for particular 
evolutionary systems for which the hypotheses of Section 2 are satisfied. These ap- 
plications include spectral projection methods for sectorial evolutionary equations 
and Galerkin approximations for parabolic equations as well as discretizations in 
time. Some results about the approximation of the Navier-Stokes equations and of 
a damped hyperbolic wave equation are also given. 

In this paper the convergence of the attractor Ah to A as h -* 0 is considered 
only in the sense of sets. The relationship between the dynamics on the attractors 
also must be discussed. This problem is much more difficult and requires some 
knowledge of the flow on A. Some results on the case in which the flow on A 
is Morse-Smale have already been obtained and will appear in Lin and Raugel 
[25]. For the case of a scalar parabolic equation in one space dimension with a 
cubic nonlinearity, this latter property has been discussed for space approximation 
using the Conley index (Khalsa [22]). Numerical computations using Galerkin 
approximations have been done for a similar example (Mora [28], Rutkowski [30]). 

2. A General Approximation Result. In this section we give a general 
result on the approximation of a local attractor by "approximate" semigroups. 
These results are very similar to local versions of the ones of Cooperman [7] or Hale 
[11]. More precisely, let h > 0 be a parameter which will tend to 0 and let (Xh)h 

be a family of subspaces of X such that 

(2.1) lim distx(x,Xh) =0 for any x in X. 

Let Th(t), t > 0, be a C8-semigroup on Xh with s > 0. Actually, Th(t)Xh need 
not be a priori defined for all t > 0. More precisely, we shall only assume that 

Th(0) = IdXh,Th(t + S)Xh = Th(s)Th(t)Xh for s > 0, t > 0 (as soon as Th(t + S)Xh 
and Th(s)Th(t)Xh are well defined), that Th(t)Xh is continuous in t and Xh when it is 
defined and finally, that Th (t)Xh is left-continuous at t1 if Th (t)Xh exists on [to, t1). 
The semigroups Th(t) are said to conditionally approximate T(t) on a set U C X 
uniformly on an interval I-[to, t1] c R+ if there are a constant h(I, U) > 0 and 
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a function r(h, I, U) defined for 0 < h < h(I, U) such that 

(2.2) lim r(h, I, U) = 0 
h-+O 

and, for any 0 < h < h(I, U), if u E U n Xh has the property that T(t)u, Th(t)u 
are defined and belong to U for t E [O, t2] where to < t2 < t1, then 

(2.3) IIT(t)u - Th(t)uIIx < r(h, I, U) for to < t < t2. 

The semigroups Th(t) are said to approximate T(t) on a set U C X uniformly on an 
interval I c R+ if Th(t) conditionally approximates T(t) on U uniformly on I and 
if, moreover, for 0 < h < h(I, U) and any u e U n Xh, the functions T(t)u, Th(t)u 
are defined and satisfy the inequality (2.3) for all t E I. 

The semigroups Th(t) are said to (conditionally) approximate T(t) on U c X 
uniformly on compact sets of R+ if Th(t) (conditionally) approximates T(t) on 
U uniformly on any compact interval I c R+. We recall that, in the following, 
N (B, E) denotes the E-neighborhood of a set B in the Banach space X. 

LEMMA 2. 1. Assume that there exist a bounded set Bo C X and an open set 
Uo D N/(Bo, do) for some do > 0 such that Bo attracts Uo under T(t). Moreover, 
assume that there exist an open set U1 DA N/(Bo, d1) for some d1 > 0 and a constant 
to > 0 such that Th(t) approximates T(t) on Ui uniformly on compact sets of 
[to, oo). Then, for any E0 > 0, there are ho > 0 and r0 > to such that, for 
0 < h < ho, for t > ro, 

Th(t)(uo n u, n Xh) cR (Bo , Eo). 

Proof. Without any restriction, we can assume that E0 < inf (do, d1). As Bo at- 
tracts Uo, there exists ro > to such that, for t > ro, T(t)Uo c NA(Bo, Eo/2). Thanks 
to the hypothesis (2.2), there exists ho > 0 such that, for h < ho, q (h, [to, 2ro], U1) < 

o/2. Therefore, for h < ho, for ro < t < 2ro, Th(t)(Uo n U1 n Xh) C A(Bo, Eo). 
Let us remark that UO n Ul nXh 5$ 0, because UO n U1 D N(Bo, inf (do, di)). 

Now, let us prove by induction that, for t > ro, Th(t)(uofnlulnxh) c A(Bo,eo). 
Assume that, for ro < t <? rO, Th(t)(uo ni u n xh) c M(Bo, eo) and let us prove 
this property for ro < t < (n + 1)ro. If nro < t < (n + 1)ro, then t = (n - 1)ro + T 

with r0 < T < 2ro. Let UOh EUonful nXh; we have 

Th(t)UOh = Thr(T)Th((n - 1)ro)Uoh. 

By the induction hypothesis, Th((n - 1)ro)uOh E N1(Bo, Eo) n Xh, and hence, 
Th((n - 1)To)Uoh E Uo n u1 n Xh. Therefore, on the one hand, 

T(r)Th ((n - 1)To)uoh E N (Bo, Io/2), 

and, on the other hand, 

IIT(T)Th((n - 1)TO)UOh - Th(T)Th((n - 1)To)UohIIX < Eo/2. 

Finally, Th(T)Th((n - 1)ro)uoh E N1(Bo, EO), for ro < T < 2ro, i.e., Th(t)U0h E 
N1(Bo, Eo) for ro < t < (n + 1)ro. 0 

If the dynamical system T(t) has a local compact attractor A, the hypotheses of 
Lemma 2.1 can be weakened, as we shall see below. 
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PROPOSITION 2.2. Assume that there exist a compact set A C X and an open 
neighborhood N1 of A such that A attracts N1. Suppose that there are constants 
ho > 0, 60 > 0, to > 0 and two open neighborhoods N2, N3 of A, with N1 c N2 c 

)(N2,60) C N3, such that, for 0 < h < ho, 
(i) T(t)Ni c N2 for t > 0, 
(ii) Th(t)(Nl n Xh) C N2 for 0 < t < to, 
(iii) for any Xh E A(N2,6o) n Xh, there exists t(Xh) > 0 such that Th(t)Xh e N3 

for 0 < t < t(Xh). 

Also assume that Th(t) conditionally approximates T(t) on N3 uniformly on com- 
pact sets of [to, ox). Then, for any Eo > 0, there are h > 0 and ro > to such that, 
for 0 < h < h and t > ro, 

(2.4) Th (t) (N nfXh) C N (A, Eo). 

Proof. As Th(t) conditionally approximates T(t) on N3 uniformly on com- 
pact sets of [to, +ox), for any t1 > to, there is a positive number h(ti) so that 
r(h,[to,ti],N3) < 60/4forh < h(t1). Foranyxh ENlnXh andanyt, to < t < t1, 
we want to prove that Th(t)Xh E N3, because this will show that 

JIT(t)Xh -Th(t)Xh IIX< 77(h, [to, tj], N3) 

for to < t < t1 and we may apply Lemma 2.1. Assume this is not the case. Then, 
by (ii) and (iii), there exists t2, to < t2 < t1, such that Th(t)Xh E N3 for 0 < t < t2 
and Th(t2)Xh V N3. But then Th(t)Xh E N(N2,So/4) for 0 < t < t2 and hence 
Th(t2)xh E N(N2, do/2), which is a contradiction. This proves the proposition. o 

Remark 2.3. If A is a local, compact attractor under the semigroup T(t), then A 
is stable, and there always exist neighborhoods N1, N2 satisfying (i) in Proposition 
2.2. 

To state the next result, we need some additional terminology. Following Hale, 
LaSalle and Slemrod [13] or Hale and Lopes [14], a semigroup T(t), t > 0, on 
a Banach space X is said to be asymptotically smooth if, for any bounded set 
B c X, there is a compact set J = J(B) c X such that J attracts the set 
{x E B: T(t)x E B for t > O}. A special case of asymptotically smooth semigroups 
are a-contracting semigroups (see Hale and Lopes [14]); T(t) is an a-contracting 
semigroup if T(t) = S(t) + U(t), where U(t), t > 0, is completely continuous and 
S(t), t > 0, is a bounded linear operator for which there is a 3 > 0 such that 
S (t) I (x;x) < exp(-/3t), t > 0. 

The next result gives conditions for the existence of compact attractors Ah for 
Th(t) and the upper semicontinuity of these sets "at h = 0,. 

THEOREM 2.4. Assume that T(t) has a local, compact attractor A and that the 
hypotheses of Proposition 2.2 are satisfied. If each Th(t) is asymptotically smooth, 
then there is ho > 0 such that, for 0 < h < ho, Th(t) admits a local, compact 
attractor Ah, which attracts N1 n Xh. Moreover, &X(Ah, A) -* 0 as h -* 0. 

Proof. From Proposition 2.2, it follows that Th(t) (N1 n Xh), t > 0, belongs to 
a bounded set in Xh. The results in Hale, LaSalle and Slemrod [13] (see also [12]) 
imply the existence of a compact attractor Ah for Th(t) which attracts N1 n Xh. 
Owing to Relation (2.4), we can take Ah c N(A, eo). Since Eo is arbitrary, we 
obtain the result. o 
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COROLLARY 2.5. Assume that T(t) has a local compact attractor A and that the 
conditions of Proposition 2.2 are satisfied. If each space Xh is finite-dimensional, 
the conclusions of Theorem 2.4 hold. 

In the general case, the hypotheses of Theorem 2.4 do not enable us to give any 
information about the distance 6X(A, Ah). However, if A is reduced to a point x0, 
then, of course, under the hypotheses of Theorem 2.4, &(A, Ah) -* 0. 

In the next result, we assume the attractors for the approximate semigroups 
exist and conclude that the original semigroup admits an attractor. 

PROPOSITION 2.6. Suppose there are bounded open sets N1 c N2 C X and 
positive constants 60 Io, ho, to, 6o such that, for each 0 < h < ho, the semigroup 
Th(t) has a local compact attractor Ah C X, with N1(Ah, o) C N1, and that 

(i) Ah attracts N1 uniformly, that is, for any 61 > 0, there is a r1 > 0, indepen- 
dent of h, such that Th(t)(Nl n Xh) C N1(Ah,el) for t > ri, 

(ii) Th(t)(Nl n Xh) C N2 n Xh, for all t > 0, 
(iii) T(t)Ni C N2 for 0 < t < to, 
(iv) T(t)x is well defined for x E N/(N2,EO) for 0 < t < So 

Also assume that Th(t) conditionally approximates T(t) on .AI(N2, 60) uniformly on 
compact sets of [to, +oo). Then, there exists r > to such that, for t > r, 

(2.5) T(t)N, C N1. 

If, in addition, T(t) is asymptotically smooth, then T(t) has a local compact at- 
tractor A attracting N1 and, for any E > 0, there exists h1 > 0 such that, for 
0 < h < hi, 

(2.6) A c V(Ah,6). 

Proof. Let us first show that 

(2.7) T(t)N, C ).(N2,Eo) for all t > 0. 

Owing to (iii), T(t)Ni C NA(N2, 60) for 0 < t < to. Suppose that the property (2.7) 
is not true; then there exist x E N1 and t2 > to such that T(t2)X e 39(.A(N2,Eo)) 
and T(t)x E )1(N2, Lo) for 0 < t < t2 (the existence of t2 is ensured by (iv)). 
Thanks to the approximation property (2.1), there exist a positive number h2 
and, for 0 < h < h2, an element xh E N1 n Xh close enough to x so that, for 
0 < t < t2, 0 < h < h2, 

(2.8) IIT(t)Xh - T(t)xlix < Eo/3. 

Moreover, there exists h3 > 0, with h3 < inf (ho, h2), such that, for 0 < h < h3, 

(2.9) 77(h,I [to i t2] , -k(N2 i O)) < Eo /3. 

Thus, since Th (t) conditionally approximates T(t) on N (N2, 60) uniformly on [to, t2], 
(2.8), (2.9) and (ii) imply that T(t2)x E Cl(.A (N2, 26o/3)), which is a contradiction. 
Thus (2.7) is true. 

Next we show that T(t)N1 c N1 for t > r, where r > to.is a constant. Owing to 
the property (i), there exists r > to such that, for 0 < h < ho, Th(t)(Nl n Xh) c 

)(Ah,eo/4) for t > T. Now let x E N1 be given. As above, there exist a positive 
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number h4, with h4 < ho, and, for 0 < h < h4, an element Xh E N1 n Xh close to 
x such that, for 0 < h < h4, 

(2.10) IIT(t)xh - T(t)xllx < so/3 for all t, with 0 < t < 2T 

and 

(2.11) q(hi [to,I 2T] I N (N21 so)) < eo /3. 

As (2.7) holds and Th(t) conditionally approximates T(t) on NM(N2,E0) uniformly 
on [to,2r], we derive from (2.10) and (2.11) that T(t)x E .M(Ah,3UO/4) C N1, for 
T < t < 2T. 

An easy induction, similar to the one of the proof of Lemma 2.1, shows that 
T(t)x E N1, for t > r. 

If, moreover, T(t) is asymptotically smooth, we conclude, by using a result of 
[7], that T(t) has a compact attractor A c N1 attracting N1. It remains to prove 
(2.6). Let E > 0 be given. By (i), there exists r1 > to, independent of h, such 
that Th(t)(Nl nfXh) C .M(Ah,6/3) for t > r1 and for 0 < h < ho. Because of the 

compactness of A, there exists h5, 0 < h5 < ho, such that, for 0 < h < h5, with 

each element x E A we can associate an element Phx in N1 n Xh such that 

IIT(t)x - T(t)Phxllx < E/3 for 0 < t < ,1. 

Finally, there exists h1, 0 < h1 < h5, such that, for any Xh E N1 nfXh, 

IIT(t)xh - Th(t)Xhjlx < E/3 for to < t < T,. 

Thus, for 0 < h < h1, T(rl)x E .M(Ah,6) for all x in A; and from the equality 

T(T,1)A = A we deduce the inclusion (2.6). O 

Remark 2.7. Property (2.6) means that &x(A, Ah) -* 0 as h -* 0. Let us remark 

that, under the hypotheses of Proposition 2.6, &X(Ah, A) also tends to 0 as h tends 

to 0. Indeed, as A attracts N1, for any El > 0, there exists rT > to such that 

T(t)Ah C .M(A,e1/2) for t > T,. On the other hand, there exists h > 0 such that, 

for 0 < h < h< ?(hI [to, r1] I (N2, Eo)) < E1/2. Thus, Th (T, )Ah C X (A, 1) and, 

since Th(T1)Ah = Ah, Ah c I(A,e1) for 0 < h < h. 

Remark 2.8. The assumption (i) in Proposition 2.6 that Ah attracts N1 uni- 

formly is a very strong condition. However, one would expect numerical proce- 

dures to have such a property. The detailed structure of the flow on the attractor 

Ah could vary considerably with h. This depends on the flow defined by T(t). 

Consider, for example, a scalar equation it = f(u), u E R, where the flow is given 

by > * > . < . If one approximates this flow numerically, two situations 

could arise. One could obtain either the approximate flow > * < or 

> * ce > . < . The global attractor in one case is a point and in the other is 

a line segment. The global attractor for the original problem is a line segmrent. 

For one of the approximation schemes, the attractors Ah approach a point as 

h -* 0 which is a local attractor for T(t) and, for the other, Ah approaches a line 

segment which is the global attractor for T(t). If the flow on the attractor for 

T(t) is less sensitive to small perturbations, this situation will not arise. 

Let us now turn to the question of how close Ah is to A with the measure 

of closeness given by &X(Ah, A). We give some results in this direction for some 

particular cases. 
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PROPOSITION 2.9. Suppose the hypotheses of Theorem 2.4 are satisfied with 
the associated function rq(h, I, N3) = chlo for some positive constants c, -yo, in- 
dependent of h and I c [to, oc). Then there is a constant c1 > 0 such that 

&x(Ah, A) < c1hlo for O < h < ho. 

Proof. The proof follows from the proof of Proposition 2.2 and Theorem 2.4 
using the special function r(h, I, N3) = ch-o. a 

The hypothesis on q(h, I, N3) in Proposition 2.9 is not usually satisfied. A more 
reasonable condition on r(h, I, N3) is given in the next result, but then we must 
impose stronger attractivity properties of A. 

PROPOSITION 2.10. Assume the hypotheses of Theorem 2.4 are satisfied with 
the associated function rq(h, [to, t1], N3) = coh?oeaoto for some positive constants 

co, o, ao, independent of h and tl. If there are an open neighborhood U of A and 
positive constants cl, i0b such that 

6x(T(t)U, A) < cle-fot, t > 0, 

then, for h < ho, we have 

&x(Ah, A) < ch?o030/(ao+/3o0) 

for some positive constant c. 

Proof. If 

t, - log Lho 0001(`0+00) 
10 Cl 

then 6X(T(t)U,A) < coh-Y0Q0/(a0+Q0) for t > t1. Since Ah is invariant, for any 
Xh E Ah, there is a Yh E Ah such that Xh = Th(tl)yh. If x = T(tl)yh, then 

l1Xh - XlIX = iiTh(tl)Yh - T(tl)yhlIx < co 1 /0?cjhV?0?/(o?+0o). 

This completes the proof. o 
Remark 2.11. If T(t) is a gradient system (for the definition, see Hale [12]) 

for which there is a t1 > 0 such that T(t) is either compact for t > t1 or an 
a-contraction, and if the set of equilibrium points E (i.e., the points X such that 
T(t)q = 4, t > 0) is bounded, then we know that T(t) has a compact attractor A. If, 
in addition, each element of E is hyperbolic, then E is a finite set, dim WU (q) < +oo 
and A = UOEE Wu(q), where Wu (X) is the unstable set of 0. Furthermore, if the 
stable and unstable manifolds intersect transversally, there is an open neighborhood 
U of A such that 5x(T(t)U, A) -* 0 exponentially as t -* +oo. 

Thus, if the approximate semigroups Th (t) satisfy the hypothesis of Theorem 2.4 
with 7(h, [to, t1], N3) = cohYoeaOtl, Th(t) admits a local compact attractor Ah for 
h small enough and, by Proposition 2.10, we obtain a good estimate of eX(Ah, A). 

Now assume that, for h > 0, Th (t) is a gradient system. Then, one can prove 
that, for h small enough, the set of equilibrium points Eh of Th is finite and has the 
same cardinality as E, and one can give an estimate of 6x (E, Eh) and 6x (Eh, E). 

Moreover, Ah = UOhEEh Wu(Oh), where Wu(qh) is the unstable set of qh. (For 
more details, see Lin and Raugel [25]). 

In Remark 2.11 we have encountered a situation where the conditions of Propo- 
sition 2.10 are satisfied. One would expect that the hypothesis in Proposition 2.10 
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that T(t)U -* A exponentially as t -* +x will be satisfied in specific evolutionary 
problems, at least generically with respect to the vector fields. A more precise 
statement is needed and certainly is nontrivial. 

Let us end this section by pointing out that in some cases the semigroups Th(t) 
do not conditionally approximate T(t) on any open set U C X. In this case, one 
has to use other ways to prove that Th (t) admits a local compact attractor Ah for h 
small enough. In Subsection 6.2 we shall encounter a typical example of this case. 

3. Galerkin Approximation of Sectorial Evolutionary Equations. 
3.1. Galerkin Approximation of a Parabolic Equation. Let V and H be two (real) 

Hilbert spaces such that V is included in H with a continuous and dense imbedding; 
the space H is identified with its dual space, and the inner product of H, as well 
as the duality pairing between V and its dual space V', is denoted by (, ) (so we 
have the inclusions V c H c V', where the imbeddings are continuous and dense). 
We introduce a continuous, bilinear form on V x V: (u, v) E V x V -* a(u, v) and 
the corresponding operator A E L(V; V') defined by 

Vu, v E V, a(u, v) = (Au, v). 

We denote by Co the constant of continuity of the bilinear form a(., ). We also 
suppose that there are two constants -y > 0 and -yo > 0 such that 

(3.1) Vv E V, a(v,v) +_YOIIV12I >? IIVIIV 

Moreover, if 

b(u, v) = a(u, v) - a(v, u), 

we assume that there exists a constant Ci > 0 such that 

(3.2) Ib(u,v)l< C1luIIv11IIvH. 

Now we consider the nonliner equation 

(3.3) { dudt + Au = f (u), 

where uo belongs to V and f: V -* H is locally Lipschitz continuous (i.e., f is 
continuous and, for any bounded set B of V, there is a constant kB such that 

IIf (u) -f (v)IIH < kBIu - vIIv for u,v in B). 
Remark 3.1. We may always assume that 'yo = 0. If -yo > 0, we can set A1 = 

A + 'yoI and replace Eq. (3.3) by 

(3 3)1 { du/dt + Alu = f (u) + -ou, 
u(O) = uo. 

Therefore, we assume in the sequel that 'yo = 0. 

Let D(A) = {v E V; Av E H}. Note that D(A) is dense in V and H and 
that A is a sectorial operator on H in the sense of Henry [17], so that we can 

define the operators A' for any a > 0. (We recall that A is sectorial if and only 

if the semigroup e-At generated by A is an analytic semigroup.) If we define 

X= D(A'), a > 0, with the graph norm llvllxa = IIAavlIH, v E Xc, then Xc is 
a Hilbert space normed by llvllxa and XO = H (for more details, see Henry [17, pp. 

26-29]). From the hypothesis (3.2) we derive at once that D(A) = D(A*), where 
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A* is the adjoint operator of A, defined by (A*u, v) = a(v, u) for any u, v in V. By 
using a result of Lions ([26, Theoreme 5.3]) we conclude that 

(3.4) D(A1/2) = D(A*1/2) = V. 

Thus we are in the context considered in [17, Chapter 3], so that we can use 
existence, uniqueness and regularity results for the solution of the equation (3.3). 
In particular, we know that under the above hypotheses on A, f and uo there is a 
unique solution in V of Eq. (3.3) on a maximal interval of existence (0,ruj). Here 
we assume that all solutions are defined for t > 0, SO that we can introduce the 
map T(t): V -* V, t > 0, defined by T(t)uo = u(t, uo) and obtain a CO-semigroup 
on V. We also suppose that T(t) has a (local) compact attractor A which attracts 
a bounded open set 0, 0 D A (see [12] for the existence of A). 

Now let us turn to a finite-dimensional approximation of Eq. (3.3). Let h > 0 
be a real parameter which will tend to 0 and (Vh)h a family of finite-dimensional 
subspaces of V. We introduce the operator Ah E ,(Vh; Vh) defined by 

(3.5) VVh E Vh, (AhWh, Vh) = a(Wh, Vh) for Wh in Vh. 

Let Qh E i(H; Vh) be the projector on Vh in the space H, i.e., 

Vv E H, VVh E Vh, (V-QhV,Vh) = 0, 

and let Ph E L (V;VVh) be the projector on Vh in the space V, i.e., 

Vv E V, VVh E Vh, a(v-PhV, Vh) = 0. 

Now consider the following equation in Vh: 

(3.3)h { dUh/dt + AhUh =Qhf(Uh) 

Uh(0) = Uoh, 

where uOh E Vh. Equation (3.3)h is an ordinary differential equation. We introduce 
the map Th(t): Vh - Vh, defined by Th(t)uoM = Uh (t, UOh) as long as Uh (t, UOh) 

exists. Th(t)UOh is continuous in t and Uoh when it is well defined and, if Th(t)UOh 
exists on [to, t1), it is left-continuous at tI. 

In order to prove that Th (t) also admits a compact attractor Ah, for h small 
enough, we need the following additional hypotheses on the spaces (Vh)h: 

There exist an integer m > 0 and, for any 1, - < 3 < 1, a constant C(3) > 0 
such that, for all w in X: _ D=(AO) 

(3.6)(i) IIW - PhWIIv + 11W - QhwIIV < C(O)h2m(l-1/2)IIWIIX,3, 

and 

(3.6)(ii) ||W - PhWIIH + 11W - QhWlIH < C(1)h 2mflIWIIxo. 

Remark 3.2. The hypotheses (3.6) (i) and (3.6) (ii) are realistic and are satisfied 
in many cases when A is an elliptic differential operator (see Ciarlet [5] and Example 
3.1 below). We point out that in this case the quantity 2m in (3.6) is rather related 
to the order of the diffrential operator A than to the order of the "approximation" 
of V by Vh. In Example 3.1 below, 2m remains equal to 2 (which is the order of 
L), even if we replace P1 (K) in (3.8) by a space of higher-order polynomials. 
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Example 3.1. Let Q be a regular bounded domain or a convex bounded set in 
R2. In Q we are given an elliptic operator of the following form: 

2 a2V 2 a 
i,j=1 *=1 3 

where the coefficients aij, bj, c are smooth enough and where L is assumed to be 
uniformly and strongly elliptic. If A denotes the operator -C, with homogeneous 
Dirichlet boundary conditions, then the hypotheses (3.1) and (3.4) are satisfied 
with D(A) = H2(Q) n H3(Q), D(A1/2) = V = H3(Q), H = L2(Q). And one can 
find finite-dimensional subspaces Vh of H3 (Q) such that the conditions (3.6) (i), 
(3.6) (ii) are satisfied with m = 1. For instance, if Q is a convex polygonal domain, 
we introduce a uniformly regular family (Th)h of triangulations in the sense of [5], 
where Th is made of triangles with diameters bounded by h. And we set 

(3.8) Vh = {Vh E C?(Q) nHo(F): VK E Th,VhIK E P1(K)}, 

where P1 (K) is the space of all polynomials of degree < 1 on K. In this case, the 
hypotheses (3.6) (i) and (3.6) (ii) are satisfied with m = 1. Moreover, even if the 
family (Th)h is only regular, the hypothesis (3.6) (ii) is satisfied and the condition 
(3.6) (i) usually holds (see Crouzeix and Thomee [9]). 

THEOREM 3. 1. Under the above hypotheses, there exists ho > 0 such that, 
for h < ho, Th(t) admits a local compact attractor Ah, which attracts an open set 
N1 n Vh, where N1 is independent of h. Moreover, bV(Ah, A) -+0 as h -+0. 

Proof. We shall prove that the hypotheses of Proposition 2.2 are satisfied by 
T(t) and Th(t) for h small enough. Clearly, it is sufficient to show that there are 
constants ho > 0, do > 0 and to > 0 and three open neighborhoods N1, N2, N3 of 
A with N1 C 0, N1 c N2 C N)(N2, So) C N3, such that the conditions (i) and (ii) 
of Proposition 2.2 are satisfied and that Th (t) conditionally approximates T(t) on 
N3 uniformly on compact sets of [to, +oo). Let us prove this in two steps. 

First step. As A is a compact attractor, there is a bounded open neighborhood 
N1 of A such that N1 C 0 and T(t)N1 C N1 for t > 0. We choose a real number 
Eo > 8BoC0/'y, where Bo = maXVENl llvllv, and we set N2 = )(N1,eo). Finally, 
let 60 be a positive real number and define N3 = N (N2, 60). Now we want to prove 
that there exists a constant to > 0 such that Th(t)(Nl n Vh) C N2 for 0 < t < to. 
Using classical arguments of the theory of differential equations, we easily see that 
it is sufficient to prove the following property: 

(There exists a constant to > 0 independent of h such that, for 

(A) J any UOh EN1 ln Vh, if Th(t)uoh belongs to N)(uoh, Eo + do) for 

(0 < t < t(UOh), where t(uOh) < to, then Th(t)UOh E )IV(Uoh,EO) 

for 0 < t < t(UOh). 

As f is globally Lipschitz continuous on N (N3, 60), there exist constants M1 > 0 

and L > 0 such that 

(3.9) (i) Vv e N (N3, do), I If(v)IIH < M1, 

and 

(3.9)(ii) Vv,w E ).(N3,So), IIf(v) - f(w)IIH < Llv - wllv. 
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If uh is the solution of Eq. (3.3)h, Uh - UOh satisfies the equation 

(3.10) d(Uh - UOh)/dt + Ah(Uh - UOh) = Qhf(uh) + AhUoh. 

Taking the inner product in H of the equation (3.10) by d(uh - Uoh)/dt, we obtain 

d 
(Uh-uOh) ?aUh - UOh, dt(Uh - UOh)) 

= (f(Uh), (Uh - UOh)) + aa(UOh, Uh - UOh). 

But 

(3.12) a(Uh - UOh, (Uh - UOh)) = 2ja(Uh - UOh, Uh - UOh) 

+-b IUh - UOh, d 
(Uh-UOh) 

so that we deduce from (3.11) and (3.12), by using the inequality (3.2), that 

d ~~~~2 
|d(Uh - UOh 

) 
+ da(uh - UOh,Uh - UOh) 

< M1 +d(Uh-UOh) + ClIIUh-UOhIIV |d(Uh-UOh) H 

dt + dt a(UOh,u U- UOh),X 

which implies that 

(3.13) d a(Uh - UOh,Uh - UOh) < M12 + C |IUh -UOhIIv + 2da(UOh,Uh- UOh) 

Finally, integrating (3.13) from 0 to th and using (3.1) (with -yo = 0) and the 
inequality ab < a2/2e + eb2/2, we obtain 

IIUh(th) - uohII 2thMl + 2C1 ft IUh(S) - UohI ds + 2 IlUOhVI. 

Thanks to Gronwall's inequality, we derive from the above estimate that 

(3.14) IIUh(th) - UOh ? (tM + 2 IzlUwhlIIV) e(2C,/')th 

If uOh E N1 n Vh, (3.14) becomes 

(3.15) IIUh(th)- UOhIIV ( + +- Bo2) e(2C,/')th 

From (3.15) it is clear that there exists a constant to > 0 independent of h such 
that property (A) holds. 

It remains to prove that Th(t) conditionally approximates T(t) on N3 uniformly 
on compact sets of [to, +oo). 

Step 2. Estimate of IITh(t)uoh - T(t)UohllV for to < t < ti when Th(r)Uoh and 

T(r)uoh belong to N3 for 0 < r < t. To this end, we estimate the term 

I1rTh (r)uOh -T(Tr)Uoh lv for 0 < r < t. We set u(r) = T(-r)Uoh, Uh (-r) = Th (r)uoh, 
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Z(r) = ru(r) and Zh(-r) = rUh(-r). Using the equality QhA = AhPh, one easily 
shows that Zh(ir) - PhZ(-r) satisfies the equation 

d (( h - PhZ) + Ah(Zh - PhZ) 

(3. 16) 
dt 

= rQh (f(Uh) -f (U)) + r (d(QhU - PhU)) + Uh - PhU- 

Taking the inner product in H of (3.16) by d(Zh - PhZ)/dt, we obtain, thanks to 
the property (3.9)(ii), 

+(Zh PhZ) +a (Zh-PhZ,d(Zh-PhZ) 

dt 
(3.17) d H 

+ (Z -PhZ) 
d 

(Zh -Ph Z) 
dtH dtH 

+I IUh-PhUIIH | (Zh-PhZ) 
dt ~H 

Using the relation (3.12) (where uh - UOh is replaced by Zh - PhZ) and the hy- 
pothesis (3.2) as well as the inequality ab < a2/2e + eb2/2, we derive from (3.17), 

d a(Zh -PhZ, Zh -PhZ) 

dt ~ d (3.18) ~~< (L2+C)Z-P || + L ll-hZI12 

+ dZ-PhZ) + IIUh-PhUIIl. dt ~H 

If we integrate (3.18) from 0 to t and then apply Gronwall's inequality, we obtain 

II(Zh - PhZ)(t)112 

< C2e [ft {IZ(s) - PhZ(s)112 + h|Uh(S) - QhU(S)I11 

(3.19) 
+ l|U(S) -Qhu(s)112 + l1U(S) - PhU(S)ll1 

d2 
+ dt (Z(s)-PhZ(8)) ds 

where C2 and C3 are two positive constants independent of h and t. We now 
estimate IIuh(r) - Qhu(r)IIH,0 ? r < t. The function Qhu - Uh satisfies the 
equation 

d 
d(QhU - Uh) + Ah(QhU - Uh) 

(3.20) 1 Q 
Qhf(u) - Qhf(uh) + (AhQh - QhA)u, 

Uh)(0) = 0. 
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Taking the inner product in H of (3.20) by Qhu-uh and using the property (3.9)(ii), 
we obtain 

I IdUh - QhUII + YIIUh -QhUII 2 dtH 
< LIu - QhUlIvIIUh -QhUIIH + LIIUh - QhUlIvIIUh - QhUIIH 

+ CoIIu - QhulIVIIUh - QhUJIV. 

By Gronwall's inequality, the above estimate implies, after an integration from 0 
to r, 

(3.21) IIuh(r) -eQhu(r)IIH ? 0eC5r (f l2u(s)-Qhu(s)II ds) 

where C4 and C5 are two positive constants independent of r and h. Thanks to the 
properties (3.6)(i) and (3.6)(ii), we deduce from (3.19) and (3.21), for 0 < t < ti, 

(IAts)I 

du 

2 
|| Z(tZ h () 

{tAu(t)I 
v 

(3.22) < C6eC7th2m |H dt (s) V 

+ IIu(8)II ) ds}I 

where C6 and C7 are two positive constants independent of t and h. On the one 
hand, using Henry [17, p. 71], one easily proves that, for 0 < r < t, 

(3.23) du (0 < Ko(N2,(5o)eKltl 1-, 

where Ko (N2, 60) is a positive constant depending only on N2 and 6o, and K1 is a 
positive constant. 

Since rAu = rf(u) - rdu/dt, we infer from (3.23), for 0 < r < t, 

(3.24) IITAu(T) || H < tl sup II 
f (v) I| H + KO (N2, (5o)eKlt1. 

VEN3 

On the other hand, since du(-r)/dt belongs to H for r > 0, we may consider the 
inner product in H of Eq. (3.3) by du/dt; thus, using a relation similar to (3.12), 
we obtain, for 0 < t < t1, 

(3.25) f | H ds < 2 lIf(u(s))112 ds + 2Cf IIu(s)112 ds + CoIIu(t)112 

Since Au = f(u) - du/dt, we deduce from (3.25) that, for 0 < t < tl, 
rt 

(3.26) j IIAu(s) 12I ds < K2(N2, 5o)eK3tl, 

where K2 (N2, 60) is a positive constant depending only on N2 and 60, and K3 is a 
positive constant. 

Finally, the estimates (3.22), (3.23), (3.24) and (3.26) give us, for 0 < t < tl, 

11 Z(t) - Zh (t) lIv < K4 (N2, bo)eK5tlhm 

or, for to < t < t1, 

eK5tl hm 
(3.27) IU(t) - Uh(t) IIV < K4(N2, 60) 
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where K4 (N2, 60) is a positive constant depending only on N2 and 60, and K5 is a 
positive constant. El 

Remark 3.3. We also could have used the methods of Bramble, Schatz, Thomee 
and Wahlbin [3], Fujita and Mizutani [10], Helfrich [16] or Johnson, Larsson, 
Thomee and Wahlbin [20] for estimating IIu(t) - uh(t)liv. For the estimate of 

IIu(t) - uh(t)IIv when u is more regular, we refer the reader to Thomee [33] and to 
Thomee and Wahlbin [34]. (See also the references in [33]). 

Remark 3.4. Let Q be a regular or convex, bounded domain in RI, n = 1, 2,3, 
and let f: R -* R be a locally Lipschitz continuous function. Then, if n = 1, the 
mapping f: u E H1(Q) -* f(u(x)) E L2(Q2) is also locally Lipschitz continuous. If, 
in the cases n = 2 or 3, f satisfies the additional condition 

(3.28) Vv,Vw E R, If(v) - f(w)I < C(1 + Ivl + IwI)lv - wI, 

where 
a <-2 for n > 3, a arbitrary for n = 2, 

then the mapping f: u E H1(Q) -* f(u) E L2 (Q2) is also locally Lipschitz continu- 
ous. If the condition (3.28) is not satisfied, we have in general to work in a space 
other than H1 (Q) (see Subsection 3.2 and Example 3.2 below). 

3.2. An Extension of the Previous Result. Let us again consider the operator A 
introduced in Subsection 3.1 that satisfies the properties (3.1) and (3.2). Now we 
assume that f: V -* H is no longer Lipschitz continuous. But instead, we suppose 
that A is a sectorial operator on a Banach space Y c H and that f: Y' -* Y 
is locally Lipschitz continuous, for a real number a, - < a < 1. Furthermore, we 
assume that the following continuous inclusions hold: 

(3.29) Dy(A) - Y' - V - Y - H, 

where Dy(A) = {y E Y: Ay E Y} and Ya = Dy(Al). 
We assume that all the solutions u(t, uo) of (3.3) are defined and belong to 

Yc for t > 0O if uo E Yc. Thus, the map Ty(t): Yc -* Yc, t > 0, defined by 
Ty (t)uo = u(t, uo), becomes a C0-semigroup on Yc . Finally we suppose that Ty (t) 
admits a compact attractor A which attracts a bounded open set 0 D A. Then 
there exists an open neighborhood N1 of A such that N1 C 0 and Ty (t)N1 C N1 
for t > 0. 

Now we introduce a function f which is globally Lipschitz continuous from V 
into H and coincides with f on 0. We consider the equation 

(330) {du/Idt +Au = f(i), 

u(O) = uo. 

Obviously, if uo E N1 then ii(t, uo) = u(t, uo) for t > 0. Let (Vh)h be the family of 
finite-dimensional subspaces of V introduced in Subsection 3.1. We suppose that 
the spaces Vh are included in Yc, satisfy the conditions (3.6) and the two following 
assumptions: 

for any f, a < f < 1, there exists a constant 0(a,:) > 0 such 

(3.31)(i) that, for v in Yd, 

IIv - Phvllya < Ch2mG(a,0) IIVIIY,3X 



UPPER SEMICONTINUITY OF ATTRACTORS 103 

and 
there exists a constant O0, 0 < Oci < -, such that, for any Vh in 

(3.31) (ii) Vh , 

IIVhIIYa < Ch maIIVhIIv. 

We point out that, as in (3.6), the quantity 2m essentially depends on the order of 
the differential operator A. We consider the approximate problem 

(3.30)h { diid/dt + Ahiih = Qhf(iih), 
Uh(O) = UOh, 

for uOh E Vh. We introduce the map Th(t): Vh -* Vh given by Th (t)UOh = 

Uh(t, UOh). Since f is globally Lipschitz continuous, Th(t)uoh exists for any t > 0. 

THEOREM 3.2. Under the above hypotheses, there exists ho > 0 such that, for 
h < ho, Th(t) admits a compact attractor Ah which attracts the open set N1 f vh 
(where N1 is given above). Moreover, SYck(Ah, A) -* 0 as h -* 0. 

Proof. Let to > 0 be a fixed real number. For any t, > to, we are going 
to estimate IITY(t)uoh - Th(t)Uohlly- for to < t < ti, when UOh E N1. We set 
u(t) = Ty(t)uoh, Uh(t) = Th(t)Uoh. Recall that u(t) = iu(t). By virtue of the 
conditions (3.31), we have 

|IU(t)- Uh(t)IIYa < IIii(t) Phfi(t)IIY- + IIPhi2(t) - Uh(t)IIYa 

< Ch 2m(a,) IlU(t) IYs + Ch meQIIPhi(t) - fih(t)IIV, 

where a <6 < 1. 

Arguing as in Subsection 3.1 (see estimate (3.27)), we obtain 

(3.32) h 2meaIPhi(t) - fih(t)JIv < K4(N1)e h2m(l/2-0a). 
to 

Finally, by using Henry [17, p. 57], we deduce from the above estimates, for to < 

t < tl, 

eK7tl 2 (/ -,,) 2 0a3) (3.33) IIU(t) - Uh(t)IIYc < K6(, N1) p(h h 
to 

Since O. < 2, (3.33) implies that the hypotheses of Proposition 2.1 hold and The- 
orem 3.2 is proved. Ol 

Example 3.2. Consider the equation 

du/dt -u = f(u), 

(3.34) u an= 0, 

u(t)/t=o = uo, 

where, for instance, Q is a convex polygonal domain in R2. If the function f: R 
R is locally Lipschitz continuous, but does not satisfy the condition (3.28), we 
cannot work in the space V = Hol(Q). The map f: w E Y -* f(w) E Y is locally 
Lipschitz continuous if Y = L2(Q) and a > 2, or, if Y = LP(Q), p > 2 and a > . 

(Indeed in both cases, Yc - L00(Q).) 
Now assume that (3.34) admits an attractor A in Yc which attracts a bounded 

set O D A. So we can introduce the quantity 

(3.35) B1 = max IIVIILOO(Q)* 
vEC 
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One easily constructs a function f satisfying 

(3.36) f 
{ 

) for lxi ? B1, 
6 (x) - 0 for lxl > 2B1. 

The map w E V -* f (w) E H is globally Lipschitz continuous and coincides 
with f on 0. 

Let us give an example of spaces Vh in the case Y' = H2, (Q) n H3 (Q), I < a < 
1. Let (7h)h be a uniformly regular family of triangulations in the sense of [5]. We 
set 

Vh = {vh EC1 (Q) nfHo (Q): VhIK E P3(K), VK E Th} 

where P3 (K) is the space of all polynomials of degree < 3 on K. Then, of course, 
the hypotheses (3.6) are satisfied with m = 1. Conditions (3.31)(i) and (3.31)(ii) 
hold with 0(a, f) =f-a and O, = a 

- 

3.3. Approximation of Sectorial Evolutionary Equations with Special Projection 
Methods. More generally, let A be a sectorial linear operator on a Banach space X, 
and consider the nonlinear equation (3.3) where now we assume that there exists a 
real number ca E [0,1) such that f: X' --+ X is locally Lipschitz continuous and 
u0 E Xcl. As in Subsection 3.1, we introduce the map T(t): Xa -+ Xc, t > 0, 
defined by T(t)uo = u(t, uo) and suppose that T(t) has a (local) compact attractor 
A which attracts an open set 0 D A. We assume that Re a (A) > -y > 0, where a (A) 
denotes the spectrum of A (if not, we replace A by A1 = A + aI, Re a(Al) > -Y 

and replace Eq. (3.3) by Eq. (3.3)'). We also suppose that or(A) consists of isolated 
points An only, with no accumulation in the finite part of C, and that each An is 
of finite order. We arrange the points An in such a way that 

-y < ReAl < ReA2 < < ReAn < ReAn+l < 

where Re An -* +00 as n -* +oo. 
We denote by 4?n the generalized eigenspace corresponding to An, by PN the 

projection from X onto the space [Ii, 'I2, . . ., 4N] and by QN the projection I-PN. 

We assume that, for 0 <? < 1, IIPNI11(X0;Xo) is bounded by a constant Kfl > 0, 
uniformly with respect to N. By [17, p. 21], for any E > 0, for any integer N, there 
exists a constant Ke,N such that 

e-(ReAN + -E)t 

(3.37) IAie AtQNIIL(X,X) < KE,N ti for j = 0,1. 

Below, we assume that, for 0 < ,3 < 1, 

(3.38) lim KN -01 
N-(8+oo (Re AN+1 - E): 

this condition being usually satisfied. 
Now let us consider the following equation on XN = PNX: 

(3.3)N f duN/dt + AUN = PNf (UN), 

UN (0) = UON, 

where UON E XN. Equation (3.3)N is an ordinary differential equation. Let us 
introduce the map TN(t): XN -+ XN, defined by TN(t)UON = UN(t, UON), as long 
as UN (t, UON) exists. 
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THEOREM 3.3. Under the above hypotheses, there exists a number No > 0 
such that, for N > No, TN(t) admits a local compact attractor AN which attracts 
an open set 0, nXN, where 01 is independent of N. Moreover, 6X- (AN, A) -? 0 
as N -* +oo. 

The proof of this theorem is very easy and is a consequence of Proposition 2.2 
(the complete proof can be found in Hale, Lin and Raugel [15]). 

4. Semidiscretization in Time of Some Parabolic Problems. We keep 
the same notations and the same assumptions as in Subsection 3.1, but here we 
moreover assume that the operator A is selfadjoint and has a compact resolvent. 
(The generalization of the following results to the case where A is not selfadjoint, 
but satisfies the condition (3.2), is left to the reader.) As in Subsection 3.1, we 
assume that 'yo = 0, and we consider the nonlinear equation 

(4.1) { du/dt + Au = f (u), 

where uo E V and f E C2(V; H), for instance. The hypotheses on f can be 
weakened. Now let us turn to a semidiscretization in time of Eq. (4.1) by a one- 
step method. More precisely, let k be a positive time increment, let tn = nk, n > 0, 
and define an approximation un of the solution u of (4.1) at time tn by the recursion 
formula 

(4. 1)k { Un+ = (1 - (1 - O)kA)(1 + OkA)-1un + k(1 + OkA)-1f(Utn) 
UO =u X 

where ? <0 < 1 2 - 

Remark 4.1. The results that we are going to prove below are also valid if we 
replace f (un) in (4.1)k by f (0un+I + (1 - 0)un). But then the "linearized" scheme 
(4.1)k becomes a nonlinear one. 

More generally, the following results are also true if we replace (4.1) k by a scheme 
that is strictly accurate of order 1 in the sense of Brenner, Crouzeix, Thomee [4] 
and is of the form 

m 

(4Un+) = r(kA)un + kEqj(kA)f (un), 
(4-2)k j=1 

uo = u?,I 

where r, ql, . .. , qm are rational functions of the variable z which are bounded, as 
well as zqj(z), 1 < j < m, for z > 0, and where Ir(z)I < 1, for z > 0, and 

Ir(oo)l :A 1. The proof, in the case of the scheme (4.2)k, uses the same arguments 
as below and the property that r(z) can be written as (1 - zs(z))/(1 + az), where 
a is a suitable positive constant (for more details, see Raugel [29]). 

Now we introduce the mapping Tk E 1 (V, V) defined by Tkuo = ul, where ul is 
given by the formula (4.1)k. For any integer n > 1, Tknuo = un. We remark that 
Tk is well defined on the whole space V and that Tkn: N -+ Co (V, V) is a discrete 
semigroup. Although Sections 1 and 2 deal with C0-semigroups T(t): R+ - 

Co (V; V) only, the definitions and the results contained there obviously extend to 
discrete semigroups. For instance, a set B C V is said to attract a set C C V under 
Tk if, for any E > 0, there is an integer no = no(B, C, E) such that TknC C AI(B, E) 
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for n > no (the definitions of a local attractor and an attractor are unchanged; for 
more details, see Hale [11], for instance). 

Here we suppose that the map T(t): V -+ V, t > 0, defined by T(t)uo = u(t), 
where u(t) is the solution of (4.1), admits a local, compact attractor A which 
attracts a bounded open set 0, 0 D A. 

THEOREM 4. 1. Under the above hypotheses, there exists ko > 0, such that, 
for k < ko, the process Tk admits a local, compact attractor Ak, which attracts 
an open set N1, where N1 is independent of k,N1 D Ak for every k. Moreover, 

bv(Ak,A) -+0 ask -+0. 

The remainder of this section will be devoted to the proof of Theorem 4.1. But, 
beforehand, let us recall the following discrete analogue of Gronwall's lemma, the 
proof of which is left to the reader. 

LEMMA 4.2. Let (an)nX (bn)nX (Cn)n be three sequences of positive real numbers 
such that (cn)n is monotonically increasing and 

n-1 

(4.3) an+bn<cn+AEam for n>1 and A>0, 
m=O 

with ao + bo < co. Then, these sequences also satisfy 

(4.4) an + bn < Cn exp(An) for n > 0. 

Only for the sake of simplicity, we consider that the space V is equipped with 
the norm 

(4.5) Vv E V, llvllv = (Av,V) 112. 

Hence, the dual norm on V' is given by 

Vv' E V', IIv'llv' = (A-lv',v') 

Proof of Theorem 4.1. In order to prove Theorem 4.1, we shall apply the following 
modified version of Theorem 2.4, the proof of which is left to the reader. Clearly, 
the conclusions of Theorem 2.4 and hence of Theorem 4.1 hold, if the following 
conditions are satisfied: 

There exist four positive constants ko, 6o, 61, ao, with ao > ko, and two open 
neighborhoods A/1, R2 of A, with X1 C )2, such that, for 0 < k < ko, 

(i) Tk is an asymptotically smooth map (this condition holds in particular if 

Tk = Tlk + T2k, where T1k is completely continuous and T2k is a linear strict 
contraction); 

(ii) T(t))4 C R2 for t > 0, 

(iii) TknRV C R2 for 0 < n < ao/k, 

(iv) Tk.M(M2, 6o) C )3, where M3 = .M(M2, 60 + 61); and 
(v) for any a, > ao, there exist a constant ko(a,, )3) with 0 < ko(a1, A13) < ko, 

and a function q (k, a1, )13) defined for 0 < k < ko(a, A/3) such that 

(4.6) lim rj(k, 1a,A/3) = 0, 
k_~oo 
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and, for any 0 < k < ko(a1, /3), if uo E )3 has the property that Tknuo and 
T(nk)u? belong to )3 for 0 < n < a2/k and 0 < nk < a2 + ko, respectively (where 
ao < a2 < al), then 

(4.7) IITknuo - T(nk)uo llv <? (k, a,, A3) for ao <n< < 2 

Now we show in four steps that the above conditions are satisfied. 
(1) By (4.1)k, we can write, for any uo E V, 

Tkuo = [(1 + OkA)-lu0 + k(l + OkA)-1f(u0)] - (1 - 0)kA(1 + OkA)-1u0 

TlkU + T2kU0. 

Let B be a bounded set in H; for any v E B, we have IIkA(1 +OkA)-1vIIH < IIVIIH* 
Hence, for any fixed positive k, (1 + OkA)-1B is a bounded set in D(A). Since 
D(A) C V is a compact embedding, this proves that Tlk is completely continuous. 
On the other hand, as A is an elliptic operator, T2k, for k > 0, is a linear strict 
contraction as soon as 20 - 1 > 0. Condition (i) is proved. 

(2) As A is a compact attractor, there is a bounded open neighborhood A/i of 
A such that ,/1 C 0 and T(t)NAA C .A/ for t > 0. Let Bo = max1EJV1 llvllv and 

B, = maxvEVi1 IIf(v)IIH; we set E0 = 4(B 2 + B 2)l/2 and .M2 = .M(.i,eo). Finally, 
we choose a real number 6o > 0 and we set 61 = 2[(Bo + Eo + So)2 + B 2]1/2, where 

B2 = maxve EN ( ,V8 6.) II f(V) II H 

We remark that the condition (iii) is an immediate consequence of the following 
property: 

(There exists a constant ao > 0 independent of k such that, for 

|any uo E A/l, if Tkn uo belongs to N (u?, Eo), for 0 < n < /3(k, uo) /k, 

(A) ; with 0 < 13(k, uo) < ao - k, then Tkn uo belongs to A/ (u?, Eo) for 

a < n < (/(k, uo)/k) + 1. 

Let uo E KA/. We set un = Tkn uo, un =un-u0 and we assume that, for 0 < n < 
3(k,u0)/k, Tkn uo E A(u0,eO). By (4.1)k, we have 

(4.8) iLn - iin-1 + kA(Oiin + (1 - 0)n- 1) = kf (un-1) - kAu? 

Taking the inner product in H of (4.8) by iLn - iun-1, we obtain 

u-_112 + 
k 

|1u1 v2 
_ k 

112l + k(0l) n-n 112 iiii - iin1 H -1ik 
2k 

+iii- k(20 - 1)IIftn - n1 
2IIfIV-2IIf1I 2 

< k(f (un-) - f(u?),in - Un-1) 

+ k(f(u?),iin - i7n- 1) + k(Auo Iiin- n-) 

or also, 

llinI112 - llin-l1 11 < kL2 llin 1 112 + kB 2 + (Au Iiin -in ) 

where L > 0 is the Lipschitz constant of f on 3. 
Summation over n yields 

m 

(4.9) lliim+l1112 < kL2 
1 

Ii12Il, + k(m + 1)B 2 + IIUO IIV IIUm+1 IIV, 

n=O 

where m is the integral part of 0(k, u?)/k. Using Lemma 4.2, we infer from (4.9), 

(4.10) lif.m+l IV < [Bo + 2k(m + 1)B11] exp(2kL2(m + 1)). 
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Let now ao be a positive constant such that 

(4.11) [B2 + 2aoB2] exp(2L2ao) < eo 

and choose ko such that 0 < ko < ao. Then one deduces from (4.10) that itm+j E 

.A(uO,eo) if m + 1 < aoo/k, for 0 < k < ko. Thus, property (A) is shown. As the 
proof of the condition (iv) uses similar estimates, it is left to the reader. 

(3) Some auxiliary estimates. We shall estimate 

m 

k Z IIT(nk)uo k T 
n=o 

and 
m 

Z Il(T((n + 1)k)uo - Tkn+1u0) - (T(nk)uo - Tknu0)II2H 
n=O 

for 0 < m < a1/k, when T nU0 and T(nk)u? belong to )3 for 0 < n < m and 
0 < nk < mk + ko, respectively. 

We set tn = nk and en Tknu -T(nk)u Un - U(tn). As it was pointed out 
in Raugel [29, proof of Theorem 2.2], one easily shows that 

m m 

k 11I2nI~ + 0kllem+lII12 - k ~ ( )Ini- e 112 kE lien lv + klmllv- 1? 0(1 - ) |en+1-en lv 

(4.12) n=O n=o 

< k S II0en+1 + (1 - 0)enII. 
n=o 

From the equations (4.1) and (4.1)k we infer 

en+- en + kA(Oen+l + (1 -)en) 

(4.13) = k(f(un) - f(u(tn)))-J (du - du (tn)) ds 

+ 0kA(u(tn) - U(tn+l)). 

Taking the inner product in H of (4.13) by 0en+ +l(1-0)en+ yi(en+l-en), where 
-yi > 0, we obtain the following inequality: 

1 2 _ 1 12 + 12 11 
lien+11H- 2-len H + (20 - 1)len+1 - enH + kllen+1 + (1 - O)enIIv 

112 + 112 k-yl 2 k112 + 'yIllen+l -enIH + 21IIen+1IIV- 2a IIenlIV + -1 (20- 1)llen+1 - en v 

< kLIlenlIv[(0 + 'yl)Ilen+l - enIIH + IlenlIH] 

+ 0klIu(tn) - U(tn+l)IIv[II0en+l + (1 - O)enllv + -ylIIen+l - enllv] 

+ d (s)- d (tn) ds [0en+1 + (1 - O)enllv + 7y lIen+l - enllv]. 
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Using the inequality ab < a2/2e + eb2/2 several times, we derive from the above 
estimate: 

lIen+1I1H n + n+1 + (1 - 0)enIIV + Y1IIn+1 -n CH 

2 -k-yiIle II12 + k 2 -1)le e 1 + kylliIen+1iv - env 2(20 -)en+ -en V 
/ k0 L2 "y k L 11 kL 2 

I + - + kEo~ IIenIIV + ~IIenIIlH 
(4.14) 20- 1 2 + eo 

+ k 2H+ 20 - 1) |IU(tn) -U(tn+l |v 

4/ t du du 2 

+ (2 + 2H-1 |d (s) - dU 
(tn)| ds, 

where E0 > 0 is a small enough constant. 
Summation of (4.14) over n yields 

m m 

IIem+lII1 + k > I0en+1 + (1 - 0)enIIv + 'Y Z IIen+1- n H 

n=O n=O 
m 

+ kyiI Ilem+1 1II + 2 (20 - 1) E IIen+1- en 112 
n=0 

k02 22o-)ZIIL2I2 kL2 m < k (2o 1+ 2 + E0) li|enl V+ Ile HE (k0L - y1kL2 'n=O EOn=O 
20- + ZI12 II 

+ k (202 + 
- I ) IU(tn) - U(tn+l) tv 

/ 44yl ) tn+l du -du 2 
( 2 +2 1) - (s) - (tn) ds. 

20 - 1n=O n 
dt dt V 

Now we set -Yi = sup(1, 20(1 - 0)/(20 - 1)) and we choose ko > 0 and eo > 0 such 
that, for 0 < k < ko, k02L2/(20 - 1) + -y, kL2/2 + Eo < 2. Then, thanks to (4.12), 
we deduce from the previous inequality that 

+ m m 
ilem+1 112 + -21S Ilen|11 + 

+ IIen+1 -en11 
n=O n=0 

kL2 m m 
(4.15) < 112 + C(f)k E IIU(tn+l) - 11 

? n=0 n=O 
m 

tn+ du du 2 

+ ( ) nE -t|d ( ) dt (tn) ds 
n=O nf dt dt V' 

Using Lemma 4.2 we infer from (4.15): 
km m 

ilm+1112H + 2 |n| 11 E |n+1 -n112 
2n=0 n=0 

(4.16) < C(0) exp (kL2(m+ 1)) 

11 [ n(t+l1 du du 2 1 

L n=O n=0 n dt -dt V/ J 
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Let us set B3 = maxvEIg3 llvllv. Then we can write 

(4.17) 112 Iu(tn+) -2 + kf 2 s (4.17) ~E JIU(tn+l) -U(tn)ll < 2B3 + |dt||d 
n=O V 

On the other hand, we have 

rnftn+l1 du diu 2 

_ dt(8 - dtn 
ds 

(4.18) n -(s)n-(ta) dsd2 

< 2k sup du (t) 2 + k2 tm+1 d2u ds, 
tE[o,t1] dtt/ 1 d2V 

and, as A-1/2 du/dt = A` /2f (u) -Al/2u 

du 2 
(4.19) sup (t) B +max Ilf (v)112 

O?t?tm?i dt Veg 

It now remains to bound the quantities 

ftM+i du 2 ftM+ d 2u 2 

j k |k dt|| ds and k dt2 ds. 

By Henry [17, p. 71], there exist two constants Ko > 0 and K1(RA3) > 0 such that, 

for 0 < t < mk + ko, 

(4.20) | du (t) + t1/2 du (t) < K, (R3)eK?(1 +ko) 

Since the inequalities (3.25) and (4.20) hold, f'(u)tdu/dt + du/dt belongs to 

L2 ([0, tm+1]; H) and one easily proves that the function t du/dt satisfies the equa- 

tion 

d!t du\ / du f,( )tdu, \tdu, 
(i)-it 0I,4+aI t-o = 

I f()t i-4 | dt (dt )')+ ( dt ' ' dUtdt )+(dt , 
(4.21) for eV; 

[(ii) 
du 

) . 
~dt) 0t 

Hence, t du/dt belongs to the space H1 ([0, tm+l]; H). For t > 0, Eq. (4.21)(i) can 

also be written as 

Id2u\ (du f/_u/tdu 
(4.22) t dt2, +a t-, d-= f'(u)t dt I for any E V. 

We set q = du/dt in (4.22); then, after an integration from 0 to tm+l, we obtain 

it du2 ftm+ du 2 

2 t - (tM+) + t t dt 
21 dtH d j d 

(4.23) 2 3f d m+l tdu2 dt 
2 ( d dtu H 21 dt H 

+ 2 0) 
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Since 
f 

f+ f'(u) t~ 2dt < sup IIf'(U)IIV2H ftm 2 dt, 
Jo 11 dt H UEg3 1(0;H) dt V 

we deduce from (4.23), by using (3.25) and (4.20), that 

(4.24) tmtl dt 2 dt < K2(A3)eK3(l1+ko) 
dt v 

where K2 (A/3) and K3 are two positive constants. 
If we set X = A-1 d2u/dt2 in (4.22), we obtain 

1ftm+ 
A-1/2d 

2 
dt + ~~(tM?l) 

2 dt2 Hl 2 dtdt HH 

1 tM+ 1 du 2 ftm+l du 2 
< 2fm l A1/2f /(U)tl/2d dt + - dt 

2 ( 1 dt H IIHdt H 

which implies, thanks to (3.25), (4.20) and (4.24), that 

(4.25) | t || dt2 (t) dt < K4 (3)eK5 (l +ko), 

where K4 (N3) and K5 are positive constants. 
Finally, from (4.16), (4.17), (4.18), (4.19), (4.24) and (4.25), we infer 

m m 

(4.26) IIem+lII12 + j Z lien|iV + Z iien+l- n112 < kK6(A3)eK7(a1+ko), 
n=O n=O 

where K6 (A/3) and K7 are two positive constants. 
(4) Estimate of IIT(nk)uo - Tknuu0Iv for ao/k < n < m + 1, when Tkn u0 

and T(nk)uo belong to )13 for 0 < n < m and 0 < nk < mk + ko, respectively, 
where ao/k < m < a1/k. To this end, we at first estimate the term 

Iltn(T(tn)uo - Tknu0)lIv for 0 < n < m. Formula (4.1)k gives 
(4.27) tn+lUn+l - tnUn + kA(Otn+lun+l + (1 - O)tnUn) 

= ktnf (Un) + kun+1 + Ok2AAun+1. 
We set en = tn(un - u(tn)). From (4.27) and from the equation (4.1) we deduce 

en+l - en + kA(Oen+l + (1 -)en) 

(4.28) = kt (f(un) - f(u(tn))) - I [+(Su(s)) - (+ u()))] ds 

+ OkA(tnu(tn) - tn+lu(tn+l)) + ken + k(un+l - un) + Ok2Aun+l 

Taking the inner product in H of (4.28) by en+l - en, we obtain 

Ilen+l -en lIH +2Ile-n+l IV-2 Ile-n IV + (20 -1) Ile-n+l -en IV 

< kIlEn+l - enIIH[LIIenIIV + Ilen |IH + IIUn+l -UnIIH] 

+ kllen+l - Enttv[OkIlun+l v + Olltnu(tn) -tn+lU(tn+l)IIV 

k jn1:+ 1 d d 
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or also, 

jEn+1 IIV- IIVII1 < 2kL2 Ilen I1I + 2kIIen 112 + 2kIIUn+1 - Un II1 

320 L 
[In 11 

Un+ 12V k 
+(su(s)) 2 1 

2 
1 + kds 

+k j |d2 (SU(S)) ds] 

Summing the previous inequality over n and applying Lemma 4.2, we have 

max~~~~~1 
O<n<m+l 

- m m 

< Cexp(2kL2(m + 1)) k I Ilen112H + k Z IIUn+1 - Un12 

n=O n=O 

(4.29) 2m kf t+ 2 

+ k2 E jIUn+1iv + k | (Su(8)) ds 
n=O 

ds V 

+k f | 2 (Su(S)) ds] 

But 

(4.30) k Z IIun+1 Un I1 < 2k E IIen+1-en12 + k2 J |II j ds 
n=O n=O H d 

and 
m 

(4.31) k2 Z IIun+iII1' < k2(m + 1)B . 
n=O 

Finally, we derive from (4.29), (4.30), (4.31), (4.26), as well as from (3.25), (4.20) 
and (4.25), that 

maX Ilen+li1V < kl/2K8(jV3)eKg(a 1+ko) 
O<n?,m+l 

where K8(NA3) and Kg are positive constants. 
Hence, we have 

(4.32) max IIT(nk)uo - Tknu ollv <? K K8( 3)eK9( 1+ko). 
cxo/k<n<m+l1a 

This completes the proof of Theorem 4.1. O 
Remark 4.2. If f is locally Lipschitz continuous from V into H and from H into 

VI, we can improve the estimate (4.32) (and the proof is shorter). For estimates 
in the case where f is globally Lipschitz continuous from H into H, we refer the 
reader to Crouzeix and Thomee [8]. 

Remark 4.3. Now we consider a discretization in space and time of the equation 
(4.1). More precisely, if (Vh)h are the spaces given in Subsection 3.1, we define 
an approximation uh E Vh of the solution u of (4.1) at time tn by the recursion 
formula 

(4h)h { Un+1 = ( 1 - 1O)kAh)(1 + HkAh)1un + k(l + 0kAh)1lQh f(un), 
UOh = E Vh 

(where Ah and Qh are given in Subsection 3.1). 
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Then in the same way as above, one proves that (4.1)h gives rise to a dynamical 
system Tkh which admits an attractor A4. And 6v (A, A) -+ 0 as h and k tend to 
0. 

Furthermore, if we are in the situation described in Subsection 3.2 and if kh-2m < 

C, where C is a positive constant, one can define a dynamical system Th which 
admits an attractor 4h in Y' and 6y. (&, A) -+ as h and k tend to 0. 

5. A Remark on the Two-Dimensional Navier-Stokes Equations. Let Q 
be a regular, bounded domain in R2. The Navier-Stokes equations for the velocity 
u(x, t) = (u1(x, t), u2(x, t)) and the pressure p(x, t) are 

I a-vLAu+Euiy-+gradp=F inQxR+, 

(5.1) divu=O inQxR+, 

u=0 on aQ x R+, 
1 u(x,0) = uo(x) in Q, 

where F and uo are given and v > 0 is the kinematic viscosity. Let us denote by 
Hi(Q) the space (Hi (Q))2 for j = 1 or 2 and by L2(Q) the space (L2(i))2. We 
consider the space 

V = {JE (Co, (0))2;div 0} 

and denote by H and V the closures of V in L2 (Q) and H1 (i), respectively. The 
spaces H and V are provided with the inner products 

(u v) = E Zfujvjdx, and ((u,v)) = Z f U vdx, 

respectively, where x = (x1, x2). 

We also set lul = (u,U)1/2 and Ilull = ((u U))1/2 for u in H and V, respectively. 
Let us denote by P the orthogonal projection of L 2(Q) onto H. We define 

A = -Pz to be the operator with domain D(A) = H2 (Q) nfV acting in H and use 
the same notation for its extension to an operator from V into V'. Since A-1 is a 
compact selfadjoint linear operator in H, the spectrum of A consists of an infinite 
sequence 

0< A1 < A2 <_ 

of eigenvalues (counted according to their multiplicities), An -+ oX as n -+ oo, and 
there exists an orthonormal basis {OnI}n>1 of H such that 

Aqon = AnOn n = 1,2, .... 

For any N > 1 we denote by PN the orthogonal projection in H (and in V, V', D(A)) 
onto the space VN spanned by 01, 02,...,qN. For u = (Ul,U2) and v = (vl,v2) in 
H' (Q) we define B(u,v) E V' by 

2 a9Vk 
(5.2) (B(u, v),w)= Wk dx Vw E V. 

j,k=l 

Then B is a bilinear continuous operator from H1 (7) x H1 (() into V' and this 
operator can be extended as an operator from Hm" (Q) x Hm2 (Q) into V' or H, for 
appropriate values of m1 and m2 (see Temam [32] for instance). 
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Using the above notations, it can be shown that (5.1) is equivalent to the fol- 
lowing initial value problem 

(5.3) {duldt +vAu +B(u, u)=f in H, 
( ) {~~~u(O)-- uo, 

where we assume that f (x) = PF(x) and uo belong to H and V, respectively (see 
[32] for further details). Let us point out that f does not depend on t. 

Now we introduce the map T(t): V -+ V, t > 0, defined by T(t)uo = u(t), 
where u(t) is the solution of (5.3). It is well known that T(t)uo exists for any t > 0 
and any uo e V and that T(t) is a C0-semigroup on V (see Ladyzhenskaya [23], 
[24], for instance). In the same papers she also showed that T(t)uo has its lim as 
t -+ +oo bounded by a constant independent of the initial data, i.e., T(t) is point 
dissipative. Since T(t) is compact for t > 0, we deduce from a result of Billotti and 
LaSalle [2] that T(t) admits a compact attractor A which attracts bounded sets of 
V (see also [12]). 

Now let us consider the following differential system on the space VN spanned 
by ql,q02, ..,ON: 

(5.3)N { dUN/dt + VAUN + PNB(UN, UN) = PNf (), 

UN (0) = UON, 

where UON E VN. We introduce the map TN(t): VN -+ VN, t > 0, defined by 
TN(t)UON = UN(t), where UN(t) is the solution of (5.3)N. As above, TN(t) is a 

C0-semigroup on VN (see Temam [32] for instance). In [32, Section 14.2], it is also 
shown that TN(t)UON has its lim as t -+ +oo bounded by a constant independent of 
the initial data and of N. Thus, by [2], TN (t) admits a compact attractor AN which 
attracts bounded sets of VN. But thanks to Theorem 2.4 we obtain the following 
more precise result (for related results, see Constantin, Foias and Temam [6]). 

THEOREM 5.1. For any N > 1, TN admits a compact attractor AN which 
attracts bounded sets of VN. Moreover, &V(AN, A) -+ 0 as N -+ +oo. 

Theorem 5.1 is a straightforward consequence of Lemma 2.1. In order to prove 
that IIT(t)uN -TN(t)UNIIv satisfies the conditions (2.2) and (2.3), we use relations 
and inequalities which are similar to those contained in [32, Section 3.1]. In partic- 
ular, we use the Young inequality, Gronwall's lemma technique (see [32, Formulas 
(3.10), (3.12)]), Lemmas 11.1 and 14.3 of [32] and the following inequality: 

(5.4) ~ ~ (B (u, v), w) I< C1 lU11/211U111/211VIII/2 lAvl1/21WI 

VuEV, vED(A), wEH. 

The proof of Theorem 5.1 is given in Hale, Lin and Raugel [15]. 
Remark 5.1. The same kind of proof shows that if A,0 is the attractor associated 

with (5.3) for v = vo, then 6v(A,, A,O) -+ 0 as v -+ vo, where vo $A 0. 

Remark 5.2. The generalization of Theorem 5.1 to an approximation of the 
Navier-Stokes equations by a finite element method seems technically involved. 
In [19], Heywood and Rannacher have given uniform in time error estimates for the 
approximation of the Navier-Stokes equations by a finite element method when the 
solution is exponentially stable (see [18], [19] for the definition). The referee has 
called our attention to this recent paper ([19]) of Heywood and Rannacher and has 
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pointed out that our method of proof of Lemma 2.1 has some analogy with their 
proof of Theorem 3.2 in [19]. 

6. Approximation of the Damped Wave Equation. Let Q be a bounded 
domain in R3, a be a positive constant and consider the equation 

|at2 +20aa- Au =-f(u) - g(x) in Q x (0, o,), -5t2 at 
(6.1) u= on Q, 

( a /t ) t=o '? 
where g belongs to L2(Q2) and (0/)) belongs to the space X _ Ho'(Q) x L2(Q). 

We assume that the boundary aQ of Q is smooth enough or that Q is a convex 
domain. Furthermore, we suppose that f E C3(R) and that there are constants 

-y > 0, Ci > 0, with 0 < -y < 2, such that 

(6.2) If(v)I < Ci(IvI1+- + 1), If'(v)I < Ci(IvI" + 1), 
I If"(v)I < Cj(IvI + 1), If"'(v)I < Cj for all v E R. 

Inequalities (6.2) imply that the map f: X E Ho'(Q) -+ f(q(x)) E L2((Q) is a 

compact C2-mapping from Ho' (7) into L 2(Q). Henceforth, we equip the space X 
with the norm 

(6.3) II(0), ) IIx = (110112(Q) + 11I12L2( ))112 V(01 ) E T. 

As it was proved in Babin and Vishik [1], for any (0, Vk) E X, Problem (6.1) has a 
unique solution u(t), for t > 0, and the pair (u, au/at) belongs to Co([0, +oo); X). 
Furthermore, if we set T(t)(0,O) = (u(t),au(t)/at), for t > 0, then T(t): X 

Xi t > 0, is a CO-semigroup on X. 
Now suppose there is a constant C > 0 so that f satisfies 

(6.4) f (v)v > -C, f'(v) > -C for all v E R. 

Let us introduce the Liapunov functional V given by 

V(04 k) = f [-IV0(x)r + 2(x) + F(q5(x)) + g(x) 0(x)] dx, 

for all (0, k) E X, where F(v) = fo' f (s) ds. It was proved in Babin and Vishik [1] 
that 

(6.5) { ~V(0,) > t|IV)1L122 + 110112 ) - C2, 

t V(01 ) < 12'12I ) + C311t114t1() + C4i 
where C2, C3, C4 are some fixed positive constants, and that, for t > r and for any 
solution u of (6.1), 

/ rautr [au]2 
(6.6) V (u(t, ), a(t, V))-V u(r,),-at (r,.)) =-2a& x)@t(s,x)J dxds. 

The properties (6.5), (6.6) imply that the orbits of bounded sets are bounded. In 
particular, there exist two functions Co(R) and C1(R) of R such that, if 
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then 

(6.8) V(T(t)(q,1O)) < V(O,1/) < Co(R) Vt ER, 

and 

(6.9) jjT(t)(XX /))11x < C1(R) Vt ER. 

Moreover, it was shown in Hale [12] that T(t) is point dissipative and is an a- 
contraction. Therefore, in view of a result of Massatt [27], T(t) admits a compact 
attractor A in X which attracts bounded sets of X (see Hale [12, Theorem 6.1]). 

6.1. Approximation By a Special Projection Method. Let us recall that the 
spectrum of the operator -i with domain D(-i\) = H2 (Q) n HO' (Q) consists of 
an infinite sequence 

0 < A1 < A2 < ... 

of eigenvalues (counted according to their multiplicities), An -+ +00 as n -+ +00, 

and that there exists an orthornormal basis {Wn}n>1 of L2(Q) such that 

(6.10) -AWn = AnWn 

Note that {An 12wn}n>l is an orthonormal basis of Hol(). For any N > 1 we 
denote by PN the orthogonal projection in L2(Q) (and in Ho (Q)) onto the space 
VN spanned by W1, W2, . . ., WN, and we consider the following equation in VN: 

{ 3t2 + 2a -N /\UN = -PNf (UN) - PN9(X), 

(6. 1)N (t U A at 
(UN, (ON) _ON- 

where (ON, IN) belongs to the space XN = VN X VN. We can prove, as for Problem 
(6.1), that, for any (ON, ON) in XN, the equation (6.1)N has a unique solution UN(t) 

for t > 0. Moreover, if we set TN (t) (ON, IN) = (UN (t), aUN(t)/at) for t > 0, then 

TN(t): XN -+ XN, t > 0, is a C0-semigroup on XN. 

THEOREM 6.1. For any N > 1, TN admits a compact attractor AN which 
attracts bounded sets of XN. Moreover, SX(AN, A) -+ 0 as N -+ +oo. 

Proof. (1) We at once verify that, for t > r, for any solution UN of Eq. (6.1)N, 

V UN (t, )i1 9UN (t, )-V (UN (r, .) ,9UN (r, ) 

-2a&ff (au (s z)) dxds. 

The estimates (6.5) imply that the orbits of bounded sets are bounded indepen- 
dently of N. In particular, TN(t)(ON, ON) satisfies the estimates (6.8) and (6.9), 
for any (ON, ON) satisfying (6.7). As TN(t) is compact, the orbit through (ON, ON) 
is precompact and its w-limit set must be an invariant set. Relation (6.11) implies 
that its w-limit set belongs to the set EN of the equilibrium points. Using the 
condition (6.4), one easily proves that there exists a constant ro > 0 such that 

(6.12) VN > 1, EN C Bx(ro), 

where, for any r > 0, Bx(r) = {(O,/) E X: 11(h,O)ttX < r}. Let us also set 
BxNR(r) = Bx(r) f XN. Then, for r1 = 2r0, the ball Bx(ri) attracts all points 
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of XN (i.e., for any (ON,ON) E XN, there exists tN > 0 such that, for t > tN, 

TN(t)(ON, iPN) E BXN(ri)). We remark that the orbit of BXN(ri) is included 
in BXN(Cj(ri)), where Cl(ri) is given by (6.9), and that BXN(C1 (ri)) attracts 
a neighborhood of any point and, hence, all compact sets of XN. We now set 
RO = Ci(Cj(ri)). Arguing as in Hale [11, Theorem 2.1], one finally shows that 
TN(t) admits a compact attractor AN which attracts bounded sets of XN and is 
included in the ball Bx(RO) n XN. 

(2) In order to prove that bX(AN, A) -O 0 as N -+ +X, we show that the 
hypotheses of Lemma 2.1 hold. Let )1= Bx (R1) be a neighborhood of A. We 
shall prove that TN (t) approximates T(t) on )1R uniformly on compact sets of 
[0, +oo). Let ti be any positive real number. We first estimate 

(U(t) - PNU(t), at (t)- 
-9PNU (t) 

for 0 < t < t1, where (u(t), u(t)/at) = T(t)(qN,4ON) and (ON, ON) E )1 nfXN- 
We have 

(6.13) < (u - PNU) + 2ay-(u - PNU) - A(u - PNU) 

= -(I- PN)f (U) - (I- PN)9(X)- 

Taking the inner product in L2(Q) of (6.13) by a(u - PNU)/3t, we get after an 
integration from 0 to t, 

-PNU)(t) + 11U(t) PNU(t)ll0(Q) 

(6.14) / L(2 

<- ( 2U)(1-PN)f(u(s))12 + (1-N)g()2 

Since f is a compact mapping from Ho (Q) into L2(Q) and u(s), 0 < s < t, belongs 
to the bounded set B(C1(R1)) = {v E Hod(Q): IIVIIH1(0) < C1(R1)}, we deduce 
from (6.14) that, for 0 < t < ti, 

(6.15) PNu)(t) + U(t)-PNu(t) () < (N t C (R)) 

where 

(6.16) lim 1 (N,t1,C1(R1)) = 0 
N-.+oo 

Now we estimate 

(PNU(t) - UN(t), 
a 

(PNU(t) - UN (t))) | 

for 0 < t < t1, where (UN(t), 9UN(t)/1t) = TN(t)(ON, ON). The function UN-PNU 

satisfies the equation 

(6.17) At2-(UN - PNU) + 2&a(UN - PNU) - A(UN - PNU) = PN(f (U) -f (UN))- 
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Taking the inner product in L2(Q) of (6.17) with 3(UN - PNu)/3t, we obtain 

(6.18) 2A ( - PNU) ||L2(n)) + 2 aI - PNuIIHI(Q)) 

< 2 at at UNPNU)l n 2 2 at(-PNUNIHo(n), 

where L > 0 is the Lipschitz constant of f in the ball B(C1 (R1 )). Now using 
Gronwall's lemma, we derive from (6.18) as well as from (6.15) that, for 0 < s < t 

(|(UN-PNU)(t)N + IIUN(t) -PNU(t)llO(Q) 
where > 0 i te Lipschit costn ofN f1 inth1(R1))Ri) Nwusn 

The estimates (6.15), (6.16) and (6.19) show that TN(t) approximates T(t) on <s<t 
uniformly on compact sets of [0, +oo). O 

6.2. A More General Galerkin Method. Let h > 0 be a real parameter which 
will tend to 0 and (Vh)h be a family of finite-dimensional subspaces of Ho (Q2). We 
denote by [,(] the inner product of L2 (Q) and by a(,t) the inner product of Ho (Q), 
i.e., 

(6.20) Vv E HO(Q), VW E Ho(Q)) a(v,w) = f VvVwdz 

As in Subsection 3.1, we denote by Qh E s(t2(h);Vh) and Ph E r (He();Vh) the 
orthogonal projectors on Vh in the spaces L2 (Qt) and Hdm(n)i respectively. We also 
introduce the operator Ah E C(Vh; Vh) defined by 

VVh E Vh, (AhWh, Vh) = a(Wh, Vh) for Wh E Vh. 

We consider the following equation in Vh: 
92 Uh 

+ 2a aUh 
+ AhUh = -Qhf(Uh) - Qhg(X)i 

(6.1)h 1 (A t ) Ito)t2 

where (qh,4h) belongs to the space Xh = Vh x Vh. As in Subsection 6.1, we 
introduce the map Th(t): Xh -+ Xh, for t > 0, defined by 

Th(Oh,Ih) = (Uh(t),aUh(t)/9t), 

where Uh is the solution of (6.1)h. So we obtain a C?-semigroup on Xh. As in 
Subsection 3.1, we need some additional hypotheses on the spaces (Vh)h: 

there exists a constant Ko > 0, independent of h, such that, for 

(6.21) (i) any h > 0, 
IIQhIIL(Hd(0);H (0) < KO 

and 
there exist two constants K1 > 0 and 0 > 0, independent of h, 

(6.21)(ii) such that, for any w in Ho'()I 
11W - PhWIIL2(0) + ||W - QhWIIL2(0) < K1h6IIWIIHi(0). 
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(Usually, 0 is taken equal to 1.) Finally, we introduce the Hilbert space Y = 

L2(Q) x H-1(0), normed by jj(q,4)jjy = (11q||112 + 1111IH-1(,))1/2. Below we 
denote by [,.] the inner product in L2(Q). Now we are able to prove the following 
result. 

THEOREM 6.2. For any h > 0, Th admits a compact attractor Ah which at- 
tracts bounded sets of Xh and is contained in the ball Bx(Ro) n Xh, where Ro is a 
constant independent of h. Moreover, by(Ah, A) -+ 0 as h 0. 

Remark 6.1. In Section 3 we proved that V(Ah, A) O-+ as h -+ 0. Here, we 
can no longer prove that bX(Ah, A) -+ 0 as h -+ 0, because T(t) has no longer a 
smoothing action. 

Proof of Theorem 6.2. (1) First we show in the same way as in the proof of 
Theorem 6.1 that, for any h > 0, Th admits a compact attractor Ah which attracts 
bounded sets of Xh and is contained in BX(Ro) n Xh, where Ro is a constant 
independent of h. Note that Ro can be chosen so that A is also contained in 
Bx(Ro). 

(2) Now we check that, for any r > 0, there exists a constant L(r) > 0 such that, 
for all v and w in the ball B7(r) = {v E Ho(Q): IIVIIH1(0) < r}, we have 

(6.22) jlf(v) - f(w)IIH-1(0) < L(r)jjv - WlIL2(n). 

Indeed, we can write 

jjf(V)-f (W)11H-1(n) = sup f(f(v(x)) - f (w (x))) (x) dx 

< sup 0 f'(w(x) + T(V(x) -W (x)))(v(x) - w(X))(x) dxdr 

Hence, using the hypothesis (6.2), we obtain 

jlf(v) - f(W)IIH-1(0) 

( / \1/2 

< SUP I IVIIH((X) j(j jv(x) - W(X)12 dx) 
(6.23) x (j 2(jv(x) 

j' 
+ Iw(x) 13 + 1) dx) 

X 14| I(X) 16 dX) 

where / = sup(3,6 - 3-y). As Ho(Q) - L6(Q), the property (6.22) is a direct 
consequence of (6.23). 

(3) Now, for any t1 > 0, we estimate II (U(t) - Uh(t), 9U(t)/9t - 9U9h(t)/ 9t) IIY for 
0 < t < t1, where u(t) and Uh(t) are the solutions of the equations (6.1) and (6.1)h, 
respectively, with initial condition (Oh, kh) E Bx(Ro). Thanks to the hypothesis 
(6.21)(ii), we have, on the one hand, 

(6.24) jju(t) - QhU(t)IIL2(0) < K1 h6C1 (Ro), 
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and, on the other hand, 

|| (t-) -aQhU (t) sp [ as -QhU,V QhV - 11VIIH1(Q) at a H- 1(02) VEHl () 
Tt 9 at 

VEH1) at atQh L2 (Q) IIVIIH1(Q) 

which gives 

(6.25) -|U ( ) A9QhU(t) < 2K1hC1(RO). 

It remains to estimate the term II(Qhu(t) - Uh(t),9Qhu(t)/09t - 9Uh(t)/09t)y 
for 0 < t < t1. Note that by (6.21)(i), Qh can be extended to a continuous, linear 
operator from H-1(Q) into Vh and that the element Uh - Qhu thus satisfies the 
equation 

(92 (Uh - QhU) + 2 
- 

t (Uh-Qhu) + Ah(Uh -Qhu) 

= -Qh(f (Uh) -f (u)) - (AhQh - QhA)u. 

We now introduce the operator Sh e (H-1 (Q); Vh) given by 

(6.27) Vf E H1 (), a(Shf,vh) = [f,vh], VVh E Vh. 

Clearly, one has 

(6.28) ||Sh f IIHO1(Q) < Cllf IIH- 1 (Q) 
where c > 0 is a constant independent of h. 

Taking the inner product in L2(Q) of (6.26) by Sh(9(Uh - Qhu)/9t) and using 
the relation (6.27), we obtain 

a (at2 Sh (Uh - QhU) Sh (uh - Qhu)) 

+ 2aa (Sh 
9 

(Uh - QhU), Sh 
9 

(Uh -QhU)) 

(6.29) +a (Uh - QhuSha (uh - Qhu)) 

=- [f (Uh) - f (U), Shp(Uh - QhU)] 

+a u-Qhu,7Sh (Uh - QhU)) 

But 

a u- QhU, Sh 
09 

(Uh - QhU)) = a (PhU - QhU, Sh (Uh -QhU)) 

[PhU 
- QhU, (Uh - 

QhU)] [PhU 
- U, -(Uh - QhU)] 

and 

a (Uh -Qhu, Sh (Uh - QhU)) = Uh - QhU, (Uh - QhU)]. 
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Then, from (6.29) we can derive the following inequality: 

1 (9 (9 ~ 2 (92 
2 -t || Sh(Uh-QhU) + 2a -Sh(uh - QhU) 2 at at H 1() atHl() 

2 dt 
0 

+ 2 ,at IjUh -QhU ||L2 (Q) 

< jjf(u) -f(uh)IIH-1(n) |jSh(Uh - QhU) 

+ IIu -PhuIIL2(0) 
a 

(Uh -QhU) 
a |t IL2 (0) 

Using the property (6.22) and the fact that (u, au/lt) and (Uh, aUh/lt) belong to 
Bx (Cl (Ro)), we infer from the above estimate that 

~j JhkUh~~hU) 112 
at ||at Sh (Uh -Qh) |H1 | + ~t- | |Uh -Qh U L2 (n) 

(6.30) L2(C1(Ro)) {Ilu - QhUI1122(n) + jUh - QhUhII2(0)} 

+ 20l(Ro)u - PhUhIL2(Q). 

Integrating (6.30) from 0 to t and using Gronwall's lemma as well as the hypothesis 
(6.21)(ii), we get, for 0 < t < t1, 

2 

(6.31) |Sh(Uh - QhU) (t) + I (Uh - QhU)(t) 112 2(S) < K2tl K3tl ho6 

where K2 > 0 and K3 > 0 are two constants depending on Ro only. Now we remark 
that 

Uh- QhU) = sup [t(Uh QhU),V] /IIVhIH1(0) 

= sup I[jkU (-Qhu), Qhv] / hIV IHi (Q) 
at 

H-1(0) ~VEH1(0)L-t 

= sup (<tSh(Uh-QhU),QhV ) IIIVIIH(0 ) 

and therefore, thanks to the hypothesis (6.21) (i), 

(6.32) 
a 

(Uh-Qhu) < Ko -Sh(uh - Qhu) 

Finally, by (6.24), (6.25), (6.31) and (6.32), we obtain, for 0 < t < tl, 

(6-33) a~~~U ~u < K4ti1/2eKt lh 0/2 (6.33) ||(U() - Uh (t), 
Tt 

(t) - at (t) ) | | < 4l K5 02 

where K4 and K5 are positive constants depending on Ro only. 
(4) Since, for any h > 0, Ah C BX(Ro), we deduce from the property (6.33), by 

arguing as in the proof of Proposition 2.10 (or in Remark 2.7), that, for any c0 > 0, 
there exists ho > 0 such that, for h < ho, by (Ah, A) < 60 ? 
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Remark 6.2. The results of Theorems 6.1 and 6.2 extend easily to the cases 
where Q is a bounded domain in R or R2 (for the conditions on f see Babin and 
Vishik [1] or Hale [12]). 
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