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Product Integration-Collocation Methods 
for Noncompact Integral Operator Equations* 

By G. A. Chandler and I. G. Graham 

Abstract. We discuss the numerical solution of a class of second-kind integral equations in 
which the integral operator is not compact. Such equations arise, for example, when boundary 
integral methods are applied to potential problems in a two-dimensional domain with corners 
in the boundary. We are able to prove the optimal orders of convergence for the usual 
collocation and product integration methods on graded meshes, provided some simple 
modifications are made to the underlying basis functions. These are sufficient to ensure 
stability, but do not damage the rate of convergence. Numerical experiments show that such 
modifications are necessary in certain circumstances. 

1. Introduction. This paper conlsiders the numerical solution of the second-kind 
integral equation 

(1.1) u(s) - ((u)(s) =f (s), s E [0, 1], 

where u is the unknown solution, f is given and Y is the integral operator 

(1.2) (yu)(s) = f K( )u()f) o s -E (0,1] 

for some given kernel function K. Such equations arise in a variety of contexts, most 
commonly when boundary integral methods are used on domains with corners. The 
difficulty is that X is not compact, and the standard stability proofs for numerical 
methods ([1]) do not apply. 

We consider the practically important case in which the approximate solution is a 
piecewise polynomial, u,. If u,, is calculated by a Galerkin method, fairly complete 
stability results are known ([8], [9], [11], [12], [19]). However, Galerkin methods are 
expensive to implement and collocation methods are used more often in practice, for 
instance in the boundary element method of the engineering literature (see [5]). The 
numerical analysis of these methods is incomplete. The difficulty is to prove the 
stability result that the system of linear equations defining u, is nonsingular. 
Previous work has established stability in special cases ([2], [20], [24], [30]), and 
numerical experiments have suggested that collocation methods converge at the rates 
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which could be proved if Y happened to be compact ([2], [20]). We show here that 
this is not always true, and Section 4 contains an example in which collocation 
diverges. 

However, we can prove a general stability result if the collocation method is 
slightly modified. High-order piecewise polynomial approximations are replaced by 
piecewise constants on a number of the intervals closest to s = 0 (the point at which 
X is badly behaved). While ensuring the stability of the method, the rate of 
convergence is not damaged. 

2. Preliminary Analysis. To describe some analytic results for (1.1), we introduce 
le, the Banach space of uniformly continuous functions on [0,1], equipped with the 
uniform norm 11 If Y is a bounded linear operator on X, IIYII will denote the 
norm of Y. 

For a > 0 and integer k > 0 define Wak to be the subspace of W consisting of 
functions for which the seminorm 

[ sup ak-aDkV(a) k > a, 
|V 0ka = i , I<S 

tlID kV 1, k o<,a 

is finite. Then k is a Banach space under the norm 

||V||k,a:= max{Iv|1,,: 0 < 1 <, k}. 

Our assumptions on K are 
Al: for all integers k > 0 

Bk:= a k DkK(a) d< 0, 

A2: 

B 0f da 
Bo= |K(a)-< 1 

a~~~~~a A3: there exists a* > 0 such that for all integers k >? 0, u E-k 

Under A2, Y is a contraction on W ([2]), and by the Banach lemma, (1.1) has a 
unique solution u E W. The more stringent assumption Al is needed to prove that 
the numerical methods of Section 3 converge at high rates. In practice this is not an 
extra restriction, for if K is a rational function, Bo < so implies Bk < so for all 
k > 0. 

With the change of variables s = e-', a = e- , (1.1) becomes the Wiener-Hopf 
equation 

(2.1) u(e-') -f K(e-,'-T))u(e-T)dr =f(e-'), t > 0. 

Known results about (2.1) can then be easily transformed back to results about (1.1). 
Recall that the Mellin transform is defined by 

V 0 = JIwV(a) da 

(equivalently, v is the Fourier transform of t -* v(e-t)). It follows from Krein [18, 
Theorem I] that the spectrum of Y contains the nondiscrete set { K(@): o E R}. 
Hence Y cannot be compact. 
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A3 is more difficult to verify. However, using Mellin transform techniques it can 
be shown (see [11], [12], [20] for instance) that A3 is true for all smooth right-hand 
sides provided: 

for some E > 0, 1/(1 - K(X)) is analytic in the strip 
(2.2) {co e C: 0 Im(c) < a* + e} except for simple poles in the 

set {ik: k E N}. 

(See [8] for a simpler approach not using Mellin transforms.) Numerically, the 
important point is that even if f is smooth, singularities appear in the solution at 
s = 0. If (2.2) is satisfied for a* E (0, /) and 1/(1 - K(o)) has a single pole at 
c= i,B (/B ? N), then 

u(s) = as# + v(s), 

where a is an unknown constant and v is a smoother function than s8 (more 
precisely, v E for some /3' > /3). Numerical techniques must be modified to 
cope with this behavior. 

We give two examples of these problems arising in applications. 
Example 1 (Potential Theory). Let Q c R 2 be a simply connected domain with 

boundary F. Suppose U: Q -* R is the solution to the interior Dirichlet problem 

(AU)(x) =0, Ulr= g, 

where g: IF - R is given and A = V V is the Laplacian. Define 

G'(x,()= -ln x R2 , 

the derivative of the fundamental solution with respect to the outward normal at t. 

Then it is known [16] that 

U(x) = (Y"'Du)(x):= f G'(x, )u, 

where the double layer source u is the solution of the boundary integral equation 

(2.3) u(x) - 2(Y/Du)(x) = -2g(x), x E F. 

If F is smooth, the integral operator in (2.3) is compact and the standard 
numerical analysis applies. But suppose F has corners. That is, F may be divided 
into smooth segments Fm.., with F,_ and F, joining at a corner x1 with an 
exterior angle X17T, 0 < XI < 2. Then for all x E F,-, with x closer to the x, than 

x/_ 1, 

2(FDu)(x)=f KXl( Ix Ix/) u(O)d + +(mU)( 

where , is a compact operator and 

Ksin X T a 
X T 1 + a2 - 2acosXT 

Hence (2.3) may be rewritten as a system involving equations of the form 

(2.4) u(s)-1 K ( u=)u(a)da =f(s), XE {EX,.2 - XI} 

(see [2], [8], [20]). The treatment of the system is standard, once (2.4) is understood. 
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In (2.4), Kx(co) = sinh((l - X) 7co)/sinh(Xxo), and A3 holds for a* < ,, with 

B:= min{(2 - X)-, X-'} (by (2.2)). A more detailed analysis ([12]) shows the 
solution (2.4) contains a singularity of the form s,. This corresponds to results in 
[17] about the singularities found in U. 

A potentially useful technique is to reformulate (2.4) as an equation with the 
smoother unknown v(s) = (u(s) - u(O))/sO ([13]). However, the resulting integral 
equation (of the form (1.1)) will not have a unique solution (as 1 belongs to the 
spectrum of the integral operator). 

Example 2 (Plane Strain Elasticity). A second class of examples occurs when 
transform techniques [26] are applied to crack problems in elasticity. For example, 
[25] and [28] consider the case of an elastic material in the half plane {(xl, x2): 

xI >0 } with a crack {(x,0): 0 < x < 1} being opened by an internal pressure 
distribution. This is reduced to an equation of the form (1.1) with kernel function 

_16 a2(a2?11} 

77 _o 1) 
- i 

Al and A2 may be verified and as K()= co2/sinh2(ro/2), A3 is satisfied for 
a* < 2.739.... This reformulation is useful as the stress intensity factor and crack 
energy are simply found from u ([15], [25], [28]). A similar equation arises in [27]. 

We conclude this section by stating a technical result which follows from Al. It 
introduces the useful notation 

Ks(af):= K( a) a, Ei (0, 1] 

The proof follows by calculating derivatives explicitly (see [10]). 

LEMMA 1. (a) For all k > 0, there is a constant Ck independent of s and a such that 

ak+lDkKs(a) I < Ck, a E (0, 1]. 

(b) For all v E X, J"v has derivatives of all orders on (0, 1] and, for all k > 0, 

isk(Dk-Yv)(s) I < Bkll S E (0,1]. 

3. Numerical Solutions. We consider the solution of the second-kind equation (1.1) 
by methods based on piecewise polynomials. Thus suppose there is a sequence of 
meshes {x(n); 0 < i < n} with 0 = x(n) < x(n) < ... < xn) = 1. For convenience 
write xi for Xin) where possible, and let Ii = (xi-1, xi) and hi =xi - xi-1. For any 
function v: [0, 1] -- R, vi denotes v I . Let Sn denote the set of piecewise polynomi- 
als of order r (i.e., degree r - 1) on this grid. That is, 4 E Sn if and only if cpi E Pr 
(Pr denotes the polynomials of order r). There are no continuity restrictions imposed 
on Sn and the discontinuity 4i(xi) # 4j+ (x1) is permitted. To utilize the full 
potential of piecewise polynomials, it is necessary to use graded meshes near 
singularities ([3], [4], [6], [7], [14], [21], [22]). 

Definition. For an integer k > 1 and a E (0, k] the meshes { xi(n) } are defined to 
be (k, a)-graded if there is a constant y independent of n so that 

(3.1) h< Yx1-a/kl i=1,2, ... ,n. n i 
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(Here we define i - := max{i - 1, 1}.) Condition (3.1) with k = r is exactly the 

condition needed on the mesh so that S,n approximates Sa to within O(l/nr) ([4, 
Chapter XII]). The simplest example of such a mesh is ([21]) 

(3.2) ' (n ) i = 0,1,...,n. 

These meshes are (k, a)-graded if q > k/a. Condition (3.1) applies to more general 
meshes that may be generated adaptively by successive local refinement ([7]). If 
a > k, (k, a)-graded is defined to mean (k, k)-graded. 

To state the collocation method, introduce the points { j: 1 < j < r } with 
o < 41 < .2 < ... < 1, and define the collocation points 

xij = xi + fjhj, 1 < i < n, 1 < j < r. 

For any function v, continuous at {xij}, define Qnv E Sn by 

(Qnv)M(xij) = vi(xi1), 1 < i < n, 1 < j < r. 

The collocation solution to the integral equation is the piecewise polynomial Un E Sn 
satisfying 

(3.3) (I - QnY) un = Qn f 
The product integration solution is defined by 

(3.4) (I - XQn)Un* =J 

or equivalently 

(3.5) u* =f + (u, 

(see [1], [23]). When a basis is selected for S, (3.3) becomes a system of linear 
equations of dimension dim(Sn). As Qnu* = u,, u*(xij) = uj(xij), and once the 

collocation equations have been solved, u* is available at the collocation points. 
Equation (3.5) can then be used to calculate u* elsewhere if required. 

The rate of convergence of u* depends on the careful positioning of the (i. For 
any v: [0, 1] -* R let Qv denote the polynomial of order r interpolating v at 

.1, . . . r. We assume that for some r' > 0, and for all k E Pr+re , 

(3.6) Qo 
I 

. 

This is equivalent to requiring for all 4E, Pr, 

(3.7) 10 (f( - (1)) P( )dt = 0, 

or alternatively, for all integers v E [0, r'] and for all 4E) Pr+?r'-P and 4 E P + I 

(3.8) 1 (p = (QP>P) 

Equation (3.7) shows that the maximum value of r' is r, in which case { (i } must be 
the r Gauss points on [0, 1]. Other choices are also useful; if ((l, 42' 43) = (0, '2, 1) 

then r' = I and u,* is the product integration Simpson's rule approximation. 
It is straightforward to use (3.3) and (1.1) to show ([1]) 

(1- -T)(u, u) = Q0U 
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(Q' I= -Q,). Hence, if the collocation equations are nonsingular, u, is uniquely 
defined and 

(3.9) || Un - ul| < ||(- Qn-Y) |1 jjQnuj. 
Further, (3.4) and (3.5) give 

n* -U=Q)(X-Q,) un U = -(I + Y(I - Qn-) Qn(n) 
and therefore, as llQn11is bounded, 

(3.10) jju* - Ujj I< C|(I - Qn-X) || j f'Qnujj. 
(Here and elsewhere C is used to denote a generic constant independent of n and 
the solution u.) Once we have proved the stability result 

(3.11) I(' - Qn) || < C, 
the rate of convergence of u and u * is governed by the discretization errors IIQ'ull 
and IjYQ'ull, respectively. But the discretization errors are relatively easy to bound. 
As u E W r* it follows from [21] that 

||Qnuj|= O(1/nr) 

provided the mesh is (r, a*)-graded. From [20], for example, we also have 

JIY{Qnuj = O(1/nr?r') 

for meshes (3.2) which are (r + r', a)-graded for a < a*. These are the same optimal 
rates of convergence observed when collocation is applied to an equation with a 
smooth kernel and solution. 

However, the accompanying stability result (3.11) has only been proved in special 
cases. When r = 0 then IIQII = 1, and stability follows from IIQ nXj I< I IQn 11 XII 
= 11X11I < 1 and the Banach lemma. Similarly, if r = 1 and the product trapazoidal 
rule is used (i.e., 40 = 0, 4j = 1), then IlQnl1 = 1 (see [2]). But no results are known 
for methods which give rates of convergence higher than 2. (The stability of the 
product 2-point Gauss rule is proved only for a uniform mesh in [2], and this gives 
only 0(1/n) convergence if u contains the typical singularity s1. See [20].) 
Moreover, the counterexample of Section 4 shows that stability does not hold in 
general unless some (as yet unknown) conditions are placed on K and { r . 

The source of the difficulty is that the kernel of X, K(s/a)1/a becomes 
unbounded as s and a approach 0. Thus, if 4 is one of the basis functions of Sn with 
support in one of the subintervals closest to 0, the coefficient (_XY)(xjj) in the 
collocation equations is relatively large if xij is also close to 0. These large entries 
cause "spurious" eigenvalues in the approximate operator Qn-r, that is, eigenvalues 
which are outside the spectrum of the true operator X. As n increases, these 
eigenvalues converge to a limit point which is still outside the spectrum of X. (An 
observation first made in [20]; see also [10].) If this limit happens to be 1, then 
I - Qn1( becomes increasingly singular as n -x oo and the collocation solution 
diverges. This can be corrected by modifying the intervals closest to 0 to remove the 
large coefficients in the collocation equations. If this is done for only a small 
proportion of the subintervals of the mesh, the rate of convergence of the discretiza- 
tion error is undamaged. 
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Definition. Consider the piecewise polynomials Sn on the meshes { x(n) }. A 
modification is determined by a sequence i(n), with 0 < i(n) < n. The modification 
is (k, a)-acceptable if there is a constant - independent of n such that 

(3.12) (n) )a/k -In. 

The modified basis functions are defined by 

Sn:= {f E Sn: i < i (n ) : EP, 
The modified basis functions are those functions in Sn which are piecewise constants 
on [0, X(n)I. If the mesh is (k, a)-graded, the modification is (k, a)-acceptable if the 
coarser mesh { xin): i = 0, i > i(n)} is still (k, a)-graded. For the meshes (3.2) the 
modification is (k, a)-acceptable provided 

(3.13) i(n ) < -n1- -k/aq 

for some constant y'. The following technical lemma is needed in the proof of 
Theorem 4. 

LEMMA 2. Suppose the mesh {x(n)} is (k, a)-graded. Then for all E > 0 and n 
sufficiently large there exists i(e, n) < n such that 

(3.14) ( (n) ak < + ) ny 

and 

(3.15) i > i(e,n) :h,/xh < E. 

Proof. Define 

i(e, n) = mint > 0: i > t hi/xi< e}. 

(As hn < 0(1/n), the set is nonempty for n sufficiently large.) Clearly (3.15) is 
satisfied, and (3.14) is satisfied if i(e, n) < 1. When i(e, n) > 1, the definition of 
i E, n) gives h l(e n)/x,(e, n)-> E and hence 

Xi(e,n) = xl(e,n)-+ hi(e,n) < hi(e n)(1 + 1/E). 

Combined with the mesh grading, this gives 

xZ(e,n) < 
-Xi1(e,af(l + 1/E) < -Yx1-a/kl(1 + 1/E) < I + -) 

(as a < k). C1 
A modified collocation projection Qn onto Sn is defined by 

( Qnv ) i V( (Xi 1/2 ) X < I(n) 

(where xl-l2 
'(xi-, 

+ xi)). The approximation properties of Q are described 
in Lemma 3. The proof can be obtained by imitating [21] for instance. See also [10]. 

LEMMA 3. Let S7n be a modification of Sn. 
(a) If v has r continuous derivatives on (x,-1, xi) for i > i(n), then 

(~V - V)iIIC;I(DV)II ||Qn-)i| Chir||(Drv) i 11 

(b) If v E W, for some a < 1, then for all i < i(n) 

Q( v - v), i| < Ch ,l v Ii,a 
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(c) If the mesh underlying Sn is (r, a)-graded and Sn is an (r, a)-acceptable 
modification for a < 1, then for all v E r, IIQnv - vII < ClIv11r a/nr, 

The modified projection Qn may be used to define the modified collocation 
solution in E Sn by 

(3.16) -n Qn*Un =Qnf 

and the mnodified product integration solution ii* by 

Un Q n n f 

or 

(3.17) Un = Un 

Again, (3.16) is a system of linear equations which is closely related to the 
unmodified collocation equations. Suppose the basis for the unmodified Sn includes 
the characteristic functions for each interval. Then the matrix for (3.16) is obtained 
by eliminating i(n)(r - 1) rows and columns from the unmodified matrix. Thus the 
modified method is as easy to implement as the original collocation method. 

Our stability and consistency results are given in Theorems 4 and 5. 

THEOREM 4. Suppose the mesh underlying Sn is (k, a)-graded and that 8 satisfies 
II 1 < 8 < 1. Then there exists a (k, a)-acceptable modification i8(n) such that 

(3.18) Qn;-V < 

for all n sufficiently large. Moreover, (3.18) is satisfied for any other modification i(n) 
for which i(n) > i8(n) for all n. 

Proof. To prove (3.18) it must be shown that i8(n) can be selected so that for all 
vE W 

(3.19) II(QnXv)ll| 3IIvII 
for all i. For any i < i8(n), (3.19) is true, as A2 shows for s E I,: 

|(Qn";v)(S)1|= |;tv(Xi-112) | < ||X| ||1V11- 

Suppose i > i8(n). Then the triangle inequality, Lemma 3(a) and Lemma l(b) give 

|| .-V I v)| <' || ( Xv ) I || + | ((I 

(3.20) _ IIX'jII v 11 + Ch l(D rrt v) 

< 11X11 11 vii + Cl(h,/xi_)rll VI, 

where the constant Cl is independent of n, i and v. But now choose i8(n)= 

max{1, i(e, n)}, where i(e, n) is the integer given by Lemma 2 when E = 

((8 -_ 11)I1)/C1)l/r. By (3.14) this is (k, a)-acceptable and by (3.15) 

(3.21) (h ,/X, _)r (3 _-iK 11)/Cl. 
(3.21) and (3.20) give (3.19) as required. Clearly this proof holds if i(n) > i8(n). C1 

THEOREM 5. Suppose v E Wr+r for a 1 and the mesh underlying S5, is 
(r + r', /3)-graded for /3 < a. Then for any (r + r', a)-acceptable modification, 

(3.22) | Q | < C,I I vr+r',a. 
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Proof. It is convenient to write p = r + r' and il = max{1, i(n)}, where i(n) is 
the modification used in defining Qn. Let (, )i be defined by 

(v1, v2 ) , = f v1v2.- 

Then 

(3.23) (Xnv)(s) = X(Qv)il(s) + , (Ks,Qnv)i, 
i>il 

where (Q'v)i1 = Q"v I [O,x ]. We need to estimate the two terms of (3.23). 
For i > il let op, v = r, r + 1, ..., p, denote the Taylor polynomial of order v for 

v about x,. Then 
p 

(3.24) (Ks,Qnv),= (Ks,Qn(v - OMI + , (KSIQ.(op - ov-D) 
v=r? 1 

But it follows from the properties of the Taylor polynomial that 

(3.25) - ( v p) ChfP'j(DPv),j| 

and 

(3.26) 11(op- -1)1jj < Ch-1ll(D-lv) 

We can also approximate Ks by a polynomial Av of order p + 1 - v so that 

(3.27) 11(Ks - 4;), Ij < Ch,P+'-1l DP+'-1Ksll < C(hi/x,-)P+'1x-1 
(using Lemma 1(a)). Hence, using (3.8) on I,, and (3.25)-(3.27), 

(KsI Qn'(v- Op-1)), I= 
-(Ks - 4,Qn(Ov - v )) | 

(3.28) ~< h, (Ks - V)i 
j(op- V- 

(3.28) ~~~~~< C(h,P+ 1/XP- +2) lD P-lv 

C(h,P+1x,0-P-1)|| V||p,. 

Further from (3.25) and Lemma l(a), 

(3.29) |(Ks, Q1(v - OM | < ChP+1x-P-111vllIp. 

Therefore, combining (3.28) and (3.29) gives bounds for each term on the right of 
(3.24). Summing over i > il and using the mesh grading gives 

?( KsQv), i C c i hP+lxf-P ) vjjpo 

(3.30) < C (hjxfP 1)(hPx,-P))IIjjvpjn 
I>il 

< nP( h,x,- c)l|pA< p|vl 

where the last inequality follows because the last sum is a Riemann sum for the 
finite integral 

,a du 
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To bound the first term of (3.23), use Lemma 3(b) to give 

|| X ( nV) -ll 1Xv 11 ||(Qn,V) ii || < CXcII ||V | 

Hence the acceptability of the modification shows 

(3.31) -XV ( Q n1 V K) V li v I p a. 

Finally, as IIvIIP , < IVilp a, (3.30) and (3.31) give the required bounds for the 
right-hand side of (3.23). C 

Our stability and consistency results are then combined to give convergence. 

THEOREM 6. Suppose the mesh underlying Sn is (r + r', a)-graded for a satisfying 
a < 1 and a < a*. Then there exists a modification such that for all n sufficiently 
large, iu and -u* are uniquely defined and 

C 
(3.32) | - u || < n , ?| UI|r+r',a*. 

Proof. As the mesh is (r + r', a)-graded, it is (r + r', &*)-graded for 
a-*:= minta*, 1}. Theorem 4 shows that there is an (r + r', &*)-acceptable modifi- 
cation so that (3.18) holds for some 8 E (IlK I , 1). But then the Banach lemma shows 

(3.33) (I - 
Qn) || < 1/(1 - 8). 

As (3.10) holds for the modified collocation solution, (3.32) follows from Theorem 
5. C 

In the case a* > 1 (Example 2), Theorem 6 requires that the mesh be overgraded, 
so the modification will not damage the rate of convergence. The next result gives 
more concrete information when the meshes (3.2) are used. 

COROLLARY 7. Suppose the mesh (3.2) is used with q > (r + r')/a* and q > r + r'. 
(a) There is an integer constant i* > 0 such that the modification i(n) = i * will do 

in Theorem 6. 
(b) Suppose constants a > 0 and /P E (0,1 - (r + r')/qa*) are chosen and i(n) is 

the nearest integer to an'. Then un and ii* are uniquely defined for all n sufficiently 
large and (3.32) holds. 

Proof. As the mesh is (r + r', (r + r')/q)-graded, Theorem 4 and (3.13) show 
there is a constant i * such that the modification i(n) = i * satisfies (3.18). By (3.13), 
this modification is (r + r', a*)-acceptable, which proves (a). The modification in 
(b) is (r + r', a*)-acceptable by (3.13) and satisfies i(n) > i* for n sufficiently 
large. Hence (b) follows from (a). C 

Corollary 7(a) shows that the modification typically involves only a small propor- 
tion of the intervals. In practice, however, modification is usually not required, so we 
would not advocate the use of the modification in 7(b). More pragmatically, 
instability will be revealed by poor conditioning of the collocation equations, and 
this will often be revealed by the algorithm used for their solution. In this case 
modification can be tried until stability is restored. Theorem 6 shows that this will be 
successful and will not damage the asymptotic rate of convergence. 
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4. Numerical Results. The method described here is a modification of the colloca- 
tion or product integration methods described in [1] or [23]. Nevertheless, it may be 
helpful to give a concise algorithmic description. Recall we are solving the integral 
equation (1.1) with the operators given by (1.2). We will use the meshes (3.2) with 
the constant modification (described in Corollary 7(a)). 

(0) Select integers r > 1 and i* > 0, and numbers 0 < 4j < 2< -_ < 1r,< 

and q > 1. 
(1) Choose n > i*. 

(2) Define the points 

Xin) = (i/n)q, i =0,1..., n, 

X(n) = X~ni)1 + 2( - X(_1) i i 

X(fn) = Xi(n)l + 
(,p(n()- x(n)), i<i < n,1< p < r; 

and the index set 

Q = {(i,1):1 < i < i*} U{(i, p):i* < i < n, 1 p < r}. 

(3) Let U = (UipL: (i, p) E Q) E Rm, m = (n - i*)r + i*, be the solution of the 
m X m system of equations: for all (i, p) E Q 

X, Ui( X(n) - 

X-n))P 
(p: (i,p)EQ} 

- L iUjp ' K xP 
(a-x(n))P (J f(x,(n)). 

(4) Then 

n*(s):= f(S) + Z ujpfxn K( S(a Xif1)ldc( 

is the modified product integration solution. 
The theory of the previous section shows u*, the modified product integration 

solution, converges to the true solution u as n -x oo provided i * is sufficiently laige. 
The rate of convergence is determined from the choice of r and the (p (see (3.6)) and 
q (see Theorem 6). 

The purpose of this section is to present some computations illustrating the results 
of Section 3. We are solving the equation (see Example 1) 

(4.1) u(s) fsin Xv s su(a) do = f(s), 0 < s < 1, 
X o s 2+ a 2- 2sucosXv7 

with X = .1 and where f is found analytically so the solution is u(s) = s/ 

In the first computations the basis functions are piecewise linear on the mesh (3.2) 
and the collocation points are specified by taking 4j = 0 and 42 = (, where ( is a 
parameter that will be varied. As r' = 0, these methods are of no practical value 
except when ( = 1. Nevertheless, they converge when the operator is compact [1]. 
For (4.1) the discretization error is 

(4.2) /{jQnu 1 0(1/n q2), q < 4- 

< o(1nn 2), q > 4, 
and we would expect lki* - uill to convetrgei at these rates. 
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We have not computed ju * - uj but rather 

(4.3) |Un* - u| max| Iun*(xij) - u(x,,) | 

where { xiJ ) are the collocation points. As u*(xi1) = un(x11) this is relatively cheap. 
If u*(x) is needed for x i {xij}, the computation will depend on u* at {xij}, so 
(4.3) is a fair measure of the error. 

Table 1 shows that with ( = 2 convergence occurs at the rates expected from 
(4.2), and indeed the eigenvalues of Qn -1 are contained in the spectrum of XY, i.e., 
[0, 1 - X] However, as t is moved closer to zero, "spurious" eigenvalues appear. At 
about =.10222.... the principal eigenvalue of Qn, X(n), converges to 1 as 
n -x 00. The unmodified method then diverges, but convergence is restored by the 
modification i( n) = 1 (Table 2). 

TABLE 1 

Values of U* - u I for = .5. 

n q=l q=2 q=4 q=6 

8 5.89(-2) 2.42(-2) 10.6(-3) 13.6(-3) 
16 4.24(-2) 1.23(-2) 3.66(-3) 4.86(-3) 
32 3.02(-2) .615(-2) 1.12(-3) 1.46(-3) 
64 .312(-3) .395(-3) 

TABLE 2 

Modified and unmodified solutions when q = 2 and t = .10222 84654. 

n |u* - uI X(n) I|, - ul, X( 11) 

8 48. 1.00240 .1205 .86279 + .0228i 
16 100. 1.000644 .0607 .87433 
32 206. 1.000161 .0304 .88503 
64 391. 1.000043 

We have also been asked by the referee to compare our collocation method with 
the Nystrom method ([1]) using sinc quadrature ([29]). Thus define h = a/n1!2, 

where the parameter a is about (27Td/a)1/2, a - 2, d = X7T ([29, (4.34)]). Then the 
quadrature points are 

Zk = exp(kh)/(1 + exp(kh)), k = 0 1, .+ . +, n, 

with weights 

Wk = h exp(kh)/(1 + exp(kh ))2. 

The Nystrom solution to (1.1), u(N), is then defined by 

(I-n)U(N)=f 

with 

(nV)(5)k= Zk ) Z 
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TABLE 3 

u (N) - u for the sinc-Nystrom method and various values of a. 

a = 1.25 a = 1.5 a = 1.75 a = 2 

n = 8 .0561 .0493 .165 .613 
16 .0346 .0176 .0278 .0606 
32 .0136 .00638 .00347 .00853 

TABLE 4 

- u for collocation at the Gauss points. 

q=l q=4 q=6 q=8 q=10 

n = 8 .0256 .00561 .00498 .00821 .0137 
16 .0182 .00141 .000658 .000831 .00145 
32 .0129 .000351 .0000825 .0000578 .0000852 

These methods are simpler to implement than collocation, as (X+)(s), 4 Ee Sn, need 
not be found analytically. (Although in our example this calculation is not difficult.) 
Unfortunately, in (4.1) the Nystrom method is much less accurate. Table 3 gives the 
error 

u(N)_u 1:= max{f IU(N)(zk~(kj 
Iu n- u| := mx{| )Zk) - U(Zk) | 

Table 4 compares this with the collocation method using piecewise linear functions 
with collocation at the Gauss points (r = 2, j = 2(1 - 1/ Vs3 ), 42 = 2(1 + 1/ /3 )). 
For a given n, the systems of equations to be solved in the two methods are almost 
the same size. 

We conclude that the sinc method is not competitive here. Note that this is the 
operator appearing when boundary integral methods are used on domains with 
corners (in this case a re-entrant corner with an exterior angle of 180) which suggests 
that sinc methods are not the best methods for boundary integral computations. In 
contrast, piecewise polynomial collocation has been used extensively in the engineer- 
ing literature, which motivates the theory here. 
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