
MATHEMATICS OF COMPUTATION
VOLUME 50, NUMBER 181
JANUARY 1988, PAGES 179-188

A Fast Algorithm for the Multiplication
of Generalized Hilbert Matrices with Vectors*

By A. Gerasoulis

Abstract. The existence of a fast algorithm with an OA(n(logn)2) time complexity
for the multiplication of generalized Hilbert matrices with vectors is shown. These
matrices are defined by (Bp) ij = 1/(ti - -j)P, i, j = 1,. . . ,n, p = 1, .. I,q, q < n,
where ti and si are distinct points in the complex plane and ti $ sj, i,j = 1,... , n.
The major contribution of the paper is the stable implementation of the algorithm for
two important sets of points, the Chebyshev points and the nth roots of unity. Such
points have applications in the numerical approximation of Cauchy singular integral
equations. The time complexity of the algorithm, for these special sets of points, reduces
to OA (n log n).

1. Introduction. Let us define the generalized Hilbert matrices Bp, p =

1,. .. ,q, q <n, by

(1) (Bp)i,j j = 1(, n,

where ti and si are distinct points in the complex plane and ti : sj, i, j = 1,... ,n.

The special case, p = 1, ti = i and sj =-j + 1, is the well-known Hilbert matrix

(2) (Bl)i,j =
1

l i,j =l,...n.

For the case p = 1 and sj = tj cj, we define the matrix

if i0j
(3) 1i C ifC y, i,j 1..n.

0 if i =j,

In [11], the following question was considered:
"Given a vector y. Does there exist an algorithm for computing the product Ty

in less than OA (n2) operations?"
The time or space complexity OA (f(n)) of a straight-line model of computation

is defined in Aho et al. [1, pp. 19-22]. This problem was initially posed by Golub
in [12] and it is known as Trummer's problem. It has generated considerable in-
terest because of various applications in the computation of conformal mappings
(Trummer [22]), the zeta function (Odlyzko and Schonhage [18]), the numerical
evaluation of singular integrals (this paper and Reichel [19]) and particle simula-
tions (Greengard and Rokhlin [13] and Rokhlin [20]).

Received March 18, 1986; revised September 5, 1986.
1980 Mathematics Subject Classification (1985 Revision). Primary 68Q25, 65F30, 65R20, 65D30.
Key words and phrases. Generalized Hilbert matrices, fast algorithms, computational complex-

ity, singular integrals.
*This material is based upon work supported by the National Science Foundation under Grant

No. DMS-8506464 and DMS-8706122.

? 1988 American Mathematical Society
0025-5718/88 $1.00 + $.25 per page

179

180 A. GERASOULIS

In [11] we have proposed an OA(n(logn)2) algorithm for Trummer's problem,
henceforth the GGS algorithm. The GGS algorithm uses Fast Fourier Transform
(FFT) polynomial multiplication, polynomial interpolation and polynomial eval-
uation at n distinct points. In Section 2 we show that the GGS algorithm can
be extended to include the matrices defined in (1). The time complexity of the
extended algorithm is the same as the GGS. In Section 3 we present examples of
generalized Hilbert matrices arising in the numerical approximation of singular in-
tegrals. In Sections 4 and 5 we present a stable implementation of the algorithm for
the Chebyshev points sj = cos(j7r/n), j = 1, .. , n - 1 and tk = cos((2k - 1)-r/2n),
k = 1, .. ., n, and for the nth roots of unity Ck = exp(27ri(k - 1)/n), i = /=T,
k = 1, ... ,n. Both sets of points have important applications in the numerical
approximation of Cauchy singular integrals. The time complexity of the algorithm
for these special sets of points reduces to OA (n log n). In Section 5 we also discuss
two approximate algorithms, for specially distributed sets of points, recently pro-
posed by Greengard and Rokhlin [13], Rokhlin [20], Odlyzko and Schonhage [18]
and Reichel [19].

2. An Extended GGS Algorithm. In this section we briefly describe an
extension to the GGS algorithm for the multiplication of Bp with a vector. We
notice that the problem of multiplying Bpy is equivalent to evaluating the function
fp(x) at the points ti, i = 1, ..., n, where

n

(4) fP(Z) jE (i I =1)p

We consider fi (x) first. Following Gastinel [7], we express fi (x) as the ratio of two
polynomials h(x) and g(x), where g(x) is an nth degree polynomial defined by

n

(5) g(x) = rI(x- Sj)
j=1

and h(x) is a polynomial, of degree at most n - 1, determined from

(6) fi(x) = h(x) = Yj
g(x) S.1 S

Setting x= si, i= 1,...,rn, in (6), we derive

(7) h(si) = yjg'(si), i = 1,... ,

which implies that h(x) is the interpolation polynomial for the points (si, yig'(si)),
i= 1,... ,n.

Observe that fp(x) = fp- 1(x)/(1 -p), p = 2, 3,... ,q. Therefore, expressions for
the computation of Bpy can be derived by using (6). For example, for p = 1, 2, we
have that

(8) f1(ti) =(t) f2(ti) =-fl(ti)- + 2(,) n.

Similarly, Trummer's problem x = Ty is equivalent to evaluating (Gerasoulis et al.
[11])

(9) Zj = h'(cj) - y1g(C1) j= 1,.. .,n.
al (cj,)

A FAST ALGORITHM FOR GENERALIZED HILBERT MATRICES 181

We now present an efficient algorithm for the evaluation of fi (ti) and f2 (ti),

i = 1, ... , n. The algorithm can be easily extended to include p > 3.

Procedure FAST(n, t, s, y); return f1, f2;

1. Compute the coefficients of g(x) in its power form, by using FFT polyno-
mial multiplication, in OA (n(logn)2) time (e.g. Horowitz [15], Aho et al.
[1, Theorem 8.14, p. 299], Henrici [14, pp, 36-38]);

2. Compute the coefficients of g'(x) in OA((n) time;
3. Evaluate g (ti), g'(ti), i = 1, . . . , n, and g'(sj), j = 1, . . . , n, in OA (n (log n) 2)

time (Aho et al. [1, Corollary 2, p. 294]);
4. Compute hj = yjg'(tj), j = 1,... , n, in OA((n) time;
5. Find the interpolation polynomial h(x) for the points (sj, hj), j = 1,. n,

in OA(n(logn)2) time (Aho et al. [1, Theorem 8.14, p. 299]);
6. Compute the coefficients of h'(x) in OA(n) time, and evaluate h(ti) and

h'(ti), i = 1,... , n, in OA (n(logn)2) time, following the same technique as
in steps 2 and 3;

7. Compute f l(ti) = h (ti) /g (ti) and f2 (ti) =h'(ti) I (ti) + h (ti) g' (t)1g2(t),
i = 1, .. , n, in OA (n) time;

end FAST;

The space and time complexity of FAST are OA(nlogn) and OA(n(logn)2),
respectively. In Sections 4 and 5, we consider two important special cases for which
the time complexity reduces to OA (n log n).

3. Generalized Hilbert Matrices. In this section we present generalized
Hilbert matrices which arise in the quadrature approximation of Cauchy singular
integrals. We consider the Cauchy principal value integral

(10) I(y; s) = - f w(t)()L dt, jsj < 1, w(t) = (1 - t)(1 + t)1,

where a and d are constants and -1 < a, 3 < 1. Hadamard's finite part integral
is defined by

(11) IH(Y; s) = d() = 1 X w(t) (t- -) 2 d Is < 1,

where it is assumed that w(t) and y(t) are such that the derivative of I(y; s) exists.
The singular integrals (10) and (11) arise in fields such as aerodynamics, wave-
guide theory, scattering, fracture mechanics and others. A particular example is
the equation

(12) ? f - t2y1/2t8() dt - f(s), 1s < 1,

which arises in fracture mechanics. The solution y(t) represents the derivative of
the crack opening under a given pressure distribution f(s) along (-1,1) (Erdogan
and Gupta [6], Kaya [17]).

We will derive quadratures for the singular integral (10). These quadratures give
rise to matrices B1 and T. Quadratures for IH (Y; s) and the matrix B2 can be

182 A. GERASOULIS

obtained from the quadratures for I(y; s) via (11). By rewriting (10) as

(13) I(y;s) = 11 1 y(t) - y(s) y(s) 1 w(t) dt
(13 I(; 8 =-] w(t) dt + pd__

we see that classical quadratures may be used to approximate I(y; s). The second
integral in (13) can be computed once to within any given tolerance by using power
series expansions and contour integration (Gautschi and Wimp [8]) and the first
integral via a quadrature for different functions y(t). FAST could be used to speed
up the quadrature computations.

We consider only two cases of the weight w(t). The analysis can easily be ex-
tended to the general weight function w(t) in (10).

The case a = d = 0. Here, the weight function is w(t) = 1. Applying the
trapezoidal rule in (13), we derive

n+1 y(s) 1 - sj)
(14) In(Y; s) = 5 Yi t) - s +

7r n1 + si' jj < 1,
i=O tS

where ti = -1 + ih, i = O, 1,..., n + 1, h = 2/(n + 1), wo = Wn+1 = h/(27r) and

wi = h/7r, i = 1,..., n. Trummer's matrix T can be derived by setting s = tj,
j=l,...,n,in (14):

In(Y;tj)= wiy(ti)- y(tj)t it +F(tj), j =l,...n,

if j i:Aj

(15) F(tj) - wo(y(to) - y(tj)) + Wn+l(Y(tn+l) - y(t)) + wjy(tj)
to-t j tn+1 -t

+ y(t3) l - til

where we have assumed that y'(tj) exists. The computation of y'(tj) can be per-
formed via a finite difference formula with the same or better accuracy than (14).

The case a = 0 = -1/2. For this special case the weight function becomes
w(t) = (1 t2)-1/2. Using the Gauss-Chebyshev quadrature and the identities
(Erdogan and Gupta [6])

(16) n-1 E 1 _ Tn (s) (1 t2)1/ dt = O, jsj < 1,

we see that I(y; s) can be approximated by

(17) In (y; s) = n-1 y((ti) t1) = + Us y(s), ti-s .=1 ti -s Tn (s)

where ti = cos((2i - 1)7r/2n), i = 1, ... , n, are the zeros of the Chebyshev polyno-
mial Tn(t).

Setting s = sj =: cos(j7r/n), j = 1,... ,n- 1, in (17), where sj are the zeros
of the Chebyshev polynomial of the second kind Un- (s), we derive summations
similar to Bly:

(18) In (y; Sj) = n E. , t () , j =,. . - ,n1,
ti - si

while setting s = ti, i = 1, ... , n, we derive Ty.

A FAST ALGORITHM FOR GENERALIZED HILBERT MATRICES 183

4. An Application of FAST. In this section we present an OA (n log n) stable
implementation of FAST for the Chebyshev points. We consider the numerical
solution of (12). Using (18) to approximate (12), we obtain the (n-1) x n algebraic
system

(19) Ay = f, Aj,.
- j = n- n,

where y = [y(tl), y(t2), .. . , y(t")]T and f = [f(s1), f(82), , f(Sn-1)]T. By using
identity (2.4) of [9], we can easily derive the following right inverse A' of A, and
consequently obtain the solution of (19) from

1 - S
(20) y = AIf+b ubn (AI)ij, (-) i = n, jn-1,

where bn is an arbitrary constant and u, is a vector with all elements equal to one.
In the following example, we apply FAST to the computation of

(21) (A'f)i = n-1 (1n- S2)f(sj) .
j=1

Example 1. The algorithm presented below is a modification of FAST for the
INPUT: ti = cos((2i - 1)7r/2n), i = 1,...,n, sj = cos(j7r/n)and yj = f(s;),
j = 1, ... ,n -1.

1. Instead of computing g(x) in its power form, we will use an analytic expression.
We have

n-1

g(x) = rj (x - sj) = dnUn- 1 (x) = dn sin(nO)/ sin(0),
j=1

where dn = 2-(n-1) and cos(O) = x.
2. Similarly, g'(x) = -dn[nTn(x) - xUn1 (x)]/(l - x2).

3. Since g'(sj) = dn(-l)ij1n/(l - s?), the complexity for this step reduces to

OA(n) time.
4. Equation (7) and step 3 above imply that

h(sj) = dn(-l)j+lyji j = 1,..., n-1.

5. We find h(x) by using orthogonal polynomial interpolation. We first set

n-1

(22) h(x) = E akUk-1(X)
k=1

and use the fact that Gaussian quadratures for n-1 points are exact for polynomials
of degree < 2n - 3 to derive the following orthogonality relation,

-(1 X2)1/2U U(X)Um (X) dx
-1

(23) n-1 if I i l =r -1
-(

_ 82)U1(5k)Um(5k) 2

k ~~~~0 if I #m,
k=1

184 A. GERASOULIS

where I + m < 2n -3. From the last two equations we see that for k = 1,... , n - 1,

(24) a = 2rF1 ,(1 - s2)h(sj)Uk_1(sj) = 2xjsin (k2ni)

xj = n-lh(sj) sin (i)

Therefore, ak can be computed via FFT in OA(nlogn) time (Aho et al. [1]).
6. From step 1 and (22), we see that for i = 1, . . . ,n,

=dn (-li)i+1
g(25)

= sin((2i - 1)7r/2n)

h(ti) = E ak sin (k 2) /sin 2
k= 1/

7. Finally, AIf is computed from (26) by using FFT in OA (n log n) time,

(26) f1(ti) = h(t) = d (- 1)t+ aksin (k 2) i=1,...,n.

The total cost of the above implementation of FAST is OA (n log n), since it only
requires the application of FFT twice. In Table 4.1 we present our computational
experience with FAST, and with the conventional algorithm for the multiplication
of a matrix with a vector directly, which requires OA (n2) operations. We have
chosen the function f(s) = 1. In this case, the summations can be obtained exactly
from the identity (e.g. Erdogan and Gupta [6])

n-i 1 -
(27) n-1 E t = til ,... n.

j=1 t j

TABLE 4.1

The performance of FAST versus direct multiplication for f(s) = 1.

OA (n log n) Algorithm OA (n2) Algorithm

Time in Max. Error Time in Max. Error
k n = 2k seC. seC.

2 4 0.0013 0.372 x 10-7 0.0004 0.223 x 10-7
3 8 0.0031 0.447 X 10-7 0.0014 0.968 x 10-7
4 16 0.0054 0.447 x 10-7 0.0055 0.194 x 10-6
5 32 0.0122 0.671 X 10-7 0.0222 0.484 x 10-6
6 64 0.0248 0.596 x 10-7 0.0889 0.789 x 10-6
7 128 0.0524 0.104 X 10-6 0.3563 0.200 x 10-5

8 256 0.1082 0.372 x 10-6 1.4264 0.400 x 10-5
9 512 0.2335 0.738 x 10-6 5.7057 0.814 x 10-5

10 1024 0.4831 0.114 x 10-5 22.8265 0.167 x 10-4
11 2048 0.9975 0.627 x 10-5 91.3278 0.336 x 10-4
12 4096 2.0592 0.743 x 10-5 365.2306 0.713 x 10-4

The maximum error shown in Table 4.1 is obtained from maxi jti - fi (ti) j in the
fourth column, and from maxi Iti - (Bly)i j in the last column. The computa-
tions have been performed on a DEC-20 by using the single-precision subroutines

A FAST ALGORITHM FOR GENERALIZED HILBERT MATRICES 185

SINT and SINQF from FFTPACK of NETLIB (Swarztrauber [21]), which are most
efficient when n is a power of 2. The table shows that FAST outperforms the con-
ventional algorithm for all n > 16 and that it also attains a better accuracy. Similar
results have been obtained for several other choices of f(s). O

The algorithm described in the above example could be used in the solution of
the singular integral equation

(28) -f w(t) L ()dt + A w(t)K(t, s)y(t) dt = f(s), s81 < 1,

provided that the kernel K(t, s) is of the form

(29) K(t,s) - L(t, s)
t?

Using quadratures similar to (17), we can reduce (28) to the following algebraic
system,

Wi
(A + AC)y = f, (A)j,i = ti , (C)j,i = irwiK(ti, sj),

j = ,...,m, i = ,...,n,

where wi are the quadrature weights, e.g. if w(t) = (1 t2)-1/2 then wi = 1/n.
The last algebraic system can be solved via iterative methods such as generalized
conjugate gradient (Concus and Golub [3], Trummer [22]), Nystr6m's iterative vari-
ants (Gerasoulis [10]), and successive approximation (Tsamasphyros and Theocaris
[23], Ioakimidis [16]). These iterative methods repeatedly compute products of the
form B1y, and the use of FAST will greatly improve the computational speed.
Examples of equations with kernels similar to (29) can be found in Comninou [2],
Tsamasphyros and Theocaris [23], Kaya [17], Elliott [5].

5. Approximate Algorithms. In this section we discuss two approximate
algorithms which could be very useful for certain point distributions. One of these
algorithms uses FAST while the other uses a power series approximation.

The procedure described in Section 2 only proves the existence of an algorithm
whose computational complexity is smaller than that of the conventional algorithm.
It does not show if FAST is practical, except in the case of the Chebyshev points
for which FAST reduces to computing FFTs. How practical FAST is in general
depends on how the points are distributed in the complex plane. For example, for
the equidistant points ti = -1 + ih, i = 0, . . ., n + 1, h = 2/(n + 1), interpolation
is ill-conditioned for certain functional values (Dahlquist and Bjorck [4]). This
implies that FAST could be unstable even for n = 10, since in step 5 of the algorithm
interpolation is used. Moreover, even if the algorithm is stable, the constants for the
time complexity could be larger than 10. Therefore, FAST could become faster than
direct multiplication only if n > 1000. In such cases, an alternative implementation,
or even an approximate algorithm, might be a better choice. In the case of the
equidistant points one does not have to use FAST at all, since ti -tj = (i - j)h
and therefore the sums in (15) can be computed via FFT convolutions directly in
OA (n log n) time. However, as we will see below, the usefulness of FAST is not
limited to the Chebyshev points. As a matter of fact, it could be used with an

186 A. GERASOULIS

approximate algorithm to compute the products Ty or Bpy to within an accuracy
E in OA(nrlogrn) time.

Let us consider the matrix T and assume that the points ci lie on a sufficiently
smooth closed curve in the complex plane. Points that lie on smooth curves arise
in the approximation of Cauchy singular integral equations in the complex plane.
Under this assumption, Reichel [19] has shown that T can be approximated by

(31) T (B(2) -B(?) - C)D-1

where Dn and B(?) are diagonal matrices, B(2) is a low-rank matrix and Cn is a
matrix of the same form as T having elements Ck equal to the nth roots of unity.
The product B(2)y can be computed directly in OA(k2) time, where k depends
on the tolerance E and on the smoothness of the closed curve and is usually much
smaller than n. Reichel uses properties of circulant matrices to compute Cny in
OA (n log n) time. We show in the example below that FAST also computes Cny in
OA(nlogn) time and more importantly that its implementation is stable for large
n.

Example 2. Consider the nth roots of unity

Ck=ep2-7ri(k
- 1) i= k k= 1, ... , n.

For these points we have that
1. g (x) rl= 1 =(x _ = xn-1

2. g'(x) = nxn-1 and g"(x) = n(n - 1)xn-2.
3. g'(Ck) = n/ck and 9"(Ck) = n(n- 1)/c, k = 1,... ,n, in OA(n) time.
4. h(ck) = ykg'(Ck), k = 1,... ,n, in OA((n) time.
5. Set h(x) = n 1 amxm so that h(ck+l) = Z,Joamcm+i, k =O ... , n-

implying

n-1i27rk

(32) am =n-11 h(ck+1)exp), m =0,..., n- 1,
k=O

which can be computed via FFT in OA(n log n) time (Aho et al. [1]).
6. From the last step we have that h'(x) = En-=10 mamxm-l so that

(33) h'(ck+) = exp (-) E mam exp (I), k = 0,.. . ,- 1,

which again can be computed via FFT in OA(n log n) time.
7. Equation (9) computes Xk = (h'(ck) - Yk9g"(Ck))/g9(Ck), k = 1,... ,n, in

OA(n) time.
We can easily see that the above implementation of FAST requires OA(n log n)

time. The computational performance is similar to that of the Chebyshev points
shown in Table 4.1. 5

Finally, we describe a technique based on a power series expansion. This tech-
nique is similar to the one used by Greengard and Rokhlin [13] in particle simulation
and Odlyzko and Sch6nhage [18] in the fast computation of-the zeta function. We
present the method in the case of p = 1 in (4) and under the assumption that
the points are well separated. Two sets of points are well separated if there exist

A FAST ALGORITHM FOR GENERALIZED HILBERT MATRICES 187

points to, so and a positive number r > 0 such that Iti - toj < r, Isj - sot < r and

Ito - sol > 3r (Greengard and Rokhlin [13]). Under these assumptions we see that
tsj-sol/lx -sol < 2 for x = ti. Therefore, using the geometric series expansion,
we obtain

n 00

f) (
Z
E (x-so){- (s -

so)/(x-sO)} k=O
(34) n=

=

bk = yj(sj -))k

j=1

We can easily see that
m

fi (x) fm (x) = E - so)k1,

(35) k=O

lfl(x) - fm(x)l < A ()XA =Eiyji) z t'.
j=1

Let us assume that fi (x) is to be approximated to within a precision E. Then m
must be chosen so that m - log2 (E/A). The total cost of arithmetic operations
required to compute f m(ti), i = 1,... , n, is OA(mnr). If m < n, then the complex-
ity reduces to OA (n). Therefore, for the well-separated points this algorithm will
be asymptotically faster than FAST, provided that E is not very small.

If the points are not well separated, then this technique can still be applied.
The sum in (34) can be split into subsums of well-separated and not well-separated
(nearby) points. The computations for the nearby points can be performed directly,
while we can use (35) for the well-separated points (see Greengard and Rokhlin [13]
for details). The complexity of the algorithm depends on the homogeneity of the
distribution of the points. For nonhomogeneous distributions, n might have to be
extremely large before the algorithm becomes faster than direct multiplication. The
applications reported in Greengard and Rokhlin [13], and Odlyzko and Schonhage
[18], however, show that this algorithm could also be very useful for certain point
distributions.

Acknowledgments. I would like to thank Gene Golub for introducing us to
Trummer's problem and providing us with reference [7] and the referee for several
valuable comments.

Department of Computer Science
Rutgers University
New Brunswick, New Jersey 08903

1. A. AHO, J. E. HOPCROFT & J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, Mass., 1974.

2. M. COMNINOU, "The interface crack," J. Appl. Mech., Transactions of ASME, 1977, pp.
631-636.

3. P. CONCUS & G. H. GOLUB, A Generalized Conjugate Gradient Method for Nonsymmetric
Systems of Linear Equations, Lecture Notes in Economics and Mathematical Systems, v. 134,
Springer-Verlag, Berlin, 1976, pp. 56-65.

4. G. DAHLQUIST & A. BJORCK, Numerical Methods, Prentice-Hall, Englewood Cliffs, N.J.,
1974.

188 A. GERASOULIS

5. D. ELLIOTT, "The numerical treatment of singular integral equations-A review," Treatment
of Integral Equations by Numerical Methods (C. T. H. Baker and G. F. Miller, eds.), Academic Press,
New York, 1982, pp. 297-312.

6. F. ERDOGAN & G. D. GUPTA, "On the numerical solution of singular integral equations,"
Quart. Appl. Math., v. 29, 1972, pp. 525-534.

7. N. GASTINEL, "Inversion d'une matrice g6n6ralisant la matrice de Hilbert," Chiffres, v. 3,
1960, pp. 149-152.

8. W. GAUTSCHI & J. WIMP, "Computing the Hilbert transform of a Jacobi weight function,"
BIT, v. 27, 1987, pp. 203-215.

9. A. GERASOULIS, "On the existence of approximate solutions for singular integral equations
of Cauchy type discretized by Gauss-Chebyshev quadrature formulae," BIT, v. 21, 1981, pp.
377-380.

10. A. GERASOULIS, "Singular integral equations: Direct and iterative variant methods," Nu-
merical Solution of Singular Integral Equations (Gerasoulis & Vichnevetsky, eds.), IMACS publica-
tion, 1984, pp. 133-141.

11. A. GERASOULIS, M. D. GRIGORIADIS & LIPING SUN, "A fast algorithm for Trummer's
problem," SIAM J. Sci. Statist. Comput., v. 8, 1987, pp. s135-s138.

12. G. H. GOLUB, "Trummer problem," SIGACT News, v. 17, 1985, No. 2, ACM Special Interest
Group on Automata and Computability Theory, p. 17.2-12.

13. L. GREENGARD & V. ROKHLIN, A Fast Algorithm for Particle Simulations, Research report
YALEU/DCS/RR-459, April 1986.

14. P. HENRIcI, Applied and Computational Complex Analysis, III, Wiley, New York, 1986.
15. E. HOROWITZ, "A unified view of the complexity of evaluation and interpolation," Acta

Inform., v. 3, 1974, pp. 123-133.
16. N. I. IOAKIMIDIS, "Three iterative methods for the numerical determination of stress inten-

sity factors," Engrg. Fracture Mech., v. 14, 1981, pp. 557-564.
17. A. KAYA, Applications of Integral Equations with Strong Singularities in Fracture Mechanics,

Ph.D. thesis, Lehigh University, 1984.
18. A. M. ODLYZKO & A. SCHONHAGE, Fast Algorithms for Multiple Evaluations of the Riemann

Zeta Function, Technical Report, AT& T Bell Laboratories, Murray Hill, N.J., 1986.
19. L. REICHEL, A Matrix Problem uwith Applications to Rapid Solution of Integral Equations, Re-

port, Department of Mathematics, University of Kentucky, Lexington, 1986.
20. V. ROKHLIN, "Rapid solution of integral equations of classical potential theory," J. Comput.

Phys., v. 60, 1985, pp. 187-207.
21. P. SWARZTRAUBER, FFTPACK, Netlibanl-mcs, Private communication.
22. M. TRUMMER, "An efficient implementation of a conformal mapping method using the

Szego kernel," SIAM J. Numer. Anal., v. 23, 1986, pp. 853-872.
23. G. TSAMASPHYROS & P. S. THEOCARIS, "A recurrence formula for the direct solution of

singular integral equations," Comput. Methods Appl. Mech. Engrg., v. 31, 1982, pp. 79-89.

