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A Fast Algorithm for the Multiplication 
of Generalized Hilbert Matrices with Vectors* 

By A. Gerasoulis 

Abstract. The existence of a fast algorithm with an OA(n(logn)2) time complexity 
for the multiplication of generalized Hilbert matrices with vectors is shown. These 
matrices are defined by (Bp) ij = 1/(ti - -j)P, i, j = 1,. . . ,n, p = 1, .. I,q, q < n, 
where ti and si are distinct points in the complex plane and ti $ sj, i,j = 1,... , n. 
The major contribution of the paper is the stable implementation of the algorithm for 
two important sets of points, the Chebyshev points and the nth roots of unity. Such 
points have applications in the numerical approximation of Cauchy singular integral 
equations. The time complexity of the algorithm, for these special sets of points, reduces 
to OA (n log n). 

1. Introduction. Let us define the generalized Hilbert matrices Bp, p = 

1,. .. ,q, q <n, by 

(1) (Bp)i,j j = 1( , n, 

where ti and si are distinct points in the complex plane and ti : sj, i, j = 1,... ,n. 

The special case, p = 1, ti = i and sj =-j + 1, is the well-known Hilbert matrix 

(2) (Bl)i,j = 
1 

l i,j =l,...n. 

For the case p = 1 and sj = tj cj, we define the matrix 

if i0j 
(3) 1i C ifC y, i,j 1..n. 

0 if i =j, 

In [11], the following question was considered: 
"Given a vector y. Does there exist an algorithm for computing the product Ty 

in less than OA (n2) operations?" 
The time or space complexity OA (f(n)) of a straight-line model of computation 

is defined in Aho et al. [1, pp. 19-22]. This problem was initially posed by Golub 
in [12] and it is known as Trummer's problem. It has generated considerable in- 
terest because of various applications in the computation of conformal mappings 
(Trummer [22]), the zeta function (Odlyzko and Schonhage [18]), the numerical 
evaluation of singular integrals (this paper and Reichel [19]) and particle simula- 
tions (Greengard and Rokhlin [13] and Rokhlin [20]). 
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In [11] we have proposed an OA(n(logn)2) algorithm for Trummer's problem, 
henceforth the GGS algorithm. The GGS algorithm uses Fast Fourier Transform 
(FFT) polynomial multiplication, polynomial interpolation and polynomial eval- 
uation at n distinct points. In Section 2 we show that the GGS algorithm can 
be extended to include the matrices defined in (1). The time complexity of the 
extended algorithm is the same as the GGS. In Section 3 we present examples of 
generalized Hilbert matrices arising in the numerical approximation of singular in- 
tegrals. In Sections 4 and 5 we present a stable implementation of the algorithm for 
the Chebyshev points sj = cos(j7r/n), j = 1, .. , n - 1 and tk = cos((2k - 1)-r/2n), 
k = 1, .. ., n, and for the nth roots of unity Ck = exp(27ri(k - 1)/n), i = /=T, 
k = 1, ... ,n. Both sets of points have important applications in the numerical 
approximation of Cauchy singular integrals. The time complexity of the algorithm 
for these special sets of points reduces to OA (n log n). In Section 5 we also discuss 
two approximate algorithms, for specially distributed sets of points, recently pro- 
posed by Greengard and Rokhlin [13], Rokhlin [20], Odlyzko and Schonhage [18] 
and Reichel [19]. 

2. An Extended GGS Algorithm. In this section we briefly describe an 
extension to the GGS algorithm for the multiplication of Bp with a vector. We 
notice that the problem of multiplying Bpy is equivalent to evaluating the function 
fp(x) at the points ti, i = 1, ..., n, where 

n 

(4) fP(Z) jE (i I =1)p 

We consider fi (x) first. Following Gastinel [7], we express fi (x) as the ratio of two 
polynomials h(x) and g(x), where g(x) is an nth degree polynomial defined by 

n 

(5) g(x) = rI(x- Sj) 
j=1 

and h(x) is a polynomial, of degree at most n - 1, determined from 

(6) fi(x) = h(x) = Yj 
g(x) S.1 S 

Setting x= si, i= 1,...,rn, in (6), we derive 

(7) h(si) = yjg'(si), i = 1,... , 

which implies that h(x) is the interpolation polynomial for the points (si, yig'(si)), 
i= 1,... ,n. 

Observe that fp(x) = fp- 1(x)/(1 -p), p = 2, 3,... ,q. Therefore, expressions for 
the computation of Bpy can be derived by using (6). For example, for p = 1, 2, we 
have that 

(8) f1(ti) =(t) f2(ti) =-fl(ti)- + 2(,) n. 

Similarly, Trummer's problem x = Ty is equivalent to evaluating (Gerasoulis et al. 
[11]) 

(9) Zj = h'(cj) - y1g(C1) j= 1,.. .,n. 
al (cj,) 
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We now present an efficient algorithm for the evaluation of fi (ti) and f2 (ti), 

i = 1, ... , n. The algorithm can be easily extended to include p > 3. 

Procedure FAST(n, t, s, y); return f1, f2; 

1. Compute the coefficients of g(x) in its power form, by using FFT polyno- 
mial multiplication, in OA (n(logn)2) time (e.g. Horowitz [15], Aho et al. 
[1, Theorem 8.14, p. 299], Henrici [14, pp, 36-38]); 

2. Compute the coefficients of g'(x) in OA((n) time; 
3. Evaluate g (ti), g'(ti), i = 1, . . . , n, and g'(sj), j = 1, . . . , n, in OA (n (log n) 2) 

time (Aho et al. [1, Corollary 2, p. 294]); 
4. Compute hj = yjg'(tj), j = 1,... , n, in OA((n) time; 
5. Find the interpolation polynomial h(x) for the points (sj, hj), j = 1,. n, 

in OA(n(logn)2) time (Aho et al. [1, Theorem 8.14, p. 299]); 
6. Compute the coefficients of h'(x) in OA(n) time, and evaluate h(ti) and 

h'(ti), i = 1,... , n, in OA (n(logn)2) time, following the same technique as 
in steps 2 and 3; 

7. Compute f l(ti) = h (ti) /g (ti) and f2 (ti) =h'(ti) I (ti) + h (ti) g' (t )1g2(t ), 
i = 1, .. , n, in OA (n) time; 

end FAST; 

The space and time complexity of FAST are OA(nlogn) and OA(n(logn)2), 
respectively. In Sections 4 and 5, we consider two important special cases for which 
the time complexity reduces to OA (n log n). 

3. Generalized Hilbert Matrices. In this section we present generalized 
Hilbert matrices which arise in the quadrature approximation of Cauchy singular 
integrals. We consider the Cauchy principal value integral 

(10) I(y; s) = - f w(t)( )L dt, jsj < 1, w(t) = (1 - t)(1 + t)1, 

where a and d are constants and -1 < a, 3 < 1. Hadamard's finite part integral 
is defined by 

(11) IH(Y; s) = d( ) = 1 X w(t) (t- -) 2 d Is < 1, 

where it is assumed that w(t) and y(t) are such that the derivative of I(y; s) exists. 
The singular integrals (10) and (11) arise in fields such as aerodynamics, wave- 
guide theory, scattering, fracture mechanics and others. A particular example is 
the equation 

(12) ? f - t2y1/2t8() dt - f(s), 1s < 1, 

which arises in fracture mechanics. The solution y(t) represents the derivative of 
the crack opening under a given pressure distribution f(s) along (-1,1) (Erdogan 
and Gupta [6], Kaya [17]). 

We will derive quadratures for the singular integral (10). These quadratures give 
rise to matrices B1 and T. Quadratures for IH (Y; s) and the matrix B2 can be 
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obtained from the quadratures for I(y; s) via (11). By rewriting (10) as 

(13) I(y;s) = 11 1 y(t) - y(s) y(s) 1 w(t) dt 
(13 I(; 8 =-] w(t) dt + pd__ 

we see that classical quadratures may be used to approximate I(y; s). The second 
integral in (13) can be computed once to within any given tolerance by using power 
series expansions and contour integration (Gautschi and Wimp [8]) and the first 
integral via a quadrature for different functions y(t). FAST could be used to speed 
up the quadrature computations. 

We consider only two cases of the weight w(t). The analysis can easily be ex- 
tended to the general weight function w(t) in (10). 

The case a = d = 0. Here, the weight function is w(t) = 1. Applying the 
trapezoidal rule in (13), we derive 

n+1 y(s) 1 - sj) 
(14) In(Y; s) = 5 Yi t) - s + 

7r n1 + si' jj < 1, 
i=O tS 

where ti = -1 + ih, i = O, 1,..., n + 1, h = 2/(n + 1), wo = Wn+1 = h/(27r) and 

wi = h/7r, i = 1,..., n. Trummer's matrix T can be derived by setting s = tj, 
j=l,...,n,in (14): 

In(Y;tj)= wiy(ti)- y(tj)t it +F(tj), j =l,...n, 

if j i:Aj 

(15) F(tj) - wo(y(to) - y(tj)) + Wn+l(Y(tn+l) - y(t)) + wjy(tj) 
to-t j tn+1 -t 

+ y(t3 ) l - til 

where we have assumed that y'(tj) exists. The computation of y'(tj) can be per- 
formed via a finite difference formula with the same or better accuracy than (14). 

The case a = 0 = -1/2. For this special case the weight function becomes 
w(t) = (1 t2)-1/2. Using the Gauss-Chebyshev quadrature and the identities 
(Erdogan and Gupta [6]) 

(16) n-1 E 1 _ Tn (s) (1 t2)1/ dt = O, jsj < 1, 

we see that I(y; s) can be approximated by 

(17) In (y; s) = n-1 y((ti) t1 ) = + Us y(s), ti-s .=1 ti -s Tn (s) 

where ti = cos((2i - 1)7r/2n), i = 1, ... , n, are the zeros of the Chebyshev polyno- 
mial Tn(t). 

Setting s = sj =: cos(j7r/n), j = 1,... ,n- 1, in (17), where sj are the zeros 
of the Chebyshev polynomial of the second kind Un- (s), we derive summations 
similar to Bly: 

(18) In (y; Sj) = n E. , t () , j =,. . - ,n1, 
ti - si 

while setting s = ti, i = 1, ... , n, we derive Ty. 
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4. An Application of FAST. In this section we present an OA (n log n) stable 
implementation of FAST for the Chebyshev points. We consider the numerical 
solution of (12). Using (18) to approximate (12), we obtain the (n-1) x n algebraic 
system 

(19) Ay = f, Aj,. 
- j = n- n, 

where y = [y(tl), y(t2), .. . , y(t")]T and f = [f(s1), f(82), , f(Sn-1)]T. By using 
identity (2.4) of [9], we can easily derive the following right inverse A' of A, and 
consequently obtain the solution of (19) from 

1 - S 
(20) y = AIf+b ubn (AI)ij, ( - ) i = n, jn-1, 

where bn is an arbitrary constant and u, is a vector with all elements equal to one. 
In the following example, we apply FAST to the computation of 

(21) (A'f)i = n-1 (1n- S2)f(sj) . 
j=1 

Example 1. The algorithm presented below is a modification of FAST for the 
INPUT: ti = cos((2i - 1)7r/2n), i = 1,...,n, sj = cos(j7r/n)and yj = f(s;), 
j = 1, ... ,n -1. 

1. Instead of computing g(x) in its power form, we will use an analytic expression. 
We have 

n-1 

g(x) = rj (x - sj) = dnUn- 1 (x) = dn sin(nO)/ sin(0), 
j=1 

where dn = 2-(n-1) and cos(O) = x. 
2. Similarly, g'(x) = -dn[nTn(x) - xUn1 (x)]/(l - x2). 

3. Since g'(sj) = dn(-l)ij1n/(l - s?), the complexity for this step reduces to 

OA(n) time. 
4. Equation (7) and step 3 above imply that 

h(sj) = dn(-l)j+lyji j = 1,..., n-1. 

5. We find h(x) by using orthogonal polynomial interpolation. We first set 

n-1 

(22) h(x) = E akUk-1(X) 
k=1 

and use the fact that Gaussian quadratures for n-1 points are exact for polynomials 
of degree < 2n - 3 to derive the following orthogonality relation, 

-(1 X2)1/2U U(X)Um (X) dx 
-1 

(23) n-1 if I i l =r -1 
-( 

_ 82)U1(5k)Um(5k) 2 

k ~~~~0 if I #m, 
k=1 
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where I + m < 2n -3. From the last two equations we see that for k = 1,... , n - 1, 

(24) a = 2rF1 ,(1 - s2)h(sj)Uk_1(sj) = 2xjsin (k2ni) 

xj = n-lh(sj) sin (i) 

Therefore, ak can be computed via FFT in OA(nlogn) time (Aho et al. [1]). 
6. From step 1 and (22), we see that for i = 1, . . . ,n, 

=dn (-li)i+1 
g(25) 

= sin((2i - 1)7r/2n) 

h(ti) = E ak sin (k 2 ) /sin 2 
k= 1/ 

7. Finally, AIf is computed from (26) by using FFT in OA (n log n) time, 

(26) f1(ti) = h(t ) = d (- 1)t+ aksin (k 2 ) i=1,...,n. 

The total cost of the above implementation of FAST is OA (n log n), since it only 
requires the application of FFT twice. In Table 4.1 we present our computational 
experience with FAST, and with the conventional algorithm for the multiplication 
of a matrix with a vector directly, which requires OA (n2) operations. We have 
chosen the function f(s) = 1. In this case, the summations can be obtained exactly 
from the identity (e.g. Erdogan and Gupta [6]) 

n-i 1 - 
(27) n-1 E t = til ,... n. 

j=1 t j 

TABLE 4.1 

The performance of FAST versus direct multiplication for f(s) = 1. 

OA (n log n) Algorithm OA (n2) Algorithm 

Time in Max. Error Time in Max. Error 
k n = 2k seC. seC. 

2 4 0.0013 0.372 x 10-7 0.0004 0.223 x 10-7 
3 8 0.0031 0.447 X 10-7 0.0014 0.968 x 10-7 
4 16 0.0054 0.447 x 10-7 0.0055 0.194 x 10-6 
5 32 0.0122 0.671 X 10-7 0.0222 0.484 x 10-6 
6 64 0.0248 0.596 x 10-7 0.0889 0.789 x 10-6 
7 128 0.0524 0.104 X 10-6 0.3563 0.200 x 10-5 

8 256 0.1082 0.372 x 10-6 1.4264 0.400 x 10-5 
9 512 0.2335 0.738 x 10-6 5.7057 0.814 x 10-5 

10 1024 0.4831 0.114 x 10-5 22.8265 0.167 x 10-4 
11 2048 0.9975 0.627 x 10-5 91.3278 0.336 x 10-4 
12 4096 2.0592 0.743 x 10-5 365.2306 0.713 x 10-4 

The maximum error shown in Table 4.1 is obtained from maxi jti - fi (ti) j in the 
fourth column, and from maxi Iti - (Bly)i j in the last column. The computa- 
tions have been performed on a DEC-20 by using the single-precision subroutines 
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SINT and SINQF from FFTPACK of NETLIB (Swarztrauber [21]), which are most 
efficient when n is a power of 2. The table shows that FAST outperforms the con- 
ventional algorithm for all n > 16 and that it also attains a better accuracy. Similar 
results have been obtained for several other choices of f(s). O 

The algorithm described in the above example could be used in the solution of 
the singular integral equation 

(28) -f w(t) L ()dt + A w(t)K(t, s)y(t) dt = f(s), s81 < 1, 

provided that the kernel K(t, s) is of the form 

(29) K(t,s) - L(t, s) 
t? 

Using quadratures similar to (17), we can reduce (28) to the following algebraic 
system, 

Wi 
(A + AC)y = f, (A)j,i = ti , (C)j,i = irwiK(ti, sj), 

j = ,...,m, i = ,...,n, 

where wi are the quadrature weights, e.g. if w(t) = (1 t2)-1/2 then wi = 1/n. 
The last algebraic system can be solved via iterative methods such as generalized 
conjugate gradient (Concus and Golub [3], Trummer [22]), Nystr6m's iterative vari- 
ants (Gerasoulis [10]), and successive approximation (Tsamasphyros and Theocaris 
[23], Ioakimidis [16]). These iterative methods repeatedly compute products of the 
form B1y, and the use of FAST will greatly improve the computational speed. 
Examples of equations with kernels similar to (29) can be found in Comninou [2], 
Tsamasphyros and Theocaris [23], Kaya [17], Elliott [5]. 

5. Approximate Algorithms. In this section we discuss two approximate 
algorithms which could be very useful for certain point distributions. One of these 
algorithms uses FAST while the other uses a power series approximation. 

The procedure described in Section 2 only proves the existence of an algorithm 
whose computational complexity is smaller than that of the conventional algorithm. 
It does not show if FAST is practical, except in the case of the Chebyshev points 
for which FAST reduces to computing FFTs. How practical FAST is in general 
depends on how the points are distributed in the complex plane. For example, for 
the equidistant points ti = -1 + ih, i = 0, . . ., n + 1, h = 2/(n + 1), interpolation 
is ill-conditioned for certain functional values (Dahlquist and Bjorck [4]). This 
implies that FAST could be unstable even for n = 10, since in step 5 of the algorithm 
interpolation is used. Moreover, even if the algorithm is stable, the constants for the 
time complexity could be larger than 10. Therefore, FAST could become faster than 
direct multiplication only if n > 1000. In such cases, an alternative implementation, 
or even an approximate algorithm, might be a better choice. In the case of the 
equidistant points one does not have to use FAST at all, since ti -tj = (i - j)h 
and therefore the sums in (15) can be computed via FFT convolutions directly in 
OA (n log n) time. However, as we will see below, the usefulness of FAST is not 
limited to the Chebyshev points. As a matter of fact, it could be used with an 
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approximate algorithm to compute the products Ty or Bpy to within an accuracy 
E in OA(nrlogrn) time. 

Let us consider the matrix T and assume that the points ci lie on a sufficiently 
smooth closed curve in the complex plane. Points that lie on smooth curves arise 
in the approximation of Cauchy singular integral equations in the complex plane. 
Under this assumption, Reichel [19] has shown that T can be approximated by 

(31) T (B(2) -B(?) - C)D-1 

where Dn and B(?) are diagonal matrices, B(2) is a low-rank matrix and Cn is a 
matrix of the same form as T having elements Ck equal to the nth roots of unity. 
The product B(2)y can be computed directly in OA(k2) time, where k depends 
on the tolerance E and on the smoothness of the closed curve and is usually much 
smaller than n. Reichel uses properties of circulant matrices to compute Cny in 
OA (n log n) time. We show in the example below that FAST also computes Cny in 
OA(nlogn) time and more importantly that its implementation is stable for large 
n. 

Example 2. Consider the nth roots of unity 

Ck=ep2-7ri(k 
- 1) i= k k= 1, ... , n. 

For these points we have that 
1. g (x) rl= 1 =(x _ = xn-1 

2. g'(x) = nxn-1 and g"(x) = n(n - 1)xn-2. 
3. g'(Ck) = n/ck and 9"(Ck) = n(n- 1)/c, k = 1,... ,n, in OA(n) time. 
4. h(ck) = ykg'(Ck), k = 1,... ,n, in OA((n) time. 
5. Set h(x) = n 1 amxm so that h(ck+l) = Z,Joamcm+i, k =O ... , n- 

implying 

n-1i27rk 

(32) am =n-11 h(ck+1)exp ), m =0,..., n- 1, 
k=O 

which can be computed via FFT in OA(n log n) time (Aho et al. [1]). 
6. From the last step we have that h'(x) = En-=10 mamxm-l so that 

(33) h'(ck+ ) = exp (-) E mam exp (I), k = 0,.. . ,- 1, 

which again can be computed via FFT in OA(n log n) time. 
7. Equation (9) computes Xk = (h'(ck) - Yk9g"(Ck))/g9(Ck), k = 1,... ,n, in 

OA(n) time. 
We can easily see that the above implementation of FAST requires OA(n log n) 

time. The computational performance is similar to that of the Chebyshev points 
shown in Table 4.1. 5 

Finally, we describe a technique based on a power series expansion. This tech- 
nique is similar to the one used by Greengard and Rokhlin [13] in particle simulation 
and Odlyzko and Sch6nhage [18] in the fast computation of-the zeta function. We 
present the method in the case of p = 1 in (4) and under the assumption that 
the points are well separated. Two sets of points are well separated if there exist 



A FAST ALGORITHM FOR GENERALIZED HILBERT MATRICES 187 

points to, so and a positive number r > 0 such that Iti - toj < r, Isj - sot < r and 

Ito - sol > 3r (Greengard and Rokhlin [13]). Under these assumptions we see that 
tsj-sol/lx -sol < 2 for x = ti. Therefore, using the geometric series expansion, 
we obtain 

n 00 

f) ( 
Z 
E (x-so){- (s - 

so)/(x-sO)} k=O 
(34) n= 

= 

bk = yj(sj - ) )k 

j=1 

We can easily see that 
m 

fi (x) fm (x) = E - so)k1, 

(35) k=O 

lfl(x) - fm(x)l < A ()XA =Eiyji) z t'. 
j=1 

Let us assume that fi (x) is to be approximated to within a precision E. Then m 
must be chosen so that m - log2 (E/A). The total cost of arithmetic operations 
required to compute f m(ti), i = 1,... , n, is OA(mnr). If m < n, then the complex- 
ity reduces to OA (n). Therefore, for the well-separated points this algorithm will 
be asymptotically faster than FAST, provided that E is not very small. 

If the points are not well separated, then this technique can still be applied. 
The sum in (34) can be split into subsums of well-separated and not well-separated 
(nearby) points. The computations for the nearby points can be performed directly, 
while we can use (35) for the well-separated points (see Greengard and Rokhlin [13] 
for details). The complexity of the algorithm depends on the homogeneity of the 
distribution of the points. For nonhomogeneous distributions, n might have to be 
extremely large before the algorithm becomes faster than direct multiplication. The 
applications reported in Greengard and Rokhlin [13], and Odlyzko and Schonhage 
[18], however, show that this algorithm could also be very useful for certain point 
distributions. 
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