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The Stable Evaluation 
of Multivariate Simplex Splines 

By Thomas A. Grandine* 

Abstract. This paper gives a general method for the stable evaluation of multivariate simplex 
splines, based on the well-known recurrence relation of Micchelli [12]. This paper deals with 
two problems which arise in the implementation of the recurrence relation. First, the 
coefficients in the recurrence are shown to be efficiently computable via the dual simplex 
method of linear programminig. Secondly, the problem of evaluation along mesh boundaries 
is discussed in detail. 

1. Introduction. In de Boor [2], the multivariate simplex spline M( I to,..., tn) was 
defined to be 

(1) M(Xtt0 ...I) VOlnm{(P lX) .[.0 
t]} x E Rm. 

In this definition, tO0,... tn are points in RW, [A] is the convex hull of A, and P is 
the canonical projector 

P: R - Rm: x - (x(i))f . 

In addition, volk(A) is the k-dimensional volume of the set A. 
The simplex spline is, in general, a nonnegative piecewise polynomial function of 

degree < n - m, supported in [PtO,..., Ptn], and it is in Cn-m-1 provided that the 
points PtO, .. ., Ptn are in "general position." "General position" means that any 
m + 1 of the points Pto, .. ., Ptn are in general position, i.e., they are affinely 
independent. For a proof of this result, see, for example, [4]. 

To compute the value of a simplex spline at a point, all that is required is to know 
which polynomial coincides with the spline at the given point. As the following 
example illustrates, this is far from trivial. 

Example 1. Consider the knots (1, 0), (1, 1), (0, 1), (-1, 0), (-1, -1), (0, -1) for a 
bivariate cubic simplex spline. Then the spline will be made up, in its region of 
support, of 24 separate cubic polynomials pieced together as in Figure 1. Given an 
arbitrary point x in the plane, the mere determination of which of the 24 regions in 
which x resides is a very difficult problem, even for this specific collection of knots. 
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FIGURE 1 

It is important to realize that humans, gifted with eyes, are able to view Figure 1 and 
infer all kinds of spatial and geometric information about the problem which a 
computer can only determine by performing various algebraic computations. Even 
determining which of the vertices are extreme points of the region is not a simple 
undertaking (in Figure 1, all points are extreme). Furthermore, once the location of 
x is actually determined, there still remains the problem of knowing just what 
polynomial to evaluate. 

A better approach might involve the use of recurrence relations, the multivariate 
analog of what de Boor does in his routine BSPLVB, in [3]. In [13], C. A. Micchelli 
proposed a more convenient definition of a multivariate simplex spline as the 
distribution on Co?(Rm) given by 

(2) fRM( Ito, . tn)f =n!f f OP. 
Rm 

[ ~~~~~~~to tn I 

This definition makes sense even if to0., tn are not in general position. Using this 
definition, Micchelli was able to prove recurrence relations for these multivariate 
simplex splines. These relations are given in Theorem 1. 

THEOREM 1. If x = yn 0aiPt1, with ynZ7 ai = 1, then 

n 

(3) M(X I tO ... tn) =aM(xlto, ... I ti_1, ti+,, tn)n 
n m i=O 

Furthermore, if y = ynZo7aPt1l with yn oai = 0, then 

n 

(4) DvM(- I to, ..Itn) = n , aiM(- Ito,.. ,ti_1, ti+1, ,tn)- 
i=o 

Proof. The proof of this theorem has been given in various forms in a number of 
places, including [12], [9], [8], and [5]. 

Since all the simplex splines appearing on the right-hand side of the recurrence 
relation (3) are of degree one less than the simplex spline appearing on the left-hand 
side, the value of any simplex spline at a point can be written, using (3) recursively, 
as a linear combination of piecewise constant simplex splines. The evaluation of a 
piecewise constant simplex spline involves nothing more than computing the m- 
dimensional volume of a certain simplex. 
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On the face of it, this is a straightforward task. It becomes somewhat more 
difficult when the question arises of just how the recurrence relation should be 
implemented. One thing worth noting is that the recurrence relations do not depend 
upon the actual location of the points to, ..., tn, but only upon the location of the 
points Pto,..., Ptn. A simplex spline is therefore determined uniquely by consider- 
ing just the knots. Hence, if the points to0 .. ., tn are taken to be in R1 instead of Rn, 

then Theorem 1 is still true if the projector P is omitted. Hence, unless stated 
otherwise, the points to, .. ., tn will henceforth be assumed to be in Rm. 

This remark, however, does not simplify the actual implementation of the recur- 
rence relation. The real problem is this: Suppose that an arbitrary collection of 
knots, say to ... ., tn and a point x, have been given. How should the a, be chosen so 
that yZn=0a1t1 = x and Z7=0aX = 1? Efficiency will demand that as many of the a1 as 
possible be zero, for each nonzero a1 means the evaluation of yet another lower- 
degree simplex spline to contribute to the quantity sought. Accuracy will demand 
that a1 >? 0 for each i, since each simplex spline is nonnegative on its region of 
support, and it is desirable to eliminate the effects of cancellation when accumulat- 
ing quantities of opposite sign. Essentially, a solution to the following problem is 
sought: Find a1, i = 0, . . ., n, such that 

n n 
(5) a xt, x, Ixi1 x 0, i = 0,..., n. 

i=O 1=0 

The difficulty here lies in satisfying the nonnegativity constraints. Arbitrarily 
setting certain ai to zero, and then solving for the remaining ai does not guarantee 
that a solution to (5) will, in fact, be obtained. 

2. Computing the Recurrence Relation Coefficients. Fortunately, there is a proce- 
dure for handling problems of this sort. More precisely, (5) is the description of a 
feasible region of a typical linear programming problem. Locating a point in such a 
region is a problem which has been studied in great detail for many years, and many 
ways of computing its solution are known. Among the most effective of these for 
small problems is the dual simplex method, and it will be the method of choice here. 

The dual simplex method can be implemented via the Tucker tableau, which is 
described in detail in [10]. (Further information regarding the simplex method and 
linear programming can be found in [7].) The Tucker tableau for finding the feasible 
point described by (5) is the following: 

a0 a1 ... a~ 0? 1 * n* * a 1 

rO to (l) t (1) .. tn (1) x (l) 

(6) 1 | r, o (2) t, (2) .. tn (2) x (2)| 

rm _ to (m) ti(m) 
... 

tn (M) x(m) 

rm I1 I ... I I 

where the ri represent the residuals in the m + 1 equalities in (5) if the ai are set to 
zero. In general, the variables along the left side of the tableau are the basic or bound 
variables, while the variables along the top side of the tableau are the nonbasic or 
free variables for the problem. In any given state, the nonbasic variables are 
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assumed to have zero value, while the basic variables take on the appropriate 
residual value. 

The dual simplex method is performed by exchanging basic and nonbasic varia- 
bles. If the entry in the ith row and jth column of the tableau is given by tij, then 
the pivot rules for exchanging the kth basic variable with the /th nonbasic variable 
are: 

tkl l/tkl, 

tkj tkj/tkl, i#k, jl. 

tij tij 
- 

tiltkjltkl 

Once the r, have been set to zero (by making them nonbasic), the equalities in (5) 
are satisfied. However, the inequality constraints may not be satisfied, and it may be 
necessary to exchange basic and nonbasic variables in order to make all the basic 
variables nonnegative. This is done by selecting a row whose basic variable has a 
negative value, selecting a column whose tableau entry in the selected row is also 
negative, and then exchanging the two variables. (Ties in the selection process may 
be broken by Bland's rule [1] or by lexicographic ordering [10]. Both methods are 
guaranteed to avoid cycling.) If such an exchange cannot be accomplished (because 
all entries in the selected row are nonnegative), an infeasible problem is indicated. 
This means that x lies outside the convex hull of the knots, and hence outside the 
region of support of the simplex spline. This condition can usually be detected fairly 
early in the computation. 

Example 2. Consider once again the knots (1,0), (1, 1), (0, 1), (-1,0), (-1, -1), 
(0, -1) for a bivariate cubic simplex spline and the point x = (, 4). Setting up the 
Tucker Tableau for problem (5) results in 

a0 a1 a2 a3 a4 a5 

rO 1 0 -1 -1 0 

ri 0 1 1 0 -1 -1 4. 

r2 I I I I I I 

Initially r(, rl, and r2 must be set to zero. This is done first for r(, by exchanging it 
with a(: 

r() a1 a2 a3 a4 a5 1 

a?C I 0 -1 -1 0 j 

1l 0 1 1 1 - 4. 

r2 I- 0 1 2 2 1 1 

This tableau now corresponds to a solution in which r( = 0. Since this should be a 
permanent condition throughout the computation, it suffices to make r( perma- 
nently nonbasic. This can be easily accomplished by merely deleting the first column 
of the tableau entirely, leaving 

a1 a2 a3 a4 a5 1 

a, 1 0 -1 -1 0 2 
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Now, the same thing can be done with r1, and this yields 

a2 a3 a4 a5 

ao -1 0 1 9 

a 0 -1 -1 4. 

r2 1 2 2 1 2 

Again, but this time with r2, 

a3 a4 a5 1 

a 1 2 2 34 

-2 -3 -2 

a 2 2 1 2 

However, a0 = a= - a2 = 2 does not satisfy the nonnegativity constraint, so 
a1 and a3 are exchanged: 

a, a4 a5 

a I 
A 1 5 

2 - 2 21..... 8 

a 1 3 1 . 

= 8 a2 = - a3 = 
a 

, with a1 = a4 = a5 = 0 is one of the many solutions to (5). 
Fortunately, the stability of the recurrence relation is unaffected by the choice of 
solution. It is sufficient to use whatever solution is first obtained by the simplex 
method. In addition, note that the simplex method will always produce only 
solutions which have at most m + 1 nonzero components, a fact made possible by 
Caratheodory's Theorem. Hence, efficiency is optimized, in the sense of evaluating 
as few lower-degree simplex splines as possible, by this technique. 

Of course, this is but one of many such problems that might have to be solved in 
the evaluation of a single spline. This is because each of the splines occurring on the 
right-hand side of the recurrence relation has, in general, an unknown value. 
Therefore, each of them must somehow be evaluated. 

Fortunately, the Tucker tableau is well suited for this. It is possible to start with 
the tableau which solves (5) initially, and use it to obtain solutions to the subprob- 
lems. This is easy, for each subproblem can be viewed as being the original problem 
with the additional constraint ai = 0. All that is necessary to impose this constraint 
is to pivot ai to the top of the tableau, and then delete the corresponding column. 
This new tableau is then optimized. This produces a solution to the subproblem very 
quickly, often in just one pivot. Obviously, each subproblem may have its own 
associated subproblems, and these may be solved in the same way. By storing the 
tableaus on a stack, all of the subproblems down to the lowest levels can be solved in 
a highly efficient manner. 

3. Evaluation Along Grid Lines. It would seem, at this point, that the difficulties 
involved in evaluating a simplex spline have been completely overcome. This is, 
quite unfortunately, not the case. The simplex spline is, after all, by definition (2) a 
distribution, and the recurrence relations treat it as such. Yet, here is an attempt to 
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compute a pointwise value for this distribution using a relation which may be true 
only in a distributional sense. It should not come as a surprise, then, when things go 
awry. Certainly, nothing can go wrong as long as only continuous splines are dealt 
with, but, unfortunately, the piecewise constant splines which are ultimately ob- 
tained on the right-hand side of the recurrence relations are discontinuous along the 
grid lines. A grid line is defined to be a set consisting of the convex hull of m or 
fewer points taken from the set of knots. A point x is said to lie on a grid line if it is 
a member of some such set. It is on the grid lines that one must be wary. 

Example 3. Suppose one wishes to evaluate M(O, 0 tO, t1, t2, t), where to = (1, 1), 

ti = (-1,1), t2 = (-1,-i), and t3 = (1, -1). Then (0, 0) = to + 
I 

t2, and therefore 

M(O0,01 to, t1, t2, t3) = 3M(o,o Itl, t2, t3) + 3M(0,1to I, t1, t3). 
But M(. I t1, t2, t3) and M(. Ito, tl, t3) are discontinuous at (0, 0), so it is unclear 
whether to choose the interior or exterior limits as values for these splines. If interior 
limits are chosen, the computed value of the spline will be twice as large as the actual 
value. If exterior limits are chosen, the value will be zero, and this is obviously also 
incorrect. 

In the papers where actual computations of simplex splines are performed ([6], 
[11], and [12]), this problem is not discussed. Somehow the numbers come out right 
in the end, but the method by which they were obtained is never actually described. 
There are many ways of attempting to circumvent this problem, but nearly all fail in 
some way, especially when the inexact nature of the arithmetic performed by the 
computer is taken into account. In general, there seems to me to be no reasonable 
way to handle this problem, but for smooth splines, there are a few things that might 
be tried. 

The obvious approach is to prohibit the evaluation of splines on the grid lines. 
This is certainly the most sure-fire answer, and it is also a simple enough scheme to 
be easily implemented. All that needs to be done is to move the point at which to 
evaluate by some small amount, say E, whenever that point happens to be located on 
a grid line and try again. Higher-order splines are, in general, continuous, so this 
small change in the location of the point will make a very small change in the value 
of the spline. Because of roundoff error, however, it is impossible to tell when a 
point is actually "on" a grid line or merely "near" the grid line, for as the number of 
variables increases, the structure of the grid lines becomes increasingly complex. For 
example, in one variable, the grid lines consist only of the knots, while in two 
variables, the grid lines consist of the knots as well as the line segments joining the 
knots (see Figure 1). This increasingly complex structure not only makes the actual 
grid line checking more difficult, but it also necessarily complicates the strategy of 
trying to avoid the grid lines altogether. 

In one variable, the problem is not so bad. Typically, the decision is made a priQri 
to make all the piecewise constant splines either continuous from the left or 
continuous from the right. Then, when evaluation at a knot is desired, the value of 
the spline is set to zero if it is the left knot, for example, and nonzero if it is the right 
knot. Thus, for one variable at least, little needs to be done to clear up this nuisance. 

Conveniently, such a plan of attack generalizes to more -than one variable. A 
direction in R' is chosen (somewhat arbitrarily), and piecewise constant splines are 
evaluated according to the following rule: If x is in the interior of the region of 
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support, or if x is on the boundary of the region of support and the arbitrarily 
chosen direction points into the interior, the value of the piecewise constant spline 
shall be used; in all other cases the value of the spline shall be 0. In the univariate 
case, the grid lines consist only of the knots, so a simple check for equality suffices to 
determine whether or not a point lies on the boundary of the region of support. In 
theory, this rule eliminates the difficulty in the multivariate case, too. However, in 
the scheme discussed above, one never actually deals with the coordinates of a point, 
but only with its barycentric coordinates with respect to various collections of 
n - m + 1 knots from the set of all n + 1 knots. Because of roundoff error and the 
multiplicity of representations for any given point, the situation where a single point 
lies both on the exterior and the interior of a single region of support can exist, so 
the ambiguity about what to do persists. Thus, for multivariate splines an alternate 
approach must be taken. Its successful implementation depends on the following 
theorem. 

THEOREM 2. Let to, . . ., tm?l be a collection of m + 2 points in general position in 
Rm. Let A := [to, . . ., tm+1], and let A,:= [to ... , t_1, t,+1,. . . tm+1I]. Then for all 
x E A, with x not on any of the grid lines, x lies in exactly two of the Ai. 

Proof. The statement x E A is equivalent to the statement that there exists a 
solution to the problem: 

(7) Eaolti x, aE o=1, ai >O ,i=O... m + 1. 
.=o i=O 

Ignoring for the moment the inequality constraint, (7) can be viewed as a linear 
system, namely 

Ta = /, 

where T is an (m + 1) x (m + 2) matrix, a is the vector whose individual compo- 
nents are the a,, and /B is the vector obtained by adding the component 1 to the end 
of x. T clearly has rank m + 1, since the ti are in general position. Thus, this linear 
system has a one-parameter family of solutions, say a(s) := y + sz, where y, z E 

Rm + 1 and s E R. Now consider the inequality constraints, ai > O, i = O, . . ., m + 1. 
This is equivalent to yA + sz, > 0, i = 0,..., m + 1. Taken together, all these 
conditions define some interval S := [s, s+] in which s must lie in order for a(s) to 
satisfy the inequality constraints. Since x E A, it is clear that S is nonempty. 
Furthermore, it is clear that E7m2 y, = 1 and ijm' z, = 0, for im+l a, = 1, indepen- 
dent of s. Since the solution cannot be unique, at least one of the zi is nonzero. But 
EPM=+o1 zi = 0, so there must be at least two of the z. nonzero and of opposite sign. 
When z, is positive, a lower bound for s is obtained, while z, negative gives an 
upper bound for s. Hence, S is a finite interval. Since a(s) is a continuous function 
of s, no components of a can have sign changes in S. Furthermore, s outside of S 
means that one or more components of a(s) are negative there, hence must change 
sign on the boundary of S. Suppose a,(s-) = 0 and aj(s+) = 0. Since x does not lie 
on a grid line, t(s-) is the only zero component of a at s. Similarly, aj(s+) is the 
only zero component of a at s+. But this says that x E A, and x E Ai. Since a(s) is 
affine, no other solutions with a zero component are possible. Thus, x lies in exactly 
two of the A,. This proves the theorem. 
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With this theorem, continuous piecewise linear simplex splines, i.e., those splines 
whose set of knots is in general position, can now be correctly evaluated. Suppose 
one wishes to evaluate M(s I to . . , tm?+), where to ,..., tm+I are points in general 
position in Rn', at a point x which does not lie on a grid line. If, as in Theorem 1, 
A := [t0, . , t,+1] and Al,:= [to, . , ti 1, tl+,1 . . . tm+] then x lies in only two of 
the AI, say Ai and Ak. In order to apply the recurrence relations, (5) is solved to 
obtain the barycentric coordinates with respect to (without loss of generality) Ai. 
These barycentric coordinates then appear as the a, in the equation 

m?+I 

(8) M(X I to, ... * tm+) = (m + 1) E aiM(x I to,..., ti_D ti+ , ... . tm+J) 
i=o 

and, in particular, aj = 0. On the other hand, of all of the possible other terms, only 
M(X I to, ... , tk-1 tk+1 .. * tm+l) will be nonzero, since x lies in the span of onlyAi 
and Ak. Thus, if x is not on a grid line, then only one term on the right-hand side of 
(8) is nonzero. 

This observation leads to a stable method of handling the problem of grid lines, 
for if x is on a grid line, this condition can still be imposed. This leads to the 
following rule: If the value of a linear simplex spline is desired at any point, then 
only one term on the right-hand side of the recurrence relations is allowed to have a 
nonzero value. This trick forces evaluation on the grid lines to behave just like 
evaluation off the grid lines for linear simplex splines. Thus, continuous linear 
simplex splines are evaluated properly. But this means that all simplex splines of a 
higher degree which have maximum nontrivial smoothness are evaluated properly as 
well, since they are ultimately expressed as a linear combination of continuous linear 
splines, each of which can be evaluated properly. The only difficulty arises in the 
selection of the correct piecewise constant spline to be nonzero. 

Example 4. Consider again the setup of Example 3. The condition that exactly one 
of M(- I t, t2, t3) and M(- I tO t2, t3) can be nonzero at (0, 0) is imposed. In this case, 
it does not matter what is chosen. However, this problem might be attempted 
numerically with the following result: 

M(O, 0 I tOl tl, t2, t3) = 23M(0, ? I tl, t2, t3) 

+10-6M(0,0 1tO, t2, t3) + 3M(,1 t0, tl t3)- 

Clearly, M(- I tO t2, t3) cannot be chosen as the only nonzero spline if reasonable 
results are the desired goal. 

This indicates that the nonzero spline must be chosen with care. A good method is 
to choose from all possible splines the one which has the largest coefficient. This will 
eliminate the kind of numeric nuisance which occurs in Example 4. 

However, it must be pointed out that this approach only works if the linear spline 
is continuous. If it is discontinuous, the spline can be evaluated stably everywhere 
except along the discontinuity, where numeric noise makes the exact location of the 
discontinuity impossible to calculate. This means, necessarily, that higher-degree 
splines which are not as smooth as possible (whose knot sets are not in general 
position) may not be evaluated properly along the higher-degree discontinuities. 
Thus, there is more to smoothness than just aesthetics; it is necessary in order for 
this method to properly produce function values. 
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Using this technique, a code has been constructed for the bivariate case. However, 
it could be easily modified to handle the general case. The actual CPU time (in 
seconds) used to compute typical simplex splines is given in the following table. The 
computations were performed on the Boeing Computer Services Cyber 876. Each 
number is the total CPU time required to perform 2601 function evaluations over a 
square region surrounding the simplex spline (a 51 X 51 grid), so the average 
computational cost per function evaluation can be computed by dividing each 
number by 2601. Obviously, some of the evaluations required substantially more 
time than others, since the value of the functions are zero near the boundary, a fact 
which is quickly discovered when an infeasible tableau occurs at the first step. 

Degree CPU Time 

1 0.595 
2 0.717 
3 1.134 
4 1.526 
5 3.059 
6 5.584 
7 13.053 
8 30.345 

Boeing Computer Services 
Engineering Technology Applications Division 
P.O. Box 24346, MS 7L-21 
Seattle, Washington 98124-0346 
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