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Polynomial Factorization and Nonrandomness 
of Bits of Algebraic and Some Transcendental Numbers 

By R. Kannan, A. K. Lenstra, and L. LovAsz 

Abstract. We show that the binary expansions of algebraic numbers do not form secure 
pseudorandom sequences; given sufficiently many initial bits of an algebraic number, its 
minimal polynomial can be reconstructed, and therefore the further bits of the algebraic 
number can be computed. This also enables us to devise a simple algorithm to factor 
polynomials with rational coefficients. All algorithms work in polynomial time. 

Introduction. Manuel Blum raised the following question: Suppose we are 
given an approximate root of an unknown polynomial with integral coefficients and 
a bound on the degree and size of the coefficients of the polynomial. Is it possible 
to infer the polynomial? We answer his question in the affirmative. We show that 
if a complex number a satisfies an irreducible polynomial h(X) of degree d with 
integral coefficients in absolute value at most H, then given O(d2 + d* log H) bits 
of the binary expansion of the real and complex parts of a, we can find h(X) in 
deterministic polynomial time (and then compute in polynomial time any further 
bits of a). Using the concept of secure pseudorandom sequences formulated by 
Shamir [23], Blum and Micali [3] and Yao [25], we then show that the binary (or 
m-ary for any m) expansions of algebraic numbers do not form secure sequences in 
a certain well-defined sense. 

We are able to extend our results with the same techniques to transcendental 
numbers of the form log(a), cos-'(a), etc., where a is algebraic. 

The technique is based on the lattice basis reduction algorithm from [16]. Our 
answer to Blum's question enables us to devise a simple polynomial-time algorithm 
to factor polynomials with rational coefficients: We find an approximate root of 
the polynomial and use our algorithm to find the irreducible polynomial satisfied 
by the exact root, which must then be a factor of the given polynomial. This is 
repeated until all the factors are found. This algorithm was found independently 
by Sch6nhage [22], and was already suggested in [16]. 

The technique of the paper also provides a natural, efficient method to compute 
with algebraic numbers. 

This paper is the final journal version of [13], which contains essentially the entire 
contents of this paper. 

1. A Polynomial-Time Algorithm for Blum's Question. Throughout this 
paper, Z denotes the set of the integers, Q the set of the rationals, R the set of the 
reals, and C the set of the complex numbers. The ring of polynomials with integral 
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(complex) coefficients will be denoted Z[X] (C[X]). The content of a polynomial 
p(X) in Z[X] is the greatest common divisor (abbreviated gcd) of its coefficients. A 
polynomial in Z[X] is primitive if its content is 1. A polynomial p(X) has degree d 
if p(X) = Ed o piX' with Pd : 0. We write deg(p) = d. The length IPI of p(X) = 

i=o piX' is the Euclidean length of the vector (Po,iPli, . . ,Pd); the height IPIO 
of p(X) is the LOO-norm of the vector (Po,Pi, , Pd), SO IPIO = maXO<i<d lpiI An 
algebraic number is a root of a polynomial with integral coefficients. The minimal 
polynomial of an algebraic number a is the irreducible polynomial in Z[X] satisfied 
by a. The minimal polynomial is unique up to units in Z (see, for example, [11]). 
The degree and height of an algebraic number are the degree and height, respectively, 
of its minimal polynomial. The real and complex parts of a complex number z will 
be denoted Re(z) and Im(z) respectively. 

A lattice in R' is a set of the form 

{ Aibi: AiE Z 

where b1, b2,... ,bk are linearly independent vectors in R'. The lattice is said 
to be generated by the vectors b1, b2,..., bk, which form a basis for the lattice. 
The lattice is denoted L(bl, b2,..., bk). An important result we need is the basis 
reduction algorithm from [16, Section 1]. We will only state the consequence of this 
algorithm used in this paper. Denote by I I the ordinary Euclidean length on R'. 

(1. 1) THEOREM (cf. [16, Propositions (1.11) and (1.26)]). Let 

L = L(bl,b2,. .,bk) 

be a lattice in Zn and let B E R, B > 2, be such that bib12 < B for 1 < i < k. 
It takes O(n k3 log B) arithmetic operations (additions, subtractions, multiplica- 
tions, and divisions) on integers having O(k . logB) binary bits to transform the 
basis b1, b2,... , bk by means of the basis reduction algorithm into a reduced basis 
V1,V2,... , Vk for L. The first vector vi in the reduced basis has length at most 
2(k-l)/2 A1(L), where A1(L) is the length of a shortest nonzero vector in L. 

Now we are ready to describe the idea behind our main result. Suppose upper 
bounds d and H on the degree and height, respectively, of an algebraic number a 
are known. Then we show that a sufficiently close rational approximation a to a 
enables us to determine the minimal polynomial h(X) of a. 

Given a, we compute rational approximations di to the powers ai of a. For 
a polynomial g = Ei giX' E C[X] we introduce the following notation for the 
approximated evaluation of g at a: 

(1.2) g = E gii. 

Suppose the degree of h(X) is n, n < d. We try the values of n = 1, 2, ..., d in order. 
With n fixed, we define for each positive integer s the lattice L, in R'+3 generated 
by bo0 b1, .b . , bn which are the rows (in order) of the following (n + 1) x (n + 3) 
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matrix: 
1 0 0 0 28 Re(do) 28. Im(o) - 

O 1 0 0 28 Re(dj) 28 Im(dj) 
O O 1 0 28 Re(d2) 28. Im(d2) 

(1.3) 

O O 0 1 28 Re(dn) 28 Im((n) 
Corresponding to a polynomial g = E 0 giXi in Z[X] of degree at most n (where 
some of the gi are possibly zero), we have a vector 9 in the lattice L, defined by 

n 
(1.4) =E gibi. 

i=O 

Clearly, 

M= 9o6+91 + '+gn8 + 2 ( Re (giai) + 22 (I E 9idi) 

= 1g12 + 22sigai2. 

This correspondence between polynomials in Z[X] of degree at most n and vectors in 
the lattice L, is easily seen to be 1-1 onto and readily invertible. We will strongly 
separate the minimal polynomial h(X) of a from all other polynomials g(X) of 
degree n or less with g(a) :A 0 by showing that for a suitable choice of s and small 
enough Iaiadi I, 

1912 > 2nIhI2. 

We run the basis reduction algorithm on bo, b1, . .. , bn to get a reduced basis. Sup- 
pose v is the first vector of this basis, and v(X) the corresponding polynomial. 
Because the degree of h was supposed to be equal to n, we have that h is contained 
in L8, so that A1(L,) < lhl. Theorem (1.1) now yields IjI2 < 2nIhI2, and therefore 
v(a) = 0 by the strong separation. This implies that h is a factor of v. Combining 
this with deg(v) < deg(h), we see that v and h are associates; further, the fact that 
v belongs to a basis for L, implies that v = ?h. 

The s needed will be bounded by a polynomial function of d and log H. Here is 
a short intuitive description of how the strong separation is proved. If the powers 
of a are sufficiently close to the di, clearly ha is close to h(a) = 0 (quantified in 
Lemma (1.5)). Thus Ihi2 = Ih12+(a small term) and can be bounded above. To 
show that 1I12 is large for other g, we consider two cases: If lgl is large, then of 
course 191 is large. If lgl is small, then we show that Ig(a)I has to be bounded from 
below (Proposition (1.6)). Again, Igitl being close to Ig(a)I, we are able to bound 
it from below and hence bound also I9I2 from below. 

(1.5) LEMMA. If a and di for 0 < i < n are complex numbers such that 
do = 1, and jai - diI < e for 1 < i < n and f is a polynomial of degree at most n 
in C[X], then 

If(a)-faI ? n If l. 
Proof. Immediate. 



238 R. KANNAN, A. K. LENSTRA, AND L. LOVASZ 

(1 .6) PROPOSITION. Let h and g be nonzero polynomials in Z[X] of degrees n 
and m, respectively, and let a E C be a zero of h with lal < 1. If h is irreducible 
and g(a) $ 0 then 

lg(a)l > n-1 Ihl-m . lgl-n+l 

Proof. Because h is nonzero and a is a zero of h we have that n > 1. If m = 0, 
then g(a) = lgl, so that the result follows. Now assume that m $ 0. Define the 
(n+ m) x (n +m) matrix M as the matrix having ith column Xi-1 h for 1 < i < m, 
and Xi-m-1 g for m+1 < i < n+m, where the polynomials X'-1 h and Xi-m-1 9 
are regarded as (n + m)-dimensional vectors. By R we denote the absolute value 
of the determinant of M, the so-called resultant of h and g. 

We prove that this resultant R is nonzero. Suppose on the contrary that the 
determinant of M is zero. This implies that a linear combination of the columns 
of M is zero, so that there exist polynomials a, b E Z[X] with degree(a) < m and 
degree(b) < n such that a h + b g = 0. Because h is irreducible, any nontrivial 
common factor of h and g must have a as a zero, so that with g(a) $ 0 we have 
that gcd(h, g) = 1. Therefore, we have that h divides b, so that with degree(b) < n, 
we find b = 0, and also a = 0. This proves that the columns of M are linearly 
independent, so that R $ O. Because the entries of M are integral, we even have 
R > 1. 

We add, for 2 < i < n + m, the ith row of M times T'-1 to the first row of 
M. The first row of M then becomes (h(T),T h(T),... Tm1 h(T),g(T),T 
g(T), ... I T, . g(T)). Expanding the determinant of M with respect to the first 
row, we find that 

R = lh(T) (ao +a, T + +am-,1 Tm-1) +g(T) (bo +bl *T + +bn_ 1 Tn-1)l 

where the ai and bj are determinants of (n + m - 1) x (n + m - 1) submatrices of 
M. Evaluating the above identity for T = a yields 

(1.7) R= lg(a)l lbo +bi a+ * +bn-1 can-1, 

because h(a) = 0. From Hadamard's inequality it follows that lbl < hhlm . Igln-1. 
Combining this with lal < 1 we get 

lbo + b, a + + bn-1 an-11 < n - hlm . gln-1, 

so that (1.6) follows from (1.7) and R > 1: 

lg(a)l > n-1 Ihl-m lgl-n+l. 

This proves Proposition (1.6). 
(1.8) Remark. Proposition (1.6) implies that two algebraic numbers that are 

not conjugates (conjugates are roots of the same irreducible polynomial in Z[X]) 
cannot get very close. More precisely, suppose a and : satisfy distinct irreducible 
primitive polynomials h(X) and g(X), respectively, in Z[X], each of degree at most 
n. Without loss of generality suppose that 1/1 < lal < 1, and let la - !1 be -i. It 
is easy to see that lg(a) - g(C)I < -Y lglO, n(n - 1)/2. Now a lower bound on -Y 

follows from Proposition (1.6). This kind of separation result also holds if a and : 
are conjugates (see for instance [21, Section 20]). 
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(1.9) LEMMA. Suppose a is a complex number with laI < 1 and with mini- 

mal polynomial h of degree at most d > 1 and height at most H, and suppose di 

satisfies dxo = 1 and Jai - ail < 2-9 for 1 < i < d. Let g be a polynomial with 

integral coefficients of degree at most d such that g(a) $ 0. Then with the notation 

introduced in (1.4), the following inequalities hold: 

(1.10) Ihl < (d + 1) H, 

(1.11) J9l > 2d/2 * (d + 1) H, 

provided 

(1.12) 28 > 2d 2/2. (d + 1)(3d+4)/2. H2d. 

Proof. First notice that 

(1.13) If 12 < (d +1) If 12 

holds for any polynomial f of degree at most d. To prove (1.10), we combine 

Ih12 = Ihi2 + 22-'Ihal2 and Ihal = Ih(a) - hIl < 2'8 d* H (Lemma (1.5)): 

IhI2 < 1h12 + d2 . H2 

< (d+1) H2+d2 H2 (cf. (1.13)) 

< (d + 1)2 H 2. 

This proves (1.10). We now prove (1.11). Clearly, if lgl > 2d/2 (d + 1) H, we 

are done because 1912 = JgJ2 + 2289,lgl2. So assume lgl < 2d/2 * (d + 1) H. By 

Proposition (1.6) and (1.13), 

g(a) > d-1 ' ((d + 1) . H2)-d/2 (2d/2 * (d + 1) H)-d+ 

> 2-d(d-l)/2 . (d + 1)-3d/2. H-2d+ 

so that, with Lemma (1.5) and a - il < 28 

191 , 2, Igal 

(1.14) > 2 . (2-d(d1)/2 . (d + 1)-3d/2 . H-2d+1 - 2-8 d | lg) 

= 2 2 d(d 1)/2 . (d + 1)-3d/2 . H-2d+1 - d g1. 

From (1.12) and 12d/2 * (d + 1) HI > lgl > lglco we get 

28 . 2-d(d- 1)/2 . (d + 1)-3d/2 . H-2d+1 

> 2d/2 * (d + 1)2 H = (d (d + 1) + (d + 1)) .2d/2 * H 

> d Igloo + 2d/2 (d + 1) H, 

which, combined with (1.14), yields (1.11). This proves Lemma (1.9). 

(1.15) THEOREM. Let a,h(X),d,H, and axi E 2-9Z [VX/], for 0 < i < dy 
satisfy the hypothesis of Lemma (1.9), where s is such that (1.12) holds. Let n be 

an integer satisfying 1 < n < d, and suppose that the basis reduction algorithm on 

input bo, b1, ... , bn defined in (1.3) yields a reduced basis with 
En 

= Z,no vibi as the 

first vector. Then the following three assertions are equivalent: 

(i) I <2d/2.(d+ 1)H; 

(ii) aC satisfies the polynomial v(X) = Zn=O viX'; 
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(iii) the degree of a is at most n. 

Furthermore, if n equals the degree of a, then h(X) = ?v(X). 

Proof. First notice that the lattice L, = L(bo, b1,... , bn) is contained in Zn+3, 
so that Theorem (1.1) can be applied to L8, and that the conditions for Lemma 
(1.9) are satisfied. 

Assume (i). From Lemma (1.9) we get v(a) = 0, which is (ii). 

Next, assume (ii). Then a satisfies a polynomial of degree at most n, which is 
(iii). 

Finally, assume (iii). This implies that h has degree at most n, so that h is a 
well-defined vector in L,. Lemma (1.9) yields lhl < (d + 1) H, so that in the 
notation of Theorem (1.1) we have A1 (L,) < (d + 1) H. It then follows from 
Theorem (1.1) that I<I ? 2d/2 (d + 1) . H, which is (i). This proves the equivalence 
of (i), (ii), and (iii). 

If n equals the degree of a, then (iii) is satisfied, so that a satisfies v(X) (from 
(ii)). Because deg(h) = n, deg(v) < n, and h is irreducible, we then have that v is 
an integral multiple of h. It follows that h = +v because both h and v are contained 
in L8, and because v belongs to a basis for L,. This proves Theorem (1.15). 

This theorem leads to the following algorithm for finding the minimal polynomial 
of a: 

(1.16) ALGORITHM MINIMAL POLYNOMIAL. Suppose we get on input upper 
bounds d and H on the degree and height, respectively, of an algebraic number a 
with lal < 1 and a complex rational number a approximating a such that i1i < 1 
and la - al < 2-8/(4d), where s is the smallest positive integer such that 

28 > 2d2/2 . (d + 1)(3d+4)/2 . H2d. 

First compute dei E 2-8Z [x/ZT, for 0 < i < d, such that do = 1 and ai - di < 
2-8-1/2 for 1 < i < d. This can be done by rounding the powers of a to s bits after 
the binary point. (It is easily verified that the di satisfy the conditions in Theorem 
(1.15), see Explanation (1.17).) 

For n = 1, 2,. . ., d in succession we do the following: 

- Apply the basis reduction algorithm to the lattice L = L (bo, bi, ... , bn) as 
defined in (1.3). 

- If the first basis vector v in the reduced basis satisfies I<I ? 2d/2 * (d+ 1) H, 
then let v(X) be the polynomial corresponding to v by the relation defined 
in (1.4), return v(X) as the minimal polynomial of a, and terminate the 
execution of Algorithm (1.16). 

This finishes the description of Algorithm (1.16). 
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(1.17) Explanation. We show that the di for 1 < i < d satisfy the conditions in 
Theorem (1.15), i.e., jaiaei < 2-9: 

Iaz - aI ? Iaz - &I1 + a& -ail 

< Ia - S lalI-j lli-1 + 2-8-1/2 (due to the rounding) 
j=1 

d ? 2 +2-28-1/2 
< 2-8 -4d 

(1.18) Explanation. It is no major restriction to consider a with lal < 1 only. 
Namely, if a 0 0 satisfies the polynomial h(X) = Ed> hiX, then 1/a satisfies 

Ed=o hd-iXi. Furthermore, an e-approximation a to a with lal > 1 easily yields 
a 3 e-approximation 3 to : = 1/a. Let Ia - a < e with e such that 0 < e < 1/2. 
Determine : such that 1/-1/al < e; then 

1/3-1?' 1: 1 
- 

1 a-al 
+ /3 _ 

ad a*d 

+e 
-a IaIIel 

Now 1a1 > (1 - e)Ial, so lal > IaI/2 > 1/2. So 1 - 1 < e[2 + 1] = 3 e. 

(1. 19) THEOREM. Let a be an algebraic number and let d and H be upper 
bounds on the degree and height, respectively, of a. Suppose that we are given an 
approximation ( to a( such that la-dIl < 2-8/(12d), where s is the smallest positive 
integer such that 

28 > 2d2/2. (d + 1)(3d+4)/2 H2d. 

Then the minimal polynomial of a can be determined in O(no d4 (d + log H)) 
arithmetic operations on integers having O(d2 (d + log H)) binary bits, where nO 
is the degree of a. 

Proof. In order to be able to apply Algorithm (1.16), we replace a by 1/a if 
necessary. It follows from Explanation (1.18) that a then yields an approximation 
/ to / = 1/a such that 1/ - 31 < 2-8/(4d). 

Now apply Algorithm (1.16). For a particular value of n the logarithm of the 
length of the vectors bi in the initial basis for the lattice L, = L(bo, bl, ... , b") is 
O(d2 + d log H) due to the choice of s. Application of the basis reduction algorithm 
to L, can therefore be done in O(n-d4 (d+log H)) arithmetic operations on integers 
having O(d2 . (d + log H)) binary bits. 

When going from n to n + 1 in Algorithm (1.16), we do not have to restart 
the basis reduction algorithm for the new lattice: We just add a new vector bn+i 
and a new dimension in which all the old vectors have a zero component, whereas 
bn+1 has component 1. It follows from this observation and [16, (1.37)] that the 
applications of the basis reduction algorithm for all n < nO together can be done in 
O(no d4 (d + log H)) arithmetic operations on integers having O(d2 . (d + log H)) 
binary bits. 

This bound clearly also holds for the computation of the di, which proves The- 
orem (1.19). 
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(1.20) Remark. A. Schonhage [22] has shown that for the lattice and the basis 
in (1.3), the basis reduction algorithm only needs O(n d3 (d + log H)) arithmetic 
operations on integers having O(d. (d + log H)) binary bits. This implies that 
Algorithm (1.16) actually needs O(no d3 (d+log H)) operations on O(d (d+log H))- 
bit integers. 

A further improvement of a factor d in the number of operations can be obtained 
by means of Schonhage's improved basis reduction algorithm [22]. The formula- 
tion of Algorithm (1.16) should however be modified slightly to incorporate this 
improvement, as the analogue of [16, (1.37)] does not hold for the improved basis 
reduction algorithm; for details we refer to [22]. For a more efficient algorithm for 
basis reduction see also a paper by Schnorr [20]. 

2. Ramifications. The algorithm of the preceding section can be interpreted as 
saying the following: Polynomially many bits of an algebraic number are sufficient 
to specify it completely (polynomially in the number of bits needed to write down 
its minimal polynomial). In a vague sense, then, the bits of algebraic numbers are 
not random, but are completely determined by the first polynomially many bits. 
We will not make this sense very precise here the cryptography papers referred to 
below undertake this task, but we will attempt to provide an intuitive description 
of why the results of the previous section show that the bits of algebraic numbers 
are not '(secure) pseudorandom' bits in the terminology of cryptographers. 

The question of when an (infinite) sequence of 'bits' (O's and l's) is random has 
been raised for a long time, and various reasonable definitions have been provided. 
Since any such sequence may be considered to be the binary expansion of a real 
number between 0 and 1, a rewording of the question is: When are the bits of 
a real number random? (The phrase 'the bits of a real number' will mean the 
binary expansion of the fractional part of the number.) The classical definition 
was provided by Borel in 1909 [4]. The gist of it follows: Define a real number 
a to be normal with respect to the base 2 if for any natural number k, each of 
the 2k possible 0-1 strings of length k occur with equal probability in the bits of 
a. A similar definition can be made for other bases. It was not difficult to show 
that most real numbers are normal. It was shown by Champernowne [7] in 1933 
that the real number ao which equals the infinite decimal .123456789101112... 
(whose digits are obtained by juxtaposing the digits of the integers 1, 2, 3, 4,... ) is 
normal to the base 10. Copeland and Erdos [6] generalized this to any basis and a 
class of reals including ao and a1 = .2357111317... whose digits are obtained by 
juxtaposing the digits of successive primes. An excellent discussion of the various 
classical definitions of when a sequence is random appears in [14, Section 3.5]. 

In several applications related to computer science one would like a notion of 
randomness that implies some kind of unpredictability. The importance of this for 
cryptography as well as complexity theory is discussed in [23], [3], and [25]. Some 
other relevant papers related to this discussion are [9] and [8]. Of course, the bits 
of the real number ao above are eminently predictable; thus intuitively, normalcy 
does not seem to be a good criterion for randomness in this setting. Besides this 
objection, there is another-we cannot really define randomness for one single real 
number and still have unpredictability. The model we have in mind is one where 
a player A presents a player B with some bits of a real number and B is trying to 
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predict the next bit. If there is one fixed real, B can compute the bits as fast as A 
can, and all bits are clearly predictable. So we will have to consider a set of numbers. 
The simplest set is the set of rationals. Blum, Blum and Shub [2] have shown the 
following: If A announces that he is giving out the bits of a rational number with 
denominator at most H, then after seeing 2 10g2 H bits of the rational number, 
B can figure out its fractional part and thus compute the other bits in polynomial 
time. Since A needed at least 10g2 H bits to store the rational, he cannot get a 
pseudorandom sequence of length more than a constant (2) times the length of the 
'seed'. 

The main result of the preceding section may be restated as follows: 
If A announces that he is giving the bits of an algebraic number which is the root 

of an irreducible primitive polynomial of degree d or less with integral coefficients 
each of absolute value at most H, then after seeing O(d2 + d 10g2 H) bits, B can 
compute in deterministic polynomial time the polynomial and hence find for any n 
the nth bit of the algebraic number in time polynomial in the data and n (for the 
latter statement see also Section 3). 

Intuitively, our result can be interpreted as saying that the bits of algebraic 
numbers cannot form very long pseudorandom sequences, because after seeing a 
number of bits that is polynomial in the length of the seed (the seed in this case 
would be the polynomial held by A) the sequence can be easily and uniquely in- 
ferred. As mentioned earlier, the question of whether this can be done was first 
raised by M. Blum (private communication) who foresaw the importance of the 
notion of predictability. 

Another ramification of the result of the preceding section is that computations 
involving algebraic numbers can be done in a natural way by representing alge- 
braic numbers by suitable rational approximations. The traditional representation 
of algebraic numbers is by their minimal polynomials (see, for example, [24] or 
[17]). We now know an efficient method of converting the rational approximation 
representation to the minimal polynomial representation. (For the conversion in 
the other direction, see Section 3.) While it is not hard to see that computations 
in either representation can be changed to computations in the other without loss 
of efficiency (the running time will not change by more than a polynomial), the 
rational approximation method is closer to the intuitive notion of computation. 
For this reason we briefly sketch as an example a polynomial-time algorithm for 
finding a primitive element (see definitions below) of the rationals extended by two 
algebraics. Landau and Miller [15] gave in 1983 a polynomial-time algorithm for 
the same problem as part of their algorithm for testing solvability by radicals. 

First we remark that if a and ,3 are two algebraic numbers, then given sufficiently 
close approximations to both, we can find the minimal polynomial of,B over Q(a) 
the least-degree polynomial p(X) with coefficients in Q(a) satisfied by ,B. This is 
done as follows. Suppose the degree of a over Q is d; then clearly each coefficient 
of p(X) can be taken to be a polynomial in a of degree at most d - 1 with integral 
coefficients. Suppose the degree of ,3 over Q(a) is m (we try m = 1, 2, ... in order). 
Then p(X) = E Zj=o pijaa'X' for some Pij E Z. We can turn the problem of 
finding the Pij (i.e., the problem of finding the minimal integral dependence among 
the ajO' for 0 < j < d - 1 and 0 < i < m) into a lattice problem in exactly the 
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same way as we turned the problem of finding the minimal integral dependence 
among a& for 0 < j < d into a lattice problem in the preceding section. In the 
interest of space we do not elaborate. 

Suppose that a is algebraic over Q of degree d, and ,3 is another algebraic number 
whose degree over Q(a) is m, where d and m are determined as described above. 
The field Q(a,,3) obtained by adjoining a and ,3 to the set of rationals is the set of 
all complex numbers expressible as polynomials in a and ,3 with rational coefficients. 
It is known that this field has a primitive element -y, i.e., an element -y with the 

property that Q(a,,B) = Q(-y), and indeed -y = a + I ,B, where I is a nonnegative 
integer at most d m. It is also easy to see that if the degree of a + I .,B is d . m over 
Q, then Q(a + I .,3) must be equal to Q(a,,3). Thus we can use the algorithm of 
Section 1 to find the degree of a+1 ,3 over Q for I = 0, 1, .. ., d m, given sufficiently 
close approximations to a and ,B, and thereby find the primitive element. It would 
be interesting to cast the entire algorithm for testing solvability by radicals into 
one that deals with explicit approximations to the algebraic numbers involved. 

The idea of computing with algebraic numbers in this fashion needs to be ex- 
plored further. While it is too early to say if the algorithms will be better in 
practice, they should yield good theoretical and/or empirical insights. 

The method of finding the minimal polynomial of ,3 over Q(a) can be ex- 
tended to finding algebraic dependence between any number of complex num- 
bers. More exactly, let a1, a2,... , at be (possibly transcendental) complex num- 
bers given by sufficiently good approximations. Assume that we know an upper 
bound d on the degree and an upper bound H on the coefficients of a polynomial 
f E Z[Xl,X2,.. ,Xt] with f(a1,a2,...,at) = 0. Then we can compute such a 
polynomial f in time polynomial in log H and (d+dj 1). (This latter number is poly- 
nomial in d for fixed t and in t for fixed d.) The precision to which the numbers ai 
must be known is also a polynomial number of bits in log H and (d+d-1). 

This yields a factorization algorithm for multivariate polynomials: Given f E 
Z[X1,X2,... , Xt], substitute sufficiently large random numbers 2, S3,... ,St for 

X2,X3,... ,Xt, compute an si such that f(8l,S2,. . -,St) 0, and then find an 
algebraic dependence between 81, 82,.... I, st. For t = 2, a slight variant of this idea 
is worked out in detail in [12]. 

Applications to Some Transcendental Numbers. The same technique can be ap- 

plied to transcendental numbers of the form cos-1 (a), sin-1 (ce), log(a) etc., where 

a is an algebraic number. The number ir is included in this class since it is the 

principal value (i.e., the value belonging to the interval (0, ir]) of cos-1 (-1). 

Suppose ,3 is the principal value of cos-1(a) for some unknown a, which is, 
however, known to be algebraic of degree and height at most d and H, respectively. 
The question is: Can we infer (in deterministic polynomial time) the minimal 

polynomial of a from an approximation ,B to ,3? We show that if ,B3 - AI is at most 
E = 2-8/(24d), this can be done, where s is such that 

29 > 2d2/2 . (d + 1)(3d+4)/2 . g2d 
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as usual. The argument is as follows. First we show that a good approximation to 
,B gives us a good approximation to a = cos(,): 

I cos(3) - cos(,3)1 ?5 emax{ [ + cos(z)] : between 3 and _ 
< E 

This can be utilized if we can compute cos(,3) at least approximately. To do this, 
we employ the Taylor series expansion of the cosine function and the argument that 
the tail of the series is small, once we consider several terms of the series. For all y 
with 0 < y < 2wr we have 

cos(y) = 1-y2/2! + y4/4!-y6/6! + y8/8!. - 

and further 

cos(y) - (1 - y2/2! + y4/4! - + y4k/(4k)!)I 

< 4k+1 max d4k+l cos(z) 1 z between 0 and y 
-(4k + 1)! 

'm 
dz4k~+l 

< (27r)4k+l/(4k + 1)! 

Let k equal the maximum of [-(loge)/41 and [7re2/21. Then using Stirling's for- 
mula, we see that (27r)4k+l/(4k + 1)! < E. Denoting 

g(y) = 1 - y2/2! + y4/4! - ...+ y4k/(4k)! 

we find that 

IgC@) - cos(,3)I < Ig(3) - cos(,3)1 + I cos(,) - cos(,B3)1 < 2 E. 

Thus, in polynomial time we can compute from ,B an approximation a to an un- 
known algebraic number a such that Ia -a1 <? 2 E = 2-8/(12d), with s as above. 
Now Theorem (1.19) guarantees that we can find the minimal polynomial of a in 
polynomial time. This argument can be extended to the inverses of functions that 
satisfy the following two definitions. 

(2.1) Definition. A complex-valued function f defined on a subset D of the 
complex numbers is approximable if there is a deterministic algorithm that, given 
a complex number x in D with rational real and imaginary parts and a natural 
number t, computes a complex number a satisfying Ia - f(x)I < 2-t in time 
bounded by a polynomial function of t and the number of bits of x. 

(2.2) Definition. A complex-valued function f defined on a subset D of the 
complex numbers satisfies the uniform Lip3chitz condition if there exist 6, M > 0 
such that If(x) - f(y)I < M Ix -yl for any x,y in D with Ix-yl < 6. 

(2.3) THEOREM. Suppose a complex-valuedfunction f defined on a subset D of 
the complex numbers is approximable and satisfies the uniform Lipschitz condition, 
for certain 6, M > 0. There is an algorithm which, given a complex number ,B 
in D with rational real and imaginary parts and two natural numbers d and H, 
determines whether or not there is a complex number,B in D satisfying 

(i) 1| -: /I < 6, with E = min((24d . 2d2/2M(d + l)(3d+4)/2H2d>1,6) and 
(ii) fC() is an algebraic number of degree at most d and height at most H. 

Further, if such a ,B exists, then f(3) is unique, and the algorithm determines the 
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minimal polynomial of f (C3). The algorithm works in time bounded by a polynomial 
function of d, log H, and the number of bits of f. 

Proof. First we show that if a B satisfying (i) and (ii) exists in D, then f(3) is 
unique. Suppose not; then let ,3 and -y satisfy (i) and (ii) and f(3) $ f(-Y). Because 

1-0 1 < 6, we have that If (d) - f(3)1 ' E M by the Lipschitz condition, and 
similarly If (-)-f ( 31 ) E M. But then, f (3) and f (a) are two algebraic numbers 
of degree at most d and height at most H with If () -f (-) I < 2e M, contradicting 
the fact that distinct algebraic numbers cannot come too close (cf. Remark (1.8)). 
This proves the uniqueness of fC(). 

By the approximability of f we can compute a such that a -f (3)I1 < E M. If a 
suitable ,3 exists, then the Lipschitz condition gives If (:) - f(3)1 < E M, so that 
If (p) - aI < 2e M. The proof now follows by Theorem (1.19). 

The exponential function, sine function, hyperbolic sine and cosine functions, 
etc., when restricted to a finite interval (note that we need such a restriction for 
the exponential function), satisfy both definitions, and thus the theorem can be 
applied to them. At present, the only interesting consequence is the statement that 
the bits of reals of the form cos-1 (a), sin-1 (a), log(a), where a is algebraic, do not 
form a pseudorandom sequence. 

Notice that complex numbers of the form log(a), where a is an algebraic number 
($ 0,1), cannot be algebraic. This follows from the famous theorem of A. Baker 
[1] (on log linear forms). 

3. Factorization of Polynomials. In this section we describe an algorithm 
to factor primitive polynomials over the integers in polynomial time. The first 
polynomial-time algorithm for this was provided in [16]. As described in the in- 
troduction, our algorithm is conceptually simple we find the roots of the given 
polynomial to a certain accuracy, and then find the minimal polynomials of the 
roots using the algorithm of Section 1. These must then be the irreducible factors 
of the given polynomial. Rabin [19, Section 3] first used such an idea to factor over 
finite fields, where it is possible to find the minimal polynomial of a root (which 
in general lies in an extension field) by solving a system of simultaneous linear 
equations. For polynomials with integral coefficients, an algorithm similar to ours 
is described in [5], without being polynomial-time, however. 

Throughout this section, f(X) E Z[X] is the given primitive polynomial to be 
factored, deg(f(X)) = d. Let H = (dG2) * If I In [18] it is shown that this H bounds 
the height of any factor in Z[X] of f (see also [14, Exercise 4.6.2.20]). The factoring 
algorithm now follows immediately from Algorithm (1.16). 

(3.1) ALGORITHM FACTOR. Let f, d and H be as above. If d < 1, then return 
that f is irreducible and terminate the execution of the algorithm. Otherwise, do 
the following as long as d > 2: 

- Let s be the smallest positive integer such that 

28 > 2d2/2 . (d + 1)(3d+4)/2 . H2d 

- Compute an approximation a to a root a of f such that la-Ia < 2-8/(12d) 
(this can be replaced by 2-8/(4d) if lal < 1, cf. Explanation (1.18)), apply 
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Algorithm (1.16) to determine the minimal polynomial h(X) of a, and 
return h as an irreducible factor of f. 

- Replace d by d - deg(h), put g(X) = f(X)/h(X) and return g as an 
irreducible factor of f if d = 1. Terminate the execution of the algorithm 
if d < 1; otherwise, replace f by g and go on. 

This finishes the description of Algorithm (3.1). 
It follows from Explanation (1.18), Theorem (1.19) and the definition of H that 

all application of Algorithm (1.16) together can be done in O(d5 . (d+log If I)) arith- 
metic operations on O(d2 (d+log If I))-bit integers. A. Schonhage's observation (cf. 
Remark (1.20)) even brings this down to O(d4. (d + log If I)) arithmetic operations 
on O(d. (d + log If I))-bit integers. 

It remains to analyze the cost of the computation of an approximation to a root 
of f. In [21] it is shown that the cost of computing approximations to all roots 
of f simultaneously, up to the precision needed in Algorithm (3.1), is dominated 
by the cost of the applications of Algorithm (1.16). This paper is however not yet 
published, and therefore we sketch how an approximation to a root of f E Z[X] 
of degree d can be found in time polynomial in d, log If I and the number of bits 
needed. The algorithm is due to A. Schonhage and is considerably slower than 
his method in [21]; we only include it to show that the problem can be solved in 
polynomial time. We need the following lemma, which follows from [10, Theorems 
6.4b and 6.4e]. 

(3.2) LEMMA. Let g(X) = Ed o g9iX E C[X], and let a be the root of g which 
is smallest in absolute value. If R(g) = min{Igo0 /g1I/m: m > 1, gm :A 0}, then 

2R(g) < lal < d R(g). 1 

Proof. If go = 0, then X = 0 is a root, and the lemma is obviously true. So 
assume go $ 0. First, suppose that the lower bound on lal is violated. Then 

<1 go 1/rn 
II 2 gm 

for all m with gm $ 0. So 

d d d 

E m < E Igmllalm < Igol 'E <l 
m=1 m=1 m=l 

This implies that we cannot have d giai = 0, a contradiction. 
Now suppose that lal > d R(g). Let a = a1, a2,. . . Xad be the roots of g. Then 

gm =g9d Z ai1a(R2.*- --td-m 

.m .g'al..,-d-m 

for m = 0, 1, ... , d - 1, and in particular 

d 

9o = g fJ ai. 
i=1 
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So, 

9 E a1 1 1 

90 i 
a 

i, il 2 aim 

form= 0,1,...,d-1,d. Since ai > d R(g) for i= 1,2,...A,d, we have 

(md" (i1 1 

90go m d R(g) R(g)m 

for any m. It follows that 

gm >R(g) 

for all m with gm $ 0. This is in contradiction with the definition of R(g). This 
proves Lemma (3.2). 

We now show how to approximate a root in polynomial time. We may assume 
that among the roots al,a2, ... , ad E C of f there is an ai satisfying Iail < 1 
(otherwise, replace f (X) by Xd .f (1/X)). Let t E Z>o and at E 2-tZ [V/T] such 
that 

(3.3) min lat - iI < 4d 2-t. 

Initially, this condition is satisfied for t = 0 and ao 0. We show how to compute 
at+i E 2-(t+l)Z ['VXT such that (3.3) holds with t replaced by t + 1. 

For all a E 2-(t+1)Z [X/<] such that 

(3.4) la - atl < 4d . 2-t + 2-(t+l) 

we compute the coefficients of ga(X) = f (X + a) and an approximation r(ga) to 
d R(ga) such that 

(3.5) d R(ga) < r(ga) < 2d R(ga), 

where R(ga) is defined as in Lemma (3.2). Define at+i as the a for which r(ga) is 
minimal. 

To prove that at+i satisfies (3.3) with t replaced by t + 1, notice that the roots 
of ga(X) are the ai - a, and that it follows from (3.3) and (3.4) that there is an a' 
among the a such that mini la' - ail < 2-(t+1). This yields: 

min lat+1 - ail < r(gat,,) (Lemma (3.2) and (3.5)) 

< r(ga) (choice of at+,) 

< 2d R(ga) (due to (3.5)) 

< 4d min Ia' - ai (Lemma (3.2)) 

< 4d 2-(t+1) (choice of a'). 

It is clear that the computation of at+i can be done in time polynomial in d, t, 
and log If I. It follows that an approximation to a root of f can be found in time 
polynomial in d, log If I and the number of bits needed. 

We have shown the following theorem. 



ALGEBRAIC AND TRANSCENDENTAL NUMBERS 249 

(3.6) THEOREM. A primitive polynomial f of degree d in one variable with 
integral coefficients can be completely factored over the integers in time polynomial 
ind andloglfl. 

Using A. Schonhage's observation mentioned in Remark (1.20) and his improved 
version of the polynomial-time root finding algorithm described above (cf. [21]), we 
get the following theorem. 

(3.7) THEOREM. A primitive polynomial f of degree d in one variable with 
integral coefficients can be completely factored over the integers in O(d4 (d+log If I)) 
arithmetic operations on O(d. (d + log If I))-bit integers. 

As mentioned in Remark (1.20), the number of operations can be reduced to 
O(d3. (d + log If I)) if we use Schonhage's improved basis reduction algorithm. The 
description of the algorithm should in that case be slightly modified; we refer to 
[22] for details. 
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